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Chapter 1

In tro duction

The last several decadeshave seena rapid growth of information technology.
Computer based systems, e.g., tra�c control system for airlines, transaction
systemsfor international banks, are used world-wide in our daily life. Clearly,
the correctnessof such systemsis of crucial importance. Failures of those sys-
tems can be potentially disastrousand causethe lossof human life and a huge
amount of money. However, the designand implementation of computer based
systems, including both hardware and software systems, are error-prone and
becomingextremely complex.

Mathematics can provide solid foundations for methods to describe and an-
alyze systems. Formal methods are of this kind. Their mathematical underpin-
ning allows formal methods to specify systemsmore precisely, more consistently
and in a non-ambiguousway. Moreover, formal analysis techniquescan be used
to verify whether a systemhas desiredproperties. The research in this thesis is
motivated by the conviction that the proper useof formal methods will lead to
more reliable, dependable,and securesystemsin the future.

This thesisconcernsthe application of formal veri�cation to distributed sys-
tems, including industrial products, communication protocols, and distributed
algorithms. The aim of this chapter is to give a broad view of the main topics
studied (without being exhaustive) and results obtained in the embedded sys-
tems research program (PROGRESS) of the Dutch organization for Scienti�c
Research (NWO), the Dutch Ministry of Economic A�airs and the Technol-
ogy Foundation (STW) supported project CES.5008{ Improving the Qualit y
of EmbeddedSystemsby Formal Design and Systematic Testing.

1.1 The Title

First things �rst. According to the textb ook [36] of Coulouris, Dollimore and
Kindb erg, distributed systemsare de�ned as systemsconsisting of a collection
of autonomouscomputers linked by a computer network and equipped with dis-
tributed system software. Computer networks provide the necessarymeansfor
communication between the components of a distributed systems. Distributed

3



4 Chapter 1 Intro duction

systems have to combine desirable characteristics, such as resource sharing,
openness, concurrency, scalability, fault tolerance, and transparency. This the-
sis focuseson the assuranceof the correctnessof distributed systems,with an
emphasison concurrencyand fault tolerance.

Formal methods refer to a collection of notations and techniquesfor describ-
ing and analyzing systems. They can be used to improve the quality of (dis-
tributed) systems.A formal method generallyconsistsof a formalism to model a
system,a speci�cation languageto expressthe desiredproperties of the system,
a formal semantics to interpret both the system and the properties, and veri�-
cation techniques to check whether the properties are satis�ed by the system.
This thesisconcentrates on the processof applying such veri�cation techniques,
which is called formal veri�c ation. The URL http://vl.fmnet .in fo / collects
information on formal methods, available around the world on the World Wide
Web (WWW).

There is a wide range of veri�cation techniques to establish the correctness
of a system, i.e. asserting that a system has desired properties and only those.
Process algebra, such as ACP, CCS, CSP, and LOTOS, is de�ned as an alge-
braic approach to model the behavior of distributed systems. Their axiomatic
theories provide an elegant way for the study of elementary behavioral proper-
ties of such systems. Both a system and its desired external behavior can be
expressedin a processalgebraic speci�cation. Correctnessof the system can
be veri�ed by proving that thesetwo speci�cations are equivalent in terms of a
chosenbisimulation relation, which respects the branching structure of systems
and is a standard equivalencerelation for a setting with concurrency. Veri�ca-
tion techniques basedon the axiomatic theories, such as methods for proving
bisimulation, have beendeveloped for processalgebras.

A manual proof is only feasible for formal models of small systems,as the
complexity of a systemcan make manual mathematical proofs infeasible. Com-
puter support is necessaryfor the veri�cation of most real-life systems. An
alternativ e to manual proof is automatic or mechanical veri�c ation. Proof check-
ing assumesthe presenceof a proof checker implemented on a computer. Both
the manual proof and a set of proof rules are fed to the proof checker, which
then automatically decideswhether the proof contains a ws. A theorem prover
provides automated support to aid the creation of proofs. Proofs are generated
along strict lines, but this processrequires human-computer interactions. The
aim of proof checkersand theorem proversis obviously to increasethe reliabilit y
of the correctnessof the proofs. The problem with this approach is that it is
highly time consumingand can be rather non-trivial.

Unlike theorem proving, model checking is usually restricted to �nite-state
systems. It �rst builds a �nite state spaceof a formal model of a system, and
then veri�es a property, written in some temporal logic, through an explicit
state spacesearch. Due to the �niteness of the state space,the search always
terminates. Model checking is largely automatic. It can produce an answer
in a few minutes or even secondsfor many models. A counter-example can be
generatedwhen the checkedproperty fails to hold. This information can be used
for debuggingthe model. Techniquessuch aspartial order reduction, symmetry
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reduction, abstract interpretation, have been developed to deal with the state
explosion problem and enhance the scalability of model checking. Recently ,
attention in this areahasbeendevoted to model checking in�nite-state systems.
Other challengesare probabilistic systems,timed systems,and so on.

The combination of manual proof, theorem proving and model checking is
widely used nowadays in veri�cation tasks. Note that both theorem proving
and model checking require a formal model of the veri�ed system. The model
is achieved by abstracting away irrelevant information or ignoring someimple-
mentation details. This meansthat we verify distributed systemsat a rather
abstract level. Systemswhich have passedthe veri�cation can thus still con-
tain errors in their real implementation. Thus, other techniques to check the
correctnessof systems,e.g. testing, remain necessary.

The strengths of formal methods are that they 1) force to reason at the
conceptually clear level of a formal model, 2) can detect errors in the design,3)
are able to prove correctnessof a system, and 4) are supported by automated
techniques.

1.2 The Pro ject

The research in this thesis is carried out within the PROGRESS supported
project CES.5008{ Improving the Qualit y of EmbeddedSystemsusing Formal
Design and Systematic Testing. It was co-proposedby the EmbeddedSystems
Group at the Centrum voor Wiskunde en Informatica (CWI) and the Dutch
company Weidm•uller, later Add-Controls. Add-Controls builds embeddedcon-
trollers for a large rangeof applications, such as a distributed systemfor lifting
trucks and a steam unit used for steam baths and saunas. Add-Controls of
coursewants to deliver fault-free products, but experiencedthat this is almost
unattainable with software. It happens too often that �nalized software still
contains bugs. Therefore, Add-Controls set up a project to automatically ana-
lyze the software in a rigorous manner, and to make this analysis reproducible.

The proposal of the project is intended to go beyond the ambitions of the
company by making formal veri�cation techniquesapplicable in the designpro-
cessof embeddedsystems. The generalgoal of the project is:

\to establishwhether it is possibleto achieve reliable quality of soft-
ware for medium sizeembeddedsystems,and to better utilize formal
methods in industry."

Formal methods have already proved their usefulnessfor several years,although
mainly from an academicperspective. The project also proposeda major ques-
tion:

\whether the current technology developed in the past by the for-
mal methods research communit y can indeed becomean e�ectiv e
practical tool within a development environment."
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There have been numerous casestudies which suggest that this is the case.
However, most of thesecasestudies were quite remote from the actual product
designprocessand generally only dealt with fractions of a total system.

I was recruited as a PhD student to work on this project for the duration of
four years. According to the proposal, the �rst year was planned on describing
and analyzing an existing systemto get acquainted with formal techniquesand
the software development method used in Add-Controls. The secondand the
third year were usedto completely and formally designa number of embedded
systems,before implementation took place. In parallel with the designof these
embeddedsystems,I was supposedto develop tools to facilitate the connection
betweenthe formal descriptionsand the development environment usedat Add-
Controls. The fourth year was devoted to writing a thesis.

1.3 The Results

In this section, I give the list of casestudies and the results that were achieved
within the project.

A mechanical framew ork for proto col veri�cation

Togetherwith Wan Fokkink and Jacovan dePol, I de�ned a conesand foci proof
method [54], which rephrasesthe question whether two system speci�cations
are branching bisimilar in terms of proof obligations on relations betweendata
objects. Compared to the original conesand foci method from Groote and
Springintveld [79], this method is moregenerallyapplicable,and doesnot require
a preprocessingstep to eliminate internal loops. We proved soundnessof our
approach. Furthermore, we designeda set of rules to support the reachabilit y
analysis of so-called focus points. We formalized the method and proved its
correctnessusing the theorem prover PVS, and thus established a framework
for mechanical protocol veri�cation.

More recently , together with Wan Fokkink, I extended this conesand foci
method for timed systemsveri�cation [55]. This work is not included in the
current thesis.

A sliding windo w proto col

Together with Bahareh Badban, Wan Fokkink, Jan Friso Groote, and Jaco van
de Pol, I applied the conesand foci method and the mechanical framework in
PVS to the veri�cation of one of the most complex sliding window protocols
presented in Tanenbaum's Computer Networks textb ook [165]. We proved the
correctnessof this sliding window protocol with an arbitrary �nite window size
n and sequencenumbers modulo 2n. We showed that the external behavior
of this protocol is equivalent to a FIFO queue of capacity 2n. This proof is
entirely basedon the axiomatic theory underlying � CRL and the axioms char-
acterizing the data types. It implies both safety and livenessof the protocol.
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Sliding window protocols have attracted much attention from the processalge-
bra communit y, which hasled to signi�can t developments in the realm of process
algebraic proof techniques for protocol veri�cation. We therefore consider this
work as a true milestone in processalgebraic veri�cation.

A distributed system for lifting truc ks

A main product of Add-Controls is a distributed systemfor lifting heavy vehicles
(e.g. trucks, railway carriagesand buses). The system consistsof a number of
lifts; each lift supports one wheel of the truck that is being lifted and has its
own micro controller. The controls of the di�eren t lifts are connectedby means
of a network. A special purpose protocol has been developed to let the lifts
operate synchronously.

When testing the implementation the developers found problems. They
solved theseproblems by trial and error, partly becausethe causesof problems
were unclear. Together with Jan Friso Groote and Arno Wouters, I applied
the processalgebraic language � CRL in combination with the model checker
CADP to the veri�cation of this lift system[73]. The analysisin � CRL revealed
the reasonsfor the problems. Another new problem was found in the model,
which was indeed present in the implementation of the system. Solutions were
proposed and included in the � CRL speci�cation, and we showed by model
checking that the problems were solved indeed.

The developers tried to solve the problems independently . They made a
redesignof the lift system basedon their own solutions, which Bart Karstens,
Wan Fokkink and I checked using the real-time model checker UPPAAL [135].
We showed that the solutions of the developers do not solve the problems com-
pletely, while a re�ned version of our solutions contained in the � CRL speci�-
cation does. Currently , the lift system is under revision, and our solutions to
the problems are being implemented.

Together with Jaco van de Pol and Miguel Valero Espada, I developed a
general framework for abstracting uniform parallel processeswith data, and
applied it to the veri�cation of a simpli�ed lift system [136]. This work is not
included in the current thesis.

A cache coherence proto col for a Java DSM implemen tation

Jackal (developed at the Vrije Universiteit Amsterdam) is a �ne-grained, dis-
tributed sharedmemory implementation of Java. Its goal is to run unmodi�ed
concurrent Java programs e�cien tly on a cluster of workstations. It is based
upon a self-invalidation based, multiple-writer cache coherenceprotocol. To-
gether with Wan Fokkink, Rutger Hofman, and Ronald Veldema, I developed
a formal speci�cation of this protocol in � CRL [134]. Three requirements were
formulated for the protocol: deadlock freedom, relaxed cache coherency, and
livenessof writing and ushing regions. The veri�cation allowed the discovery
of two errors in the designof the cache coherenceprotocol. Also, a large num-
ber of inconsistenciesand misunderstandingswere found, mostly causedby the



8 Chapter 1 Intro duction

evolution of the implementation simultaneously with the formal analysis pro-
cess. This casestudy bene�ted a lot from the � CRL distributed state space
generation tool, and also pushedforward its development.

Distributed algorithms: self-stabilization and leader election

Together with Wan Fokkink and Jaap-Henk Hoepman, I showed that, contrary
to common belief, Dijkstra's K -state mutual exclusionalgorithm on a ring also
stabilizes when the number K of states per processis one lessthan the number
N + 1 of processesin the ring [52]. We formalized the algorithm and veri�ed the
proof in the theorem prover PVS, basedon Qadeerand Shankar's work [144].

Furthermore, together with Wan Fokkink, I designedtwo probabilistic leader
election algorithms for anonymousunidirectional rings with FIFO channels[56],
basedon an algorithm from Itai and Rodeh. In contrast to the Itai-Ro deh al-
gorithm, our algorithms are �nite-state, so they can be analyzed using explicit
state spaceexploration. We usedthe probabilistic model checker PRISM to ver-
ify that eventually a unique leaderis electedwith probabilit y one. Furthermore,
we gave a manual correctnessproof for each algorithm, for arbitrary ring size.

Needham-Sc hro eder public key authen tication proto col

I described the Needham-Schroederpublic key authentication protocol in � CRL
as a con�guration containing an initiator, a responder, and an intruder [133].
It showed that the capabilities of the language(especially the data types) are
well-adapted for describing this kind of protocols. This work is not included in
the current thesis.

Tw o abandoned case studies

A small control system of Add-Controls, being a converter which measuresthe
displacement of a hydraulic cylinder, wasalsostudied. Somecustomer reported
an error of the system. We made a start to analyze the system using the TorX
tool. Due to the fact that only oneof the 150systemsthat had beensold so far
exhibited an error, and the error could not even be reproducedwith a simulator,
the developers of TorX pointed out that it was very unlikely that this formal
analysiswould producea useful result. It wastherefore decidedto abandonthis
casestudy.

Another challenging embedded system was proposed by Add-Controls. It
concerns an embedded controller for a lift system for a staircase, including
a SmartCard with minimal information on the topology of the staircase for
which it is used. Adapting the speed and keeping the chair horizontal is the
responsibilit y of the SmartCard, using information on the actual speed and
position of the lift. Interestingly, the topology of the staircase lying ahead of
the lift is taken into account when keeping the chair horizontal. Thus it is a
truly hybrid system. But later on, Add-Controls lost the bidding to develop the
system, and no more detailed design information could be given. We stopped
this casestudy after building an experimental model using hybrid automata.
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1.4 The Structure

The thesis is organizedas follows. This chapter contains a short intro duction to
formal veri�cation, the project and its scope,and the achievedresults. Chapter 2
presents somepreliminaries for this thesis.

Part I of this thesis is concernedwith theorem proving. Chapter 3 presents
the generalizedconesand foci method for protocol veri�cation. It is an extension
of [54] with a formalization of the conesand foci method in the theorem prover
PVS (mainly done by Jaco van de Pol). The veri�cation of the sliding window
protocol is presented in Chapter 4. It extends [51] by allowing the mediums
of the sliding window protocol to have unbounded capacity. Chapter 5 reports
the formal veri�cation of a distributed algorithm for self-stabilization. It was
previously published as a CWI technical report [52].

Part I I presents applications of model checking. Chapter 6 presents the
analysis of the distributed lift system of Add-Controls. It is a revised version
of [73] and [135]. The cache coherenceprotocol for concurrent Java programs
on a distributed sharedmemory implementation is analyzedin Chapter 7. It is
a revised version of [134]. Chapter 8 presents two probabilistic leader election
algorithms for anonymous rings and their veri�cation results. It was previously
published as a CWI technical report [56]. Chapter 9 contains the conclusions,
from the perspective of the entire project.
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Chapter 2

Preliminaries

2.1 � CRL

Process algebra, such as ACP [16, 9, 50], CCS [126, 128] and CSP [89, 90], is
de�ned as an algebraic approach to model the behavior of distributed systems.
The axiomatic theories of processalgebra provide an elegant way for the study
of elementary behavioral properties of such systems.However, when it comesto
the study of more realistic systems,theselanguagesturn out to lack the abilit y
to handle data adequately. In order to solve this problem, formalisms such as
LOTOS [46] and � CRL [75] weredeveloped by enhancingprocessalgebraswith
data types. They are suitable to describe realistic, interacting systems. � CRL
is the main formalism used in this thesis. We briey give an intro duction to
this language. The syntax and semantics of � CRL are given in [75].

� CRL is a languagefor specifying distributed systemsand protocols in an
algebraic style. This languagecombines the processalgebra ACP with equa-
tional abstract data types [115]. In a � CRL speci�cation, one part speci�es the
data types,while a secondpart speci�es the processbehavior. Each data type is
declaredusing the keyword sort . Elements of a data type are declaredby using
the keywords func and map . Using func one can declareconstructors with as
target sort the data type in question; theseconstructors de�ne the structure of
the data type. E.g. by

sort Bool
func T, F: ! Bool

one declares that T (true) and F (false) are the only elements of sort Bool .
We say that T and F are the constructors of sort Bool . The keyword map is
used to declareadditional functions for a data type that are not constructors.
Their meaningsare de�ned by meansof equations, which consist of a variable
declaration (starting with the keyword var ) followed by an equation section
(starting with the keyword rew ). For instance, conjunction (^ ) and negation
(: ) on booleansare de�ned as follows:

map and: Bool� Bool! Bool

11
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not: Bool! Bool
var b: Bool
rew and(T,b)=b

and(F,b)=F
not(T)=F
not(F)=T

Sincebooleansare usedin the conditional construct of processdescriptions (see
below), the sort Bool must be included in every � CRL speci�cation. Besides
the declaration of the sort Bool , it is also obligatory that T and F are declared
in every speci�cation and that T 6= F. To reect equality between terms, one
needsto specify an equality function eq: D � D ! Bool, such that eq(s; t) = T
if and only if s = t. Actually , such an equality function is only neededfor data
typesthat are usedasparametersof actions that occur in a communication (see
below). For data types in this thesis, the speci�cation of the equality function
eq is mostly omitted, for the sake of presentation.

The speci�cation of a processis constructed from actions, recursionvariables
and processalgebraic operators (processesare declaredby the keyword pro c).
Actions and recursion variables carry zero or more data parameters (actions
are declared by meansof the keyword act ). Intuitiv ely, an action can execute
itself, after which it terminates successfully. There are two prede�ned processes
in � CRL: � represents deadlock, and � a hidden action. These two processes
never carry data parameters. p�q denotes sequential composition and p + q
non-deterministic choice, where p and q are processes.Summation

P
d:D p(d)

provides the possibly in�nite choice over a data type D, and the conditional
construct p � b � q with b a data term of sort Bool behaves as p if b = T
and as q if b = F. Parallel composition p k q interleavesthe actions of p and q;
moreover, actions from p and q may alsosynchronize to a communication action,
when this is explicitly allowed by a prede�ned communication function using
the keyword comm . Two actions can only synchronize if their data parameters
are semantically the same, which means that communication can be used to
represent data transfer from one system component to another. Encapsulation
@H (p), which renamesall occurrencesin p of actions from the set H into � , can
be used to force actions into communication. Finally, hiding � I (p) renamesall
occurrencesin p of actions from the set I into � . The initial behavior of the
system can be speci�ed with the keyword init .

Example 2.1.1 A data bu�er with sizen can be modeled in � CRL as follows:

Bu�er (� :List) =
P

d:Data receive(d):Bu�er (append(d; � )) � length(� )< n � �

+ send(top(� )) :Bu�er (tail(� )) � length(� )> 0 � �

This says whenever the list is not full (length(� )< n), the bu�er can receive
any datum d (modeled by action receive(d)) and append it to the end of the
list (append(d; � )); the bu�er can also take the datum at the top of the list
and send it outside (modeled by action send(top(� ))) if the list is not empty
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(length(� )> 0). In this caseonly the tail of the list (tail (� )) remains. Initially ,
the list contains no data (� = hi), which can be expressedas follows:

init Bu�er( hi)

2.2 Lab eled Transition Systems and Behavioral Equiv a-
lences

Labeled transition systems (LTSs) [102] can capture the state space of dis-
tributed systems. An LTS consists of transitions s a! s0, denoting that the
state s can evolve into the state s0 by the execution of action a.

De�nition 2.2.1 (Lab eled transition system) A labeled transition system
is a tuple (S;Lab; ! ; s0), whereS is a set of states,Lab a set of transition labels,
! � S � Lab � S a transition relation, and s0 the initial state. A transition

(s; `; s0) is denoted by s `! s0.

To each � CRL speci�cation there belongsan LTS, de�ned by the structural
operational semantics for � CRL in [75], in which the states S consist of process
terms and the edgesLab consist of actions from Act [ f � g parametrized by
data. We de�ne strong bisimilarity [12, 127, 137] and branching bisimilarity
[64] between states in LTSs. Both are an equivalence relation (for branching
bisimulation, see[13]).

De�nition 2.2.2 (Strong bisim ulation) Assume an LTS. A strong bisimu-
lation relation B is a symmetric binary relation on states such that if sB t and

s `! s0, then for somet0, t `! t0 with s0B t0.
Two states s and t are strongly bisimilar , denoted by s $ t, if there is a

strong bisimulation relation B such that sB t.

De�nition 2.2.3 (Branc hing bisim ulation) Assume an LTS. A branching
bisimulation relation B is a symmetric binary relation on states such that if

sB t and s `! s0, then

- either ` = � and s0B t;

- or there is a sequenceof (zero or more) � -transitions t �! � � � �! t0 such

that sB t0 and t0
`

! t0 with s0B t0 for somet0.

Two states s and t are branching bisimilar , denoted by s $ b t, if there is a
branching bisimulation relation B such that sB t.

We de�ned bisimilarit y of states in the sameLTS. States of di�eren t LTSs
are said to be strong/branching bisimilar, if they are strong/branching bisimilar
in the disjoint union of the LTSs, which can be de�ned straightforwardly.
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If the LTS belongingto a � CRL speci�cation consistsof �nitely many states,
then the � CRL tool set [21] can be usedto support the generationof this LTS,1

together with reduction modulo strong and branching bisimulation equivalence.
More information on the � CRL tool set can be obtained at http://www.cwi.
nl/~mcrl/ .

2.3 Linear Pro cess Equations

A linear processequation (LPE) [20] is a � CRL speci�cation consistingof onere-
cursion variable, actions, summations, sequential compositions and conditional
constructs. In particular, an LPE doesnot contain any parallel operators, encap-
sulations or hidings. In essencean LPE is a vector of data parameterstogether
with a list of condition, action and e�ect triples, describingwhen an action may
happen and what is its e�ect on the vector of data parameters. Each � CRL
speci�cation that does not include successfultermination can be transformed
into an LPE [170].2

De�nition 2.3.1 (Linear pro cess equation) A linear processequation is a
� CRL speci�cation of the form

X (d:D) =
X

a2 A ct [f � g

X

e:E a

a(f a(d;e)) �X (ga(d;e)) � ha(d;e) � �

where f a : D � Ea ! D i , ga : D � Ea ! D , ha : D � Ea ! Bool for each
a 2 Act [ f � g, and a is an action label with data parametersof type D i .

The LPE in De�nition 2.3.1hasexactly oneLTS as its solution (modulo strong
bisimulation). 3 In this LTS, the statesaredata elements d:D (whereD may be a
Cartesian product of n data types,meaningthat d is a tuple (d1; :::; dn )) and the
transition labels are actions parametrized with data. The LPE expressesthat
state d can perform a(f a(d;e)) to end up in state ga(d;e), under the condition
that ha(d;e) is true. The data typesEa give LPEs a more generalform, as not
only the data parameter d:D but also the data parameter e:Ea can inuence
the parameter of action a, the condition ha and the resulting state ga .

De�nition 2.3.2 (In varian t) A mapping I : D ! Bool is an invariant for an
LPE, written as in De�nition 2.3.1, if for all a 2 Act [ f � g, d:D and e:E ,

I (d) ^ ha(d;e) ) I (ga(d;e)) :

Intuitiv ely, an invariant approximates the set of reachable states of an LPE.
That is, if I (d), and if one can evolve from state d to state d0 in zero or more

1Sometimes the �nite LTS cannot be generated by the � CRL tool set, as it is too large.
2To cover � CRL speci�cations with successful termination, LPEs should include a sum-

mand
P

a2 Act [f � g
P

e:E a
a(f a (d; e)) � ha (d; e) � � .

3LPEs exclude \unguarded" recursive speci�cations such as X = X , which have multiple
solutions.



2.4 Regular Alternation-free � -calculus 15

transitions, then I (d0). Namely, if I holds in state d and it is possibleto execute
a(f a(d;e)) in this state (meaning that ha(d;e)), then it is ensuredthat I holds
in the resulting state ga(d;e). Invariants tend to play a crucial role in algebraic
veri�cations of system correctnessthat involve data.

2.4 Regular Alternation-free � -calculus

Model checking [35] is an automatic technique to determine which states in an
LTS satisfy certain requirements. In order to check whether a certain require-
ment holds, it should be expressedas a temporal logic formula �rst.

A variety of so-calledmodal logics [94] have beendeveloped to expressprop-
erties of LTSs, such as Hennessy-Milner logic (HML) [85], linear temporal logic
(LTL) [139], computation tree logic (CTL) [47] and � -calculus [104]. We proceed
to present a brief description of the � -calculus,and then the regular alternation-
free � -calculus [122], which is the input languagefor the model checker Eval-
uator in the Construction and Analysis of Distributed Processestoolbox (see
Section 2.5).

The � -calculus is basedon �xp oint computations [166]. Let D be a �nite set
with a partial ordering � with a least and a greatestelement. Given a mapping
' : D ! D , an element d of D is a �xp oint of ' if ' (d) = d. Moreover, d is a least
�xp oint or greatest �xp oint if d � e or e � d, respectively, for all �xp oints e of ' .
The least and the greatest �xp oint of ' (if they exist) are denoted by �Y :' (Y )
and � Y:' (Y ), respectively. The mapping ' : D ! D is called monotonic if
d � e implies ' (d) � ' (e). If ' is monotonic, and D has a least element d0 and
a greatest element e0 (i.e., d0 � d and d � e0 for all d 2 D), then ' has a least
and a greatest �xp oint.

The formulas of � -calculus, which expressproperties of states, are de�ned
by the following BNF grammar:

' ::= F j T j : ' j ' 1 _ ' 2 j ' 1 ^ ' 2 j hai ' j [a]' j Y j �Y :' j � Y:'

where a rangesover Act [ f � g and Y rangesover somecollection of recursion
variables. We restrict to closed � -calculus formulas, meaning that each occur-
renceof a recursion variable Y is within the scope of a minimal �xp oint �Y or
a maximal �xp oint � Y .

The intuitiv e meaning of the formula hai ' is \it is possible to make a-
transition to a state where ' holds." Likewise, [a]' means that \ ' holds in
all states reachable by making a a-transition." The boolean operators have the
usual meaning: a state of an LTS always satis�es T; it never satis�es F; it sat-
is�es : ' if and only if it does not satisfy ' ; it satis�es ' 1 _ ' 2 if and only
if it satis�es ' 1 or it satis�es ' 2; it satis�es ' 1 ^ ' 2 if and only if it satis�es
both ' 1 and ' 2. The formulas �Y :' and � Y:' represent minimal and maximal
�xp oints, respectively. Here, ' represents a mapping from setsof states to sets
of states: a set S of states is mapped to those states where ' holds, under the
assumption that the recursion variable Y evaluates to T for states in S and to
F for statesoutside S. As partial ordering on setsof stateswe take set inclusion
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(so the least and the greatestelement are the empty set and the set of all states,
respectively.). The mapping ' is monotonic, so �Y :' and � Y:' are well-de�ned.

The alternation-fr ee � -calculus [48] consistsof � -calculus formulas with no
alternation between least and greatest �xp oint operators, which makesa good
compromisebetweenexpressivenessand e�ciency of model checking.

The regular � -calculus [122] is an extension of the � -calculus with action
predicatesand regular expressionsover action sequences.One is allowed to use
expressionsh� i ' and [� ]' where � is a so-called regular expression, which is
de�ned by the following BNF grammar:

� ::= T j a j : � j � 1 ^ � 2

� ::= � j � 1�� 2 j � 1j� 2 j � �

Action formulas � represent a set of actions: T denotesthe set of all actions, a
the set f ag, : � the complement of � , and � 1 ^ � 2 the intersection of � 1 and � 2.
Regular expressions� represent a set of traces: � 1�� 2 denotesthe traces that
can be obtained by concatenatinga trace from � 1 and a trace from � 2, � 1j� 2 the
union of � 1 and � 2, and � � the traces that can be obtained by concatenating
�nitely many traces from � .

h� i � meansthat � holds after sometrace from � , and [� ] � meansthat �
holds after all traces from � .

The regular alternation-free � -calculus allows a simple, compact speci�ca-
tion of safety and livenessproperties [108], where safety properties require that
\nothing bad ever happens" and livenessproperties require that \something
good will eventually happen".

Example 2.4.1 A safety property describing the absenceof someerror action
is de�ned as follows:

[T � �error] F

Example 2.4.2 A safety property detecting the absenceof � -cyclesis de�ned
as follows:

[T � ] �Y :[� ] Y

Example 2.4.3 A livenessproperty stating that there exists a path leading to
somemoveaction after performing zeroor more transitions is de�ned asfollows:

hT � �movei T

Fairness properties are similar to livenessproperties, except that they ex-
pressreachabilit y of actions by consideringonly fair execution sequences.The
notion of fairnessencoded in the regular alternation-free � -calculus is the \fair
reachabilit y of predicates" [145]: a sequenceis fair if and only if it doesnot in-
�nitely often enablesthe reachabilit y of a certain state without in�nitely often
reaching it.
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Example 2.4.4 A fairness property expressingthat after sending a message
(action send) all fair executionsequenceswill leadto the receptionof the message
(action receive) is de�ned as follows:

[ T � �send�(: receive) � ] h(: receive) � �receivei T

2.5 Construction and Analysis of Distributed Pro cesses
Toolb ox

The � CRL tool set, in combination with the Construction and Analysis of Dis-
tributed Processestoolbox (CADP) [49, 63], formerly known asC�sar Ald�ebaran
Development Package,which acts asa back-end for the � CRL tool set, features
visualization, simulation, state spacegeneration,model checking, theorem prov-
ing and state bit hashing capabilities. This approach has beenusedto analyze
a wide range of protocols and distributed systems(e.g., [6, 53, 93, 142]).

CADP is a tool set to support protocol engineering. CADP was jointly
developed by the VASY team at INRIA Rhône-Alpesand the Verimag labora-
tory in France. It has a set of tools for compiling high-level protocol descrip-
tions written in LOTOS [46], simulation, state spacegeneration, minimization,
comparison and model checking properties on LTSs, and testing. C�sar is a
compiler that translates a LOTOS speci�cation into an LTS. Ald�ebaran allows
the minimization of an LTS modulo for instance strong and branching bisimu-
lation and comparesLTSs. It has diagnosiscapabilities that provide the user
with explanations when two LTSs are found to be not equivalent. In the pack-
age, Evaluator [122] is an on-the-y model checker for regular alternation-free
� -calculus formulas on LTSs. It is equipped with diagnostic generation algo-
rithms, which construct both examplesand counter-examples, i.e., portions of
an LTS explaining why a formula is true or false. More information on CADP
can be obtained at http://www.inrial pes.f r/v asy/ cadp/ .
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Theorem Pro ving
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Chapter 3

Cones and Foci: A Mec hanical Pro of
Framew ork

3.1 In tro duction

Protocol veri�cation with the help of a theorem prover is often rather ad hoc,
in the sensethat one has to develop the entire proof structure from scratch.
Inventing such a structure takesa lot of e�ort, and makesthat in generalsuch
a proof cannot be readily adapted to other protocols. Groote and Springintveld
[79] proposed a general proof framework for protocol veri�cation, which they
namedthe conesand foci method. In this chapter we intro ducesomesigni�can t
improvements for this framework. Furthermore, we have cast the framework in
the interactive theorem prover PVS [131].

For �nite labeledtransition systems,checking whether two statesarebranch-
ing bisimilar can be performed e�cien tly [80]. The � CRL tool set [21] supports
the generation of labeled transition systems, together with reduction modulo
branching bisimulation equivalence,and allowsmodel checking of temporal logic
formulas [35] via a back-end to the CADP tool set [49]. This approach to verify
systemcorrectnesshas three important drawbacks. First, the labeled transition
systemsof the � CRL speci�cations involved must be generated; often the la-
beled transition systemof the implementation of a systemcannot be generated,
as it is too large, or even in�nite. Second,this generationusually requiresa spe-
ci�c choicefor onenetwork or data domain; in other words, only the correctness
of an instantiation of the system is proved. Third, support from and rigorous
formalization by theorem provers and proof checkers is not readily available.

In this chapter we focus on analyzing protocols and distributed systemson
the level of their symbolic speci�cations. Linear process equations [20] (also
seeDe�nition 2.3.1) constitute a restricted class of � CRL speci�cations in a
so-called linear format. Algorithms have been developed to transform � CRL
speci�cations into this linear format [76, 81, 170]. In a linear processequation,
the states of the associated labeled transition system are data objects.

The conesand foci method from [79] rephrasesthe question whether two
linear processequationsare branching bisimilar in terms of proof obligations on

21
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relations betweendata objects. Theseproof obligations canbe derivedby means
of algebraic calculations, in generalwith the help of invariants (i.e., properties
of the reachablestates) that are provedseparately. This method wasusedin the
veri�cation of a considerablenumber of real-life protocols (e.g., [60, 72, 157]),
often with the support of a theorem prover or proof checker.

The main idea of the conesand foci method is that quite often in the imple-
mentation of a system, � -transitions progressinertly towards a state in which
no � can be executed;such a state is declaredto be a focus point. The cone of
a focus point consistsof the states that can reach this focus point by a string
of � -transitions. In the absenceof in�nite sequencesof � -transitions, each state
belongsto somecone. This core idea is depicted below. Note that the external
actions at the edgeof the depicted cone can also be executed in the ultimate
focus point F ; this is essential for soundnessof the conesand foci method, as
otherwise � -transitions in the conewould not be inert.

External actions

F

Internal actions

c
d

c
d

d

d

a
b

a

b
b

b

c

a

The starting point of the conesand foci method are two linear processequa-
tions, expressingthe implementation and the desiredexternal behavior of a sys-
tem. A state mapping� relateseach state of the implementation to a state of the
desired external behavior. Groote and Springintveld [79] formulated matching
criteria , consisting of relations between data objects, which ensurethat states
s and � (s) are branching bisimilar.

If an implementation, with all internal activit y hidden, givesrise to in�nite
sequencesof � -actions, then Groote and Springintveld [79] distinguish between
progressingand non-progressing� 's, wherethe latter are treated in the sameway
asexternal actions. They require that there is no in�nite sequenceof progressing
� 's, and de�ne focus points as the states that cannot perform progressing� 's.
A pre-abstraction function divides occurrencesof � in the implementation into
progressingand non-progressingones; in many casesit is far from trivial to
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de�ne the proper pre-abstraction. Finally, a special fair abstraction rule [8] can
be usedto try and eliminate the remaining (non-progressing)� 's.

In this chapter, we propose an adaptation of the conesand foci method,
in which the cumbersometreatment of in�nite sequencesof � -transitions is no
longer necessary. This improvement of the conesand foci method wasconceived
during the veri�cation of a sliding window protocol [51] (also seeChapter 4),
where the adaptation simpli�ed matters considerably. As before, the method
deals with linear processequations, requires the de�nition of a state mapping,
and generatesthe samematching criteria. However, we allow the user to freely
assign which states are focus points (instead of prescribing that they are the
states in which no progressing � -actions can be performed), as long as each
state is in the cone of some focus point. We do allow in�nite sequencesof
� -transitions. No distinction between progressing and non-progressing� 's is
needed, and � -loops are eliminated without having to resort explicitly to a
fair abstraction rule. We prove that our method is sound modulo branching
bisimulation equivalence.

Compared to the original conesand foci method [79], our method is more
generally applicable. As expected, some extra price may have to be paid for
this generalization. Groote and Springintveld must prove strong termination of
progressing� -transitions. They usea standard approach to prove strong termi-
nation: provide a well-founded ordering on statessuch that for each progressing
� -transition s �! s0 onehass> s0. Here we must prove that each state can reach
a focus point by a seriesof � -transitions. This meansthat in principle we have
a weaker proof obligation, but for a larger class of � -transitions. We develop
a set of rules to prove the reachabilit y of focus points. These rules have been
formalized and proved in PVS.

We formalize the conesand foci method in PVS. The intent is to provide a
commonframework for mechanical veri�cation of protocolsusing our approach.
PVS theories are developed to represent basic notions like labeled transition
systems,branching bisimulation, linear processequations, and then the cones
and foci method itself. The proof of soundnessfor the method hasbeenmechan-
ically checked by PVS within this framework. Once we had the linear process
equations, the state mapping and the focus condition encoded in PVS, the PVS
theorem prover and its type-checking condition systemwerethen usedto gener-
ate and verify all correctnessconditions to ensurethat the implementation and
the external behavior of a system are branching bisimilar.

We apply our mechanical proof framework to the Concurrent Alternating
Bit Protocol [105], which served as the main example in [79]. Our aims are to
compare our method with the one from [79], and to illustrate our mechanical
proof framework and our approach to the reachabilit y analysis of focus points.
While the old conesand foci method required a typical cumbersometreatment of
� -loops, herewe can take these� -loops in our stride. Thanks to the mechanical
proof framework wedetecteda bug in oneof the invariants of our original manual
proof. The reachabilit y analysis of focus points is quite crisp.



24 Chapter 3 Conesand Foci: A Mechanical Proof Framework

Related W ork. In compiler correctness,advanceshavebeenmadeto validate
programs at a symbolic level with respect to an underlying simulation notion
(e.g., [34, 66, 129]). The methodology surrounding conesand foci incorporates
well-known and useful concepts such as the precondition/e�ect notation [97,
117], invariants and simulations. Linear processequationsresemble the UNITY
format [31] and recursive applicative program schemes[37]; state mappings are
comparable to re�nement mappings [118, 140] and simulation [57]. Van der
Zwaag [180] gave an adaptation of the conesand foci method from [79] to a
timed setting, modulo timed branching bisimulation equivalence.

Outline of the chapter. This chapter is organized as follows. In Section
3.2, we present the main theorem and prove that our method is sound modulo
branching bisimulation equivalence. A proof theory for reachabilit y of focus
points is also presented. In Section3.3, the conesand foci method is formalized
in PVS, and a mechanical proof framework is set up. In Section 3.4, we illus-
trate the method by verifying the Concurrent Alternating Bit Protocol. Part of
the veri�cation within the mechanical proof framework in PVS is presented in
Section 3.4.4. We draw someconclusionsin Section 3.5.

3.2 Cones and Foci

In this section, we present our versionof the conesand foci method from [79] in
the setting of � CRL. We do not describe the treatment of data types in � CRL
in detail. For our purpose it is su�cien t that processescan be parametrized
with data. We assumethe data sort of booleansBool with constant T and F,
and the usual connectives^ , _, : and ) . For a booleanb, we abbreviate b = T
to b and b = F to : b.

Suppose that we have an LPE X (d:D) specifying the implementation of a
system,and an LPE Y(d0:D 0) (without occurrencesof � ) specifying the desired
external behavior of this system. We want to prove that the implementation
exhibits the desiredexternal behavior.

We assumethe presenceof an invariant I : D ! Bool for X . In the cones
and foci method, a state mapping � : D ! D 0 relates each state of the imple-
mentation X to a state of the desiredexternal behavior Y . Furthermore, some
states in D are designatedto be focus points. In contrast with the approach of
[79], we allow to freely designatefocus points, as long as each state d:D of X
with I (d) can reach a focus point by a sequenceof � -transitions. If a number
of matching criteria for d:D are ful�lled, consisting of relations between data
objects, and if I (d), then the states d and � (d) are guaranteed to be branching
bisimilar. These matching criteria require that (A) all � -transitions at d are
inert, (B) each external transition of d can be mimicked by � (d), and (C) if d
is a focus point, then vice versaeach transition of � (d) can be mimicked by d.

In Section 3.2.1, we present the general theorem underlying our method.
Then we intro duce proof rules for the reachabilit y of focus points in Section
3.2.2.
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3.2.1 The general theorem

Let the LPE X be of the form

X (d:D) =
X

a2 A ct [f � g

X

e:E a

a(f a(d;e)) �X (ga(d;e)) � ha(d;e) � � :

Furthermore, let the LPE Y be of the form

Y (d0:D 0) =
X

a2 A ct

X

e:E a

a(f 0
a(d0; e)) �Y (g0

a(d0; e)) � h0
a(d0; e) � � :

Note that Y is not allowed to have � -steps. We start with de�ning the predicate
FC, designating the focus points of X in D . Next we de�ne the state mapping
together with its matching criteria.

De�nition 3.2.1 (Focus poin t) A focus condition is a mapping FC : D !
Bool. If FC (d), then d is called a focus point.

De�nition 3.2.2 (State mapping) A state mapping is of the form � : D !
D 0.

De�nition 3.2.3 (Matc hing criteria) A state mapping � : D ! D 0 satis�es
the matching criteria for d:D if for all a 2 Act:

I 8e:Ea (h� (d;e) ) � (d) = � (g� (d;e)));

I I 8e:Ea (ha(d;e) ) h0
a(� (d); e));

I I I FC (d) ) 8e:Ea (h0
a(� (d); e) ) ha(d;e));

IV 8e:Ea (ha(d;e) ) f a(d;e) = f 0
a(� (d); e));

V 8e:Ea (ha(d;e) ) � (ga(d;e)) = g0
a(� (d); e)).

Matching criterion I requiresthat the � -transitions at d are inert, meaning that
d and g� (d;e) are branching bisimilar. Criteria I I, IV and V expressthat each
external transition of d can be simulated by � (d). Finally, criterion I I I expresses
that if d is a focus point, then each external transition of � (d) can be simulated
by d.

Theorem 3.2.4 AssumeLPEs X (d:D) and Y (d0:D 0) written as before (De�-
nition 2.3.1). Let I : D ! Bool be an invariant for X . Supposethat for all d:D
with I (d),

1. � : D ! D 0 satis�es the matching criteria for d, and

2. there is a d̂:D such that FC (d̂) and d �! � � � �! d̂ in the LTS for X .

Then for all d:D with I (d),

X (d) $ b Y(� (d)) :
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Pro of. We assumewithout lossof generality that D and D 0 are disjoint. De�ne
B � D [ D 0 � D [ D 0 as the smallest relation such that whenever I (d) for a
d:D then dB � (d) and � (d) B d. Clearly, B is symmetric. We show that B is a
branching bisimulation relation.

Let sB t and s `! s0. First consider that casewhere � (s) = t. By de�nition
of B we have I (s).

� If ` = � , then h� (s; e) and s0 = g� (s; e) for some e:E . By matching
criterion I, � (g� (s; e)) = t. Moreover, I (s) and h� (s; e) together imply
I (g� (s; e)). Hence,g� (s; e) B t.

� If ` 6= � , then ha(s; e), s0 = ga(s; e) and ` = a(f a(s; e)) for some a 2
Act and e:E . By matching criteria I I and IV, h0

a(t; e) and f a(s; e) =

f 0
a(t; e). Hence, t

a( f a (s;e))
! g0

a(t; e). Moreover, I (s) and ha(s; e) together
imply I (ga (s; e)), and matching criterion V yields � (ga(s; e)) = g0

a(t; e),
so ga(s; e) B g0

a(t; e).

Next considerthe casewhere s = � (t). Sinces
`

! s0, for somea 2 Act and e:E ,
h0

a(s; e), s0 = g0
a(s; e) and ` = a(f 0

a(s; e)). By de�nition of B we have I (t). By
assumption2 of the Theorem, there is a t̂:D with FC(t̂) such that t �! ::: �! t̂ in
the LTS for X . Invariant I , so also the matching criteria, hold for all states on
this � -path. Repeatedlyapplying matching criterion I weget � ( t̂ ) = � (t) = s. So
matching criterion I I I together with h0

a(s; e) yields ha(t̂; e). Then by matching

criterion IV, f a(t̂; e) = f 0
a(s; e), so t �! ::: �! t̂

a( f 0
a (s;e))
! ga(t̂; e). Moreover,

I (t̂) and ha(t̂ ; e) together imply I (ga (t̂; e)), and matching criterion V yields
� (ga(t̂ ; e)) = g0

a(s; e), so sB t̂ and g0
a(s; e) B ga(t̂; e).

Concluding, B is a branching bisimulation relation. �

We note that Groote and Springintveld [79] proved for their versionof the cones
and foci method that it can be derived from the axioms of � CRL, which implies
that their method is sound modulo branching bisimulation equivalence.

3.2.2 Pro of rules for reachabilit y

The conesand foci method requires as input a state mapping and a focus con-
dition. It generatestwo kinds of proof obligations: matching criteria, and a
reachabilit y criterion. The latter states that from all reachable states, a state
satisfying the focus condition must be reachable. Note that it su�ces to prove
that from any state satisfying a given set of invariants, a state satisfying the
focus conditions is reachable. In this section we develop proof rules, in order to
establish this condition. First we intro duce somenotation.

De�nition 3.2.5 ( � -Reachabilit y) Given an LTS (S;Lab; ! ; s0) and �;  �
S.  is � -reachable from � , written as � �  , if and only if for all x 2 � there
exists a y 2  such that x �! � � � �! y.
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The above mentioned reachabilit y criterion can now be expressedas Inv �
FC, where Inv denotesa set of invariants, and FC denotesthe focus condition.
Here and in the sequel,we use predicates with variables from the state vector
to denote setsof states.

De�nition 3.2.6 (Reac habilit y in one � -step) Let X (d:D ) be an LPE (see
De�nition 3.2.1). The set of states PreX ( ), that can reach the set of states  
in one � -step, is de�ned as:

PreX ( )(d) = 9e:E(h� (d;e) ^  (g� (d;e)))

Lemma 3.2.7 (Pro of rules for reachabilit y) A list of rules for proving �
with respect to an LPE X are given as follows:

� (precondition) PreX (� ) � �

� (implication) If � )  then � �  .

� (transitivit y) If � �  and  � � then � � � .

� (disjunction) If � � � and  � � , then f � _  g � � .

� (invariant) If � �  and I is an invariant, then f � ^ I g � f  ^ I g.

� (induction) If for all n > 0, f � ^ (t = n)g � f � ^ (t < n)g, then � �
f � ^ (t = 0)g, where t is any term containing state variables from D.

Pro of. Theserules can be easily proved. In the precondition rule we obtain a
onestep reduction from the semantics of LPEs. The implication rule is obtained
by an empty reduction sequence;for transitivit y we can concatenatethe reduc-
tion sequences.The disjunction rule can be proved by casedistinction. For the
invariant rule, assumethat � (d) and I (d) hold. By the assumption � �  , we
obtain a sequenced �! � � � �! d0, such that  (d0). BecauseI is an invariant, we
have I (d0) (by induction on the length of that reduction). Soindeedf  ^ I g(d0).
Finally, for the induction rule we �rst prove with well-founded induction over
n and using the transitivit y rule that 8n:f � ^ (t = n)g � f � ^ (t = 0)g. Then
observe that � ) f � ^ (t = t)g, and usethe implication and transitivit y rule to
concludethat � � f � ^ (t = 0)g. �

The proof rules for reachabilit y wereproved correct in PVS, and they wereused
in the veri�cation of the reachabilit y criterion for the CABP in PVS, which we
will present in Section 3.4.4.

3.3 A Mec hanical Pro of Framew ork

In this section, our method is formalized in the language of the interactive
theorem prover PVS [131]. This formalism enablescomputer aided protocol
veri�cation using the conesand foci method. PVS is chosenfor the following
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main reasons.First, the speci�cation languageof PVS is basedon simply typed
higher-order logics. PVS provides a rich set of types and the abilit y to de�ne
subtypesand dependent types. Second,PVS constitutes a powerful, extensible
system for verifying obligations. It has a tool set consisting of a type checker,
an interactive theorem prover, and a model checker. Third, PVS includes high
level proof strategiesand decisionproceduresthat take careof many of the low
level details associated with computer aided theorem proving. In addition, PVS
has useful proof management facilities, such as a graphical display of the proof
tree, and proof stepping and editing.

The type system of PVS contains basic types such as boolean, natural, in-
teger, real, et al. and type constructors such as set, tuple, record, and func-
tion. Tuple, record, and type constructors are extensively usedin the following
sections to formalize the conesand foci method. Tuple types have the form
[T1,...,Tn] , where the Ti are type expressions. A record is a �nite list of
�elds of the form R:TYPE=[# E1:T1, ...,En:Tn #] , where the Ei are record
accessor functions. Associated with every tuple type or record is a set of pro-
jection functions: `1,`2,..., (or proj 1,proj 2,... ). A function construc-
tor has the form F:TYPE=[T1,...,Tn ->R] , where F is a function with domain
T1� T2� ... � Tn and range R.

A PVS speci�cation can be structured through a hierarchy of theories. Each
theory consistsof a signature for the type names,constants intro duced in the
theory, axioms, de�nitions, and theoremsassociated with the signature. A PVS
theory can be parametric in certain speci�ed typesand values,which are placed
between [ ] after the theory name. A theory can build on other theories. To
import a theory, PVS usesthe notation IMPORTINGfollowedby the theory name.
For example,we can give part of the theory of abstract reduction systems[7] in
PVS as follows:

ARS[A:TYPE]: THEORYBEGIN
x,y,z:VAR A n:VAR nat R:VARpred[[A,A]]
iterate(R,n)(x,y):RECURSIVE bool=

IF n=0 THENx=y
ELSEEXISTSz:iterate(R,n-1)(x,z) ANDR(z,y)
ENDIF MEASUREn

star(R)(x,y):bool= EXISTSn:iterate(R,n)(x,y)
...

ENDARS

Theory ARScontains the basicnotations, like transitiv e closureof a relation,
and theoremsfor abstract reduction systems. The rest of this section givesthe
main part of the PVS formalism of our approach. We will explain PVS notation
throughout this section, when necessary.

3.3.1 LTSs and branc hing bisim ulation

We formalize basic notions like labeled transition systems, branching bisimu-
lation, linear processequations from Chapter 2 in PVS. An LTS (see De�ni-
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tion 2.2.1) is parameterized by a set of states D, a set of actions Act and a
special action tau . The type LTSis then de�ned as a record containing an ini-
tial state, and a ternary step relation. The relation step 01 extendsstep with
the reexiv e closureof the tau -steps. We alsoabbreviate the reexiv e transitiv e
closure of tau -steps tau star . Finally, the set reachable of states reachable
from the initial state can be easily characterized using an inductiv e de�nition.

LTS[D,Act:TYPE,tau:Act]: THEORYBEGIN
IMPORTINGARS[D]
LTS: TYPE= [# init:D, step:[D,Act,D->bool] #]
x,y:VAR D a:VAR Act lts:VAR LTS
step(lts,a)(x,y):bool= lts`step(x,a,y)
step 01(lts)(x,a,y):bool= lts`step(x,a,y) OR(a=tau ANDx=y)
tau star(lts)(x,y):bool= star(step(lts,tau))(x,y)
reachable(lts)(x):INDUCTIVE bool=

x=lts`init OREXISTSy,a:
reachable(lts)(y) ANDlts`step(y,a,x)

ENDLTS

To de�ne a branching bisimulation relation (seeDe�nition 2.2.3 ) between
two labeled transition systemsin PVS, we �rst intro duce a formalization of a
branching simulation relation in PVS. A relation is a branching bisimulation if
and only if both itself and its inverseare a branching simulation relation.

BRANCHINGSIMULATION[D,E,Act:TYPE,tau:Act]: THEORYBEGIN
IMPORTINGLTS[D,Act,tau], LTS[E,Act,tau]
x1,y1,z1:VAR D x2,y2,z2:VAR E
lts1:VAR LTS[D,Act,tau] lts2:VAR LTS[E,Act,tau]
a:VAR Act R:VAR[D,E->bool]
brsim(lts1,lts2)(R):bool=

FORALLx1,a,z1,x2:lts1`step(x1,a,z1) ANDR(x1,x2) IMPLIES
EXISTSy2,z2:tau star(lts2)(x2,y2) AND

step 01(lts2)(y2,a,z2) ANDR(x1,y2) ANDR(z1,z2)
ENDBRANCHINGSIMULATION

BRANCHINGBISIMULATION[D,E,Act:TYPE,tau:Act]: THEORYBEGIN
IMPORTINGBRANCHINGSIMULATION[D,E,Act,tau],

BRANCHINGSIMULATION[E,D,Act,tau]
x1:VAR D x2:VAR E
lts1:VAR LTS[D,Act,tau] lts2:VAR LTS[E,Act,tau]
a:VAR Act R:VAR[D,E->bool]
brbisim(lts1,lts2)(R):bool=

brsim(lts1,lts2)(R) ANDbrsim(lts2,lts1)(converse(R))
brbisimilar(lts1,lts2)(x1,x2):b ool=

EXISTSR:brbisim(lts1,lts2)(R) ANDR(x1,x2)
brbisimilar(lts1,lts2):bool=

brbisimilar(lts1,lts2)(lts1` init, lts2 `ini t)
ENDBRANCHINGBISIMULATION
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In our actual PVS theory of branching bisimulation, we also de�ned a semi-
branching bisimulation relation [64]. In [13], this notion was usedto show that
branching bisimilarit y is an equivalence.Bastenshowedthat the relation compo-
sition of two branching bisimulation relations is not necessarilyagain a branch-
ing bisimulation relation, while the relation composition of two semi-branching
bisimulation relations is again a semi-branching bisimulation relation. It is
easyto seethat semi-branching bisimilarit y is reexiv e and symmetric. Hence,
semi-branching bisimilarit y is an equivalencerelation. Basten also proved that
semi-branching bisimilarit y and branching bisimilarit y coincide, that meanstwo
states in an LTS are related by a branching bisimulation relation if and only
if they are related by a semi-branching bisimulation relation. Thus, he proved
that branching bisimilarit y is an equivalencerelation. We have checked these
facts in PVS.

3.3.2 Represen ting LPEs and in varian ts

We now show how an LPE (see De�nition 2.3.1) can be represented in PVS.
The formal de�nitions will slightly deviate from the mathematical presentation
before. A �rst decision was to represent � CRL abstract data types directly
by PVS types. This enablesone to reuse the PVS library for de�nitions and
theoremsof \standard" data types,and to focus on the behavioral part.

A seconddistinction will be that we assumedso far that LPEs are clustered.
This meansthat each action nameoccurs in at most one summand, so that the
set of summandscan be indexed by the set of action namesAct. This is no real
limitation, becauseany LPE can be transformed into clustered form, basically
by replacing + by

P
over �nite types. Clustered LPEs enable a notationally

smoother presentation of the theory. However, when working with concrete
LPEs this restriction is not convenient, so we avoid it in the PVS framework:
an arbitrarily sized index set f 0; : : : ; n � 1g will be used, represented by the
PVS type below(n) . A third deviation is that we will assumefrom now on that
every summand has the same set E of local variables (instead of Ea before).
Again this is no limitation, becausevoid summations can always be added(i.e.:
p =

P
e:E p, when e doesn't occur in p). This restriction is neededto avoid the

useof polymorphism, which doesn't exist in PVS. A fourth deviation is that we
do not distinguish action namesfrom action data parameters. We simply work
with one type Act of expressionsfor actions. Note that this is a real extension.
Namely, in our PVS formalization, each LPE summand is a function from D� E
(with D the set of states) to Act� Bool� D, so one summand may now generate
stepswith various action names,possibly visible as well as invisible.

So an LPE is parameterized by a set of actions (Act ), a global parameter
(State ) and a local variable (Local ), and by the size of its index set (n) and
the special action � (tau ). Note that the guard, action and next-state of a
summand depend on the global parameter d:State and on the local variable
e:Local . This dependency is represented in the de�nition SUMMANDby a PVS
function type. An LPE consistsof an initial state and a list of summandsindexed
by below(n) . Finally, the function lpe2lts provides the LTS semantics of an
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LPE, Step(L,a) provides the corresponding binary relation on states, and the
set of Reachable states is lifted from LTS to LPE level.

LPE[Act,State,Local:TYPE,n:n at,ta u:Act]: THEORYBEGIN
IMPORTINGLTS[State,Act,tau]
SUMMAND:TYPE=[State,Local->[#act:Act,guard: bool, next :Stat e#]]
LPE:TYPE=[#init:State,sums:[below(n)->S UMMAND]#]
L:VAR LPE i:VAR below(n) d,d1,d2:VAR State
a:VAR Act e:VAR Local s:VAR SUMMAND
step(s)(d1,a,d2):bool=

EXISTSe:s(d1,e)`guard ANDa=s(d1,e)`act
ANDd2=s(d1,e)`next

lpe2lts(L):LTS= (#init:= init(L),
step:= LAMBDAd1,a,d2: EXISTSi:step(L`sums(i))(d1,a,d2)#)

Step(L,a)(d1,d2):bool= step(lpe2lts(L),a)(d1,d2)
Reachable(L)(d):bool= reachable(lpe2lts(L))(d)

ENDLPE

We de�ne an invariant (seeDe�nition 2.3.2) of an LPE in PVS by a theory
INVARIANTas follows, where p is a predicate over states. p is an invariant of
an LPE if and only if it holds initially and it is preserved by the execution of
every summand. Note that we only require preservation for reachable states.
This allows that previously proved invariants can be used in proving that p is
invariant, which occurs frequently in practice. The abstract notion of reacha-
bilit y can itself be proved to be the strongest invariant (reachable inv1 and
reachable inv2 ).

INVARIANT[Act,State,Local:TY PE,n: nat, tau:A ct]: THEORYBEGIN
IMPORTINGLPE[Act,State,Local,n,tau]
L:VAR LPE p:VAR [State->bool]
d:VAR State a:VAR Act e:VAR Local i:VAR below(n)
preserves(L,i)(p):bool=

FORALLd,e:Reachable(L)(d) ANDp(d) ANDL`sums(i)(d,e)`guard
IMPLIES p(L`sums(i)(d,e)`next)

invariant(L)(p):bool= p(L`init) ANDFORALLi:preserves(L,i)(p)
reachable inv1: LEMMAinvariant(L)(Reachable(L))
reachable inv2: LEMMAinvariant(L)(p)

IMPLIES subset?(Reachable(L),p)
ENDINVARIANT

3.3.3 Formalizing the cones and foci metho d

In this section, we give the PVS development of the conesand foci method.
Compared to the mathematical de�nitions in Section 3.2 we make two adapta-
tions. First, we usethe abstract reachabilit y predicate instead of invariants; by
the previous lemmaswe can always switch back to invariants. Second,we have
to reformulate the matching criteria in the setting of our slightly extendednotion
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of LPEs, allowing arbitrary index sets,and more action namesper summand.
We start with two LPEs, for the implementation and the desired external

behavior of a system, X:LPE[Act,D,L,m ,t au] and Y:LPE[Act,E,L,n, ta u] re-
spectively. Both LPE X and LPE Y have the sameset of actions and the same
set of local variables. However, the type of global parameters(D and E, respec-
tiv ely) and the number of summands(mand n, respectively) may be di�eren t.
Note that here we do not exclude the presenceof tau in the LPE Y. For the
correctnessproof this restriction is not needed,and by lifting this restriction we
avoid the useof subtypesin PVS. However it doesnot really extend the method,
becausethe matching criteria enforcethat all tau -stepsin Y are tau -loops.

The next ingredients are the state mapping function h:[D->E] and a fo-
cus condition fc:pred[D] . But, as summandsare no longer indexed by action
names, we also need a mapping of the summands k:[below(m)->belo w(n) ] .
The idea is that summand i:below(m) of LPE X is mapped to summand
k(i):below(n) of LPE Y. Having these ingredients, we can subsequently de-
�ne the matching criteria (MC) and the reachabilit y criterion (RC). The indi-
vidual matching criteria (MC1{MC5) are displayed separately. The theorem
CONESFOCIwas proved in PVS along the lines of Section 3.2.

CONESFOCIMETHOD[D,E,L,Act:TYPE,tau:Act,m,n :nat] : THEORYBEGIN
IMPORTINGBRANCHINGBISIMULATION[D,E,Act,tau],

LPE[Act,D,L,m,tau], LPE [Act,E,L,n,tau]
X:VAR LPE[Act,D,L,m,tau] Y:VAR LPE[Act,E,L,n,tau]
h:VAR [D->E] fc:VAR pred[D] k:VAR [below(m)->below(n)]
d,d1:VAR D

% The matching criteria: MC1-MC5.
...
MC(X,Y,k,h,fc)(d):bool=

MC1(X,h)(d) ANDMC2(X,Y,k,h)(d) ANDMC3(X,Y,k,h,fc)(d)
ANDMC4(X,Y,k,h)(d) ANDMC5(X,Y,k,h)(d)

% The reachability criterion of focus points.
RC(X,fc)(d):bool=

EXISTSd1:fc(d1) ANDtau star(lpe2lts(X))(d,d1)

% The main theorem.
CONESFOCI:THEOREM

h(X`init)=Y`init AND(FORALLd:Reachable(X)(d)
IMPLIES MC(X,Y,k,h,fc)(d) ANDRC(X,fc)(d))

IMPLIES brbisimilar(lpe2lts(X),lpe2 lts(Y ))
ENDCONESFOCIMETHOD
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x:VAR L i:VAR [below(m)] j:VAR [below(n)]
MC1(X,h)(d):bool= FORALLi: FORALLx:

X`sums(i)(d,x)`act=tau ANDX`sums(i)(d,x)`guard
IMPLIES h(d)=h(X`sums(i)(d,x)`next)

MC2(X,Y,k,h)(d):bool= FORALLi: FORALLx:
NOTX`sums(i)(d,x)`act=tau ANDX`sums(i)(d,x)`guard
IMPLIES Y`sums(k(i))(h(d),x)`guard

MC3(X,Y,k,h,fc)(d):bool= FORALLj: FORALLx:
fc(d) ANDY`sums(j)(h(d),x)`guard
IMPLIES EXISTSi:
k(i)=j ANDX`sums(i)(d,x)`guard ANDNOTX`sums(i)(d,x)`act=tau

MC4(X,Y,k,h)(d):bool= FORALLi: FORALLx:
NOTX`sums(i)(d,x)`act=tau ANDX`sums(i)(d,x)`guard
IMPLIES X`sums(i)(d,x)`act = Y`sums(k(i))(h(d),x)`act

MC5(X,Y,k,h)(d):bool= FORALLi: FORALLx:
NOTX`sums(i)(d,x)`act=tau ANDX`sums(i)(d,x)`guard
IMPLIES h(X`sums(i)(d,x)`next) = Y`sums(k(i))(h(d),x)`next

3.3.4 The sym bolic reachabilit y criterion

The last part of the formalization of the framework in PVS is on the proof rules
for the reachabilit y criterion. We start on the level of abstract reduction systems
(ARS[S]), which talks about binary relations, formalized in PVS aspred[S,S] .
First, we have to lift conjunction (AND) and disjunction (OR) to predicates on
S (overloading is allowed in PVS). We use Reach to denote � . Next, several
proof rules can be expressedand proved in PVS. Herewe only show the rules for
disjunction and induction; the latter dependson a measurefunction f:[S->nat]
(this rule is not usedin the veri�cation of Concurrent Alternating Bit Protocol
later, but it wasessential in the veri�cation of the Sliding Window Protocol (see
Chapter 4)).

REACHCONDITION[S:TYPE]: THEORYBEGIN
IMPORTINGARS[S]
X,Y,Z:VAR pred[S] x,y:VAR S R:VARpred[[S,S]]
AND(X,Y)(x):bool= X(x) ANDY(x) ;
OR(X,Y)(x) :bool= X(x) ORY(x) ;
Reach(R)(X,Y):bool= FORALLx:X(x)

IMPLIES EXISTSy:Y(y) ANDstar(R)(x,y)
reach disjunction: LEMMA% Disjunction rule

Reach(R)(X,Z) ANDReach(R)(Y,Z) IMPLIES Reach(R)(X ORY,Z)
f:VAR [S->nat] n:VAR nat
reach induction: LEMMA% Induction rule

(FORALLn:n>0 IMPLIES
Reach(R)( X ANDLAMBDAx:f(x)=n, X ANDLAMBDAx:f(x)<n))

IMPLIES Reach(R)( X, X ANDLAMBDAx:f(x)=0 )
ENDREACHCONDITION
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Finally, the precondition and invariant rules depend on the LPE under
scrutiny, so we de�ne them in a separatetheory:

PRECONDITION[Act,State,Local:TYPE,n:nat,tau :Act] : THEORYBEGIN
IMPORTINGINVARIANT[Act,State,Local,n, tau],

REACHCONDITION[State]
L:VAR LPE X,Y:VAR pred[State] i:VAR below(n)
d:VAR State e:VAR Local I:VAR [State->bool]
precondition(L,X)(d):bool=

EXISTSi: EXISTSe:L`sums(i)(d,e)`act=tau
ANDL`sums(i)(d,e)`guard ANDX(L`sums(i)(d,e)`next)

reach precondition: LEMMA% Precondition rule
Reach(Step(L,tau))(precondition (L,X ),X)

reach invariant: LEMMA% Invariant rule
Reach(Step(L,tau))(X,Y) ANDinvariant(L)(I)
IMPLIES Reach(Step(L,tau))(X ANDI, Y ANDI)

ENDPRECONDITION

To connect the proof rules on the Reach predicate with the reachabilit y
condition of the previous section, we proved the following theorem in PVS:

reachability[D,E,L,Act:TYPE, tau:Act, m,n:nat]: THEORYBEGIN
IMPORTINGCONESFOCIMETHOD[D,E,L,Act,tau,m,n],

PRECONDITION[Act,D,L,m,tau]
I,fc: VAR[D->bool] X: VARLPE[Act,D,L,m,tau] d: VARD
REACHCRIT: LEMMAinvariant(L)(I) ANDReach(Step(L,tau))(I,fc)

IMPLIES (FORALLd:Reachable(L)(d) IMPLIES RC(L,fc)(d))
ENDreachability

This �nishes the formalization of the conesand foci method in PVS. We
view this as an important step. First of all, this part is protocol independent,
soit can be reusedin di�eren t protocol veri�cations. Second,it providesa rigor-
ous formalization of the meta-theory. For a concreteprotocol speci�cation and
implementation, and given invariants, mapping functions and focus condition,
all proof obligations can be generatedautomatically and proved with relatively
little e�ort. The theorem CONESFOCIin Section 3.3.3 states that this is su�-
cient to prove that the implementation is correct w.r.t. the speci�cation modulo
branching bisimulation. No additional axioms are used besidesthe standard
PVS library . The �les of the PVS formalization of the conesand foci method
can be found at http://www.cwi.nl /~v dpol/ conesfo ci / .

3.4 Application to the CABP

Groote and Springintveld [79] proved correctnessof the Concurrent Alternating
Bit Protocol (CABP) [105] as an application of their conesand foci method.
Here we redo their correctnessproof using our version of the conesand foci
method, where in contrast to [79] we can take � -loops in our stride. We also
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illustrate our mechanical proof framework and our approach to the reachabilit y
analysis of focus points by this casestudy.

3.4.1 Informal description

In the CABP, data elements d1; d2; : : : are communicated from a data transmit-
ter S to a data receiver R via a lossychannel, sothat a messagecanbe corrupted
or lost. Therefore, acknowledgments are sent from R to S via a lossy channel.
In the CABP, sending and receiving of acknowledgments is decoupledfrom R
and S, in the form of separatecomponents AS and AR, respectively, where AS
autonomously sendsacknowledgments to AR.

S attaches a bit 0 to data elements d2k � 1 and a bit 1 to data elements
d2k , and AS sendsback the attached bit to acknowledgereception. S keepson
sending a pair (di ; b) until AR receives the bit b and succeedsin sending the
messageac to S; then S starts sending the next pair (di +1 ; 1 � b). Alternation
of the attached bit enablesR to determine whether a received datum is really
new, and alternation of the acknowledging bit enablesAR to determine which
datum is being acknowledged.

The CABP contains unbounded internal behavior, which occurs when a
channel eternally corrupts or losesthe same datum or acknowledgment. The
fair abstraction paradigm [8], which underliesbranching bisimulation, says that
such in�nite sequencesof faulty behavior do not exist in reality, becausethe
chanceof a channel failing in�nitely often is zero. Groote and Springintveld [79]
de�ned a pre-abstraction function to hide all � 's except those that are executed
in focus points, and used Koomen's fair abstraction rule [8] to eliminate the
remaining � -loops. In our adaptation of the conesand foci method, neither
pre-abstraction nor Koomen's fair abstraction rule are needed.

The structure of the CABP is shown in Figure 3.1. The CABP system is
built from six components.

S is a data transmitter, which readsa datum from port 1 and transmits such
a datum repeatedly via channel K, until an acknowledgment ac regarding
this datum is received from AR.

K is a lossy data transmission channel, which transfers data from S to R.
Either it deliversthe datum correctly, or it can make two sorts of mistakes:
losethe datum or changeit into a checksum error ce.

R is a data receiver, which receivesdata from K, sendsfreshly received data
into port 2, and sendsan acknowledgment to AS via port 5.

AS is an acknowledgmenttransmitter, which receivesan acknowledgment from
R and repeatedly transmits it via L to AR.

L is a lossyacknowledgment transmissionchannel, which transfers acknowl-
edgments from AS to AR. Either it deliversthe acknowledgment correctly,
or it can make two sorts of mistakes: losethe acknowledgment or change
it into an acknowledgment error ae.
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Figure 3.1: The structure of the CABP

AR is an acknowledgment receiver, which receives acknowledgments from L
and passesthem on to S.

The components can perform read r n (:::) and send sn (:::) actions to trans-
port data through port n. A read and a sendaction over the sameport n can
synchronize into a communication action cn (:::).

3.4.2 � CRL speci�cation

We give descriptions of the data types and each component's speci�cation in
� CRL, which were originally presented in [79]. For convenienceof notation, in
each summandof the � CRL speci�cations below, weonly present the parameters
whosevaluesare changed,e.g. d=ds denotesthat the new value of the parameter
ds is d.

We use the sort Nat of natural numbers, and the sort Bit with elements b0

and b1 with an inversion function inv : Bit ! Bit to model the alternating bit.
The sort D contains the data elements to betransferred. The sort Frameconsists
of pairs hd;bi with d:D and b:B it . Framealsocontains two error messages,cefor
checksum error and ae for acknowledgment error. eq : S � S ! Bool coincides
with the equality relation betweenelements of the sort S.

The data transmitter S reads a datum at port 1 and repeatedly transmits
the datum with a bit bs attached at port 3 until it receivesan acknowledgment
ac through port 8; after that, the bit-to-b e-attached is inverted. The parameter
i s is usedto model the state of the data transmitter.

De�nition 3.4.1 (Data transmitter)

S(ds:D ; bs:B it; i s:N at)

=
P

d:D r1(d)�S(d=ds ; 2=is) � eq(i s; 1) � �

+ (s3(hds ; bs i )�S() + r8(ac)�S(inv (bs)=bs; 1=is)) � eq(i s; 2) � �
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The data transmission channel K reads a datum at port 3. It can do one of
three things: it can deliver the datum correctly via port 4, lose the datum, or
corrupt the datum by changing it into ce. The non-deterministic choicebetween
the three options is modeled by the action j . bk is the attached alternating bit
for K. And its state is modeled by the parameter i k .

De�nition 3.4.2 (Data transmission channel)

K (dk :D ; bk :B it; i k :N at)

=
P

d:D

P
b:B it r3(hd;bi )�K (d=dk ; b=bk ; 2=ik ) � eq(i k ; 1) � �

+ (j �K (1=ik ) + j �K (3=ik ) + j �K (4=ik )) � eq(i k ; 2) � �

+ s4(hdk ; bk i )�K (1=ik ) � eq(i k ; 3) � �

+ s4(ce)�K (1=ik ) � eq(i k ; 4) � �

The data receiver R readsa datum at port 4. If the datum is not a checksum ce
and if the bit attached is the expectedbit, it sendsthe received datum into port
2, sendsan acknowledgment ac via port 5, and inverts the bit-to-b e-expected
is inverted. If the datum is ce or the bit attached is not the expected one, the
datum is simply ignored. The parameter i r is used to model the state of the
data receiver.

De�nition 3.4.3 (Data receiv er)

R(dr :D ; br :B it; i r :N at)

=
P

d:D r4(hd;br i )�R(d=dr ; 2=ir ) � eq(i r ; 1) � �

+ (r4(ce) +
P

d:D r4(hd; inv (br )i )) �R() � eq(i r ; 1) � �

+ s2(dr )�R(3=ir ) � eq(i r ; 2) � �

+ s5(ac)�R(inv (br )=br ; 1=ir ) � eq(i r ; 3) � �

The acknowledgment transmitter AS repeatssendingits acknowledgment bit b0
r

via port 6, until it receivesan acknowledgment ac from port 5, after which the
acknowledgment bit is inverted.

De�nition 3.4.4 (Ac kno wledgmen t transmitter)

AS(b0
r :B it ) = r5(ac)�AS(inv (b0

r )=b0
r ) + s6(b0

r )�AS()

The acknowledgment transmissionchannel L readsan acknowledgment bit from
port 6. It non-deterministically doesoneof three things: deliver it correctly via
port 7, lose the acknowledgment, or corrupt the acknowledgment by changing
it to ae. The non-deterministic choice betweenthe three options is modeled by
the action j . bl is the attached alternating bit for L. And its state is modeled
by the parameter i l .
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De�nition 3.4.5 (Ac kno wledgmen t transmission channel)

L (bl :B it; i l :N at)

=
P

b:B it r6(b)�L (b=bl ; 2=i l ) � eq(i l ; 1) � �

+ (j �L (1=i l ) + j �L (3=i l ) + j �L (4=i l )) � eq(i l ; 2) � �

+ s7(bl )�L (1=i l ) � eq(i l ; 3) � �

+ s7(ae)�L (1=i l ) � eq(i l ; 4) � �

The acknowledgment receiver AR readsan acknowledgment bit from port 7. If
the bit is the expected one, it sendsan acknowledgment ac to the data trans-
mitter S via port 8, after which the bit-to-b e-expectedis inverted. Acknowledg-
ments errors ae or unexpected bits are ignored. And its state is modeledby the
parameter i 0

s.

De�nition 3.4.6 (Ac kno wledgmen t receiv er)

AR(b0
s :B it; i 0

s:N at)

= r7(b0
s)�AR(2=i0s) � eq(i 0

s; 1) � �

+ (r7(ae) + r7(inv (b0
s))) �AR() � eq(i 0

s; 1) � �

+ s8(ac)�AR(inv (b0
s)=b0

s; 1=i0s) � eq(i 0
s; 2) � �

The � CRL speci�cation of the CABP is obtained by putting the six compo-
nents in parallel and encapsulatingthe internal actions at ports f 3; 4; 5; 6; 7; 8g.
Synchronization betweenthe components is modeledby communication actions
at connecting ports.

De�nition 3.4.7 Let H denote f s3; r3; s4; r4; s5; r5; s6; r6; s7; r7; s8; r8g, and I
denote f c3; c4; c5; c6; c7; c8; j g.

CABP (d:D)

= � I (@H (S(d;b0; 1) k AR(b0; 1) k K (d;b1; 1) k L (b1; 1) k R(d;b0; 1) k AS(b1)))

Next the CABP is expanded to an LPE Sys. Note that the parameters
b0

s (of AR) and b0
r (of AS) are missing. The reason for this is that during

the linearization the communications at ports 6 and 7 enforce eq(b0
s; bl ) and

eq(b0
r ; bl ).

Lemma 3.4.8 For all d:D we have

CABP (d) = Sys(d;b0; 1; 1; d;b0; 1; d;b1; 1; b1; 1)
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where

Sys(ds :D ; bs:Bit ; i s:Nat ; i 0
s:Nat ; dr :D ; br :Bit ; i r :Nat ; dk :D ; bk :Bit ;

i k :Nat ; bl :Bit ; i l :Nat )

=
P

d:D r1(d)�Sys(d=ds ; 2=is) � eq(i s; 1) � � (1)

+ � �Sys(ds=dk ; bs=bk ; 2=ik ) � eq(i s; 2) ^ eq(i k ; 1) � � (2)

+ (� �Sys(1=ik ) + � �Sys(3=ik ) + � �Sys(4=ik )) � eq(i k ; 2) � � (3)

+ � �Sys(dk =dr ; 2=ir ; 1=ik ) � eq(i r ; 1) ^ eq(br ; bk ) ^ eq(i k ; 3) � � (4)

+ � �Sys(1=ik ) � eq(i r ; 1) ^ eq(br ; inv (bk )) ^ eq(i k ; 3) � � (5)

+ � �Sys(1=ik ) � eq(i r ; 1) ^ eq(i k ; 4) � � (6)

+ s2(dr )�Sys(3=ir ) � eq(i r ; 2) � � (7)

+ � �Sys(inv (br )=br ; 1=ir ) � eq(i r ; 3) � � (8)

+ � �Sys(inv (br )=bl ; 2=i l ) � eq(i l ; 1) � � (9)

+ (� �Sys(1=i l ) + � �Sys(3=i l ) + � �Sys(4=i l )) � eq(i l ; 2) � � (10)

+ � �Sys(1=i l ; 2=i0s) � eq(i 0
s; 1) ^ eq(bl ; bs) ^ eq(i l ; 3) � � (11)

+ � �Sys(1=i l ) � eq(i 0
s; 1) ^ eq(bl ; inv (bs)) ^ eq(i l ; 3) � � (12)

+ � �Sys(1=i l ) � eq(i 0
s; 1) ^ eq(i l ; 4) � � (13)

+ � �Sys(inv (bs)=bs; 1=is; 1=i0s) � eq(i s; 2) ^ eq(i 0
s; 2) � � (14)

Pro of. See[79]. �

The speci�cation of the external behavior of the CABP is a one-datumbu�er,
which repeatedly reads a datum at port 1, and sendsout this samedatum at
port 2.

De�nition 3.4.9 The LPE of the external behavior of the CABP is

B (d:D ; b:Bool) =
P

d0:D r1(d0)�B (d0; F) � b� � + s2(d)�B (d;T) � : b� � :

3.4.3 Veri�cation using cones and foci

We apply our version of the conesand foci method to verify the CABP. Let �
abbreviate D � Bit � Nat � Nat � D � Bit � Nat � D � Bit � Nat � Bit � Nat .
Furthermore, let � :� denote (ds ; bs; i s; i 0

s; dr ; br ; i r ; dk ; bk ; i k ; bl ; i l ). We list six
invariants for the CABP, which are taken from [79].
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De�nition 3.4.10

I 1(� ) � eq(i s; 1) _ eq(i s; 2)
I 2(� ) � eq(i 0

s; 1) _ eq(i 0
s; 2)

I 3(� ) � eq(i k ; 1) _ eq(i k ; 2) _ eq(i k ; 3) _ eq(i k ; 4)
I 4(� ) � eq(i r ; 1) _ eq(i r ; 2) _ eq(i r ; 3)
I 5(� ) � eq(i l ; 1) _ eq(i l ; 2) _ eq(i l ; 3) _ eq(i l ; 4)
I 6(� ) � (eq(i s; 1) ) eq(bs; inv (bk )) ^ eq(bs ; br ) ^ eq(ds ; dk )

^ eq(ds ; dr ) ^ eq(i 0
s; 1) ^ eq(i r ; 1))

^ (eq(bs; bk ) ) eq(ds ; dk ))
^ (eq(i r ; 2) _ eq(i r ; 3) ) eq(ds; dr ) ^ eq(bs; br ) ^ eq(bs; bk ))
^ (eq(bs; inv (br )) ) eq(ds ; dr ) ^ eq(bs ; bk ))
^ (eq(bs; bl ) ) eq(bs; inv (br )))
^ (eq(i 0

s; 2) ) eq(bs; bl )) :

I 1 � I 5 describe the range of the data parameters i s, i 0
s, i k , i r , and i l , re-

spectively. I 6 expressesthat each component in Figure 3.1 either has received
information about the datum being transmitted which it must forward, or did
not yet receive this information.

Lemma 3.4.11 I 1, I 2, I 3, I 4, I 5 and I 6 are invariants of Sys.

Pro of. We need to show that the invariants are preserved by each of the
summands(1) � (14) in the speci�cation of Sys. Invariants I 1 � I 5 are trivial
to prove. To prove I 6, we divide I 6 into its six parts:

I 61(� ) � (eq(i s ; 1) ) eq(bs; inv (bk )) ^ eq(bs; br ) ^ eq(ds; dk )
^ eq(ds ; dr ) ^ eq(i 0

s; 1) ^ eq(i r ; 1))
I 62(� ) � eq(bs; bk ) ) eq(ds ; dk )
I 63(� ) � eq(i r ; 2) _ eq(i r ; 3) ) eq(ds; dr ) ^ eq(bs; br ) ^ eq(bs; bk )
I 64(� ) � eq(bs; inv (br )) ) eq(ds ; dr ) ^ eq(bs ; bk )
I 65(� ) � eq(bs; bl ) ) eq(bs; inv (br ))
I 66(� ) � eq(i 0

s; 2) ) eq(bs; bl ):

We consider only seven summands in the speci�cation of Sys; the other
summands trivially preserve I 6. For the sake of presentation, we represent
eq(b1; inv (b2)) as : eq(b1; b2), where b1 and b2 range over the sort B it .

1. Summand (1): I 6 ^ eq(i s; 1) ) I 6(d=ds; 2=is).

I 61(d=ds ; 2=is) is straightforward. By eq(i s ; 1) and I 61, we have eq(i r ; 1),
: eq(bs ; bk ), and eq(bs ; br ). By : eq(bs ; bk ), I 62(d=ds ; 2=is). By eq(i r ; 1),
I 63(d=ds ; 2=is). eq(bs; br ) implies I 64(d=ds ; 2=is). I 65, I 66(d=ds ; 2=is) are
trivial.

2. Summand (2): I 6 ^ eq(i s; 2) ^ eq(i k ; 1) ) I 6(ds=dk ; bs=bk ; 2=ik ).

eq(i s ; 2) implies I 61(ds=dk ; bs=bk ; 2=ik ), I 62(ds=dk ; bs=bk ; 2=ik ) is straight-
forward. I 63(ds=dk ; bs=bk ; 2=ik ) and I 64(ds=dk ; bs=bk ; 2=ik ) follows imme-
diately from I 63 and I 64, respectively. I 65, I 66(ds=dk ; bs=bk ; 2=ik ) are
trivial.
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3. Summand(4): I 6 ^ eq(i r ; 1) ^ eq(br ; bk ) ^ eq(i k ; 3) ) I 6(dk =dr ; 2=ir ; 1=ik ).

Assumingeq(i s; 1), by I 61, it followsthat : eq(bs; bk ) and eq(bs; br ). Hence,
: eq(br ; bk ). This contradicts the condition eq(br ; bk ). : eq(i s; 1) implies
I 61(dk =dr ; 2=ir ; 1=ik ). I 64 implies eq(bs; br ) _ eq(bs; bk ), which together
with the condition eq(br ; bk ) yields eq(bs; br ) ^ eq(bs; bk ). So I 62 implies
eq(ds ; dk ). Hence, I 63(dk =dr ; 2=ir ; 1=ik ). By eq(bs; br ), it follows that
I 64(dk =dr ; 2=ir ; 1=ik ). I 62, I 65, I 66(dk =dr ; 2=ir ; 1=ik ) are trivial.

4. Summand (8): I 6 ^ eq(i r ; 3) ) I 6(inv (br )=br ; 1=ir ).

Assuming eq(i s; 1), by I 61, we have eq(i r ; 1), which contradicts the con-
dition eq(i r ; 3). So I 61(inv (br )=br ; 1=ir ). I 63(inv (br )=br ; 1=ir ) is straight-
forward. By eq(i r ; 3) and I 63, we have eq(ds ; dr ) and eq(bs; bk ). Hence,
I 64(inv (br )=br ; 1=ir ). By eq(i r ; 3) and I 63, we have eq(bs; br ), so I 65 im-
plies : eq(bs; bl ). Hence, I 65(inv (br )=br ; 1=ir ). I 62, I 66(inv (br )=br ; 1=ir )
are trivial.

5. Summand (9): I 6 ^ eq(i l ; 1) ) I 6(inv (br )=bl ; 2=i l ),

I 65(inv (br )=bl ; 2=i l ) is straightforward. If eq(i 0
s; 2), it follows I 66 that

eq(bs; bl ), so by I 65 we have : eq(bl ; br ). Hence, I 66(inv (br )=bl ; 2=i l ).
I 61 � I 64(inv (br )=bl ; 2=i l ) are trivial.

6. Summand (11): I 6 ^ eq(i 0
s; 1) ^ eq(bl ; bs) ^ eq(i l ; 3) ) I 6(1=i l ; 2=i0s).

By eq(bl ; bs) and I 65, we have : eq(bs ; br ). So by I 61, : eq(i s; 1). Hence,
I 61(1=i l ; 2=i0s). eq(bl ; bs) implies I 66(1=i l ; 2=i0s). I 62 � I 65(1=i l ; 2=i0s) are
trivial.

7. Summand (14): I 6 ^ eq(i s; 2) ^ eq(i 0
s; 2) ) I 6(inv (bs)=bs; 1=is; 1=i0s).

To prove I 61(inv (bs)=bs; 1=is; 1=i0s), we need to show that eq(bs; bk ) ^
: eq(br ; bs) ^ eq(ds ; dk ) ^ eq(ds ; dr ) ^ eq(i r ; 1). As eq(i 0

s; 2), by I 66 we
have eq(bs; bl ), so by I 65, we have : eq(bs; br ). By I 64, it follows that
eq(ds ; dr ) ^ eq(bs; bk ). As eq(bs; bk ), by I 62, eq(ds ; dk ). By I 63 and I 4,
: eq(bs; br ) implies eq(i r ; 1). Hence, I 61(inv (bs)=bs; 1=is; 1=i0s). I 62 �
I 66(inv (bs)=bs; 1=is; 1=i0s) are trivial.

�

We de�ne the focuscondition (seeDe�nition 3.2.1) for Sysasthe disjunction
of the conditions of summandsin the LPE in De�nition 3.4.8 that deal with an
external action; thesesummandsare (1) and (7). (Note that this di�ers from the
prescribedfocuscondition in [79], which would be the negationof the disjunction
of conditions of the summandsthat deal with a � .)

De�nition 3.4.12 The focus condition for Sys is

FC (� ) = eq(i s; 1) _ eq(i r ; 2):
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We proceed to prove that each state satisfying the invariants I 1 � I 6 can
reach a focus point (seeDe�nition 3.2.1) by a sequenceof � -transitions.

Lemma 3.4.13 (Reac habilit y of focus poin ts) For each � :� together withV 6
n =1 I n (� ), there is a �̂ :� such that FC (�̂ ) and � �! � � � �! �̂ in Sys.

Pro of. The caseFC(� ) is trivial. Let : FC (� ); in view of I 1 and I 4, this implies
eq(i s; 2) ^ (eq(i r ; 1) _ eq(i r ; 3)). In caseeq(i s; 2) ^ eq(i r ; 3), by summand (8) we
can reach a state with eq(i s; 2) ^ eq(i r ; 1). From a state with eq(i s; 2) ^ eq(i r ; 1),
by I 3 and summands(2), (3) and (6), we can reach a state where eq(i s; 2) ^
eq(i r ; 1) ^ eq(i k ; 3). We distinguish two cases.

1. eq(br ; bk ).

By summand (4) we can reach a focus point.

2. eq(br ; inv (bk )).

If i 0
s = 2, then by summand (14) we can reach a focus point. So by I 2

we can assumethat i 0
s = 1. By summands(5), (2) and (3), we can reach

a state where eq(i s; 2) ^ eq(i 0
s; 1) ^ eq(i r ; 1) ^ eq(i k ; 3) ^ eq(br ; inv (bk )) ^

eq(bk ; bs). By I 5 and summands(10), (9) and (13) we can reach a state
whereeq(i s; 2)^ eq(i 0

s; 1)^ eq(i r ; 1)^ eq(i k ; 3)^ eq(br ; inv (bk )) ^ eq(bk ; bs) ^
eq(i l ; 3). If eq(bl ; bs), then by summands(11) and (14) wecanreach a focus
point. Otherwise, eq(bl ; inv (bs)). Since eq(bk ; bs) and eq(br ; inv (bk )), we
have eq(bl ; br ). By summand (12), we can reach a state where eq(i s; 2) ^
eq(i 0

s ; 1) ^ eq(i r ; 1) ^ eq(i k ; 3) ^ eq(br ; inv (bk )) ^ eq(bk ; bs) ^ eq(i l ; 1)^
eq(bl ; inv (bs)) ^ eq(bl ; br ). Then by summand (9) we can reach a state
where eq(bl ; bs), sincebl is replacedby inv (br ). Then by summands(10),
(11) and (14), we can reach a focus point.

Our completely formal proof in PVS has many more steps. The main stepsof
the proof using the rules in De�nition 3.2.7 can be found in Section 3.4.4. �

We de�ne the state mapping � : � ! D � Bool (seeDe�nition 3.2.2) by

� (� ) = hds ; eq(i s; 1) _ eq(i r ; 3) _ : eq(bs; br )i :

Intuitiv ely, � maps those states to T in which R is awaiting a datum that
still has to be received by S. This is the caseif either S is awaiting a datum
(eq(i s; 1)), or R has sent out a datum that was not yet acknowledged to S
(eq(i r ; 3) _ : eq(bs; br )). Note that � is independent of i 0

s; dr ; dk ; bk ; i k ; bl ; i l ; we
write � (ds ; bs; i s; br ; i r ).

Theorem 3.4.14 For all d:D and b0; b1:Bit ,

Sys(d;b0; 1; 1; d;b0; 1; d;b1; 1; b1; 1) $ b B (d;T):
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Pro of. It is easyto check that ^ 6
n =1 I n (d;b0; 1; 1; d;b0; 1; d;b1; 1; b1; 1).

We obtain the following matching criteria (seeDe�nition 3.2.3). For class
I, we only need to check the summands (4), (8) and (14), as the other nine
summands that involve an initial action leave the values of the parameters in
� (ds ; bs; i s; br ; i r ) unchanged.

1. eq(i r ; 1)^ eq(br ; bk ) ^ eq(i k ; 3) ) � (ds ; bs; i s; br ; i r ) = � (ds ; bs; i s; br ; 2=ir )

2. eq(i r ; 3) ) � (ds ; bs; i s; br ; i r ) = � (ds ; bs; i s; inv (br )=br ; 1=ir )

3. eq(i s; 2) ^ eq(i 0
s; 2) ) � (ds ; bs; i s; br ; i r ) = � (ds ; inv (bs)=bs; 1=is; br ; i r )

The matching criteria for the other four classesare produced by summands(1)
and (7). For classI I we get:

1. eq(i s; 1) ) eq(i s; 1) _ eq(i r ; 3) _ : eq(bs; br )

2. eq(i r ; 2) ) : (eq(i s; 1) _ eq(i r ; 3) _ : eq(bs ; br ))

For classI I I we get:

1. (eq(i s; 1) _ eq(i r ; 2)) ^ (eq(i s; 1) _ eq(i r ; 3) _ : eq(bs ; br )) ) eq(i s; 1)

2. (eq(i s; 1) _ eq(i r ; 2)) ^ : (eq(i s ; 1) _ eq(i r ; 3) _ : eq(bs; br )) ) eq(i r ; 2)

For classIV we get:

1. 8d:D (eq(i s ; 1) ) d = d)

2. eq(i r ; 2) ) dr = ds

Finally, for classV we get:

1. 8d:D (eq(i s ; 1) ) � (d=ds ; bs; 2=is; br ; i r ) = hd;Fi )

2. eq(i r ; 2) ) � (ds ; bs; i s; br ; 3=ir ) = hds ; Ti

We proceedto prove the matching criteria.

I.1 Let eq(i r ; 1). Then

� (ds ; bs; i s; br ; i r ) = hds ; eq(i s; 1) _ eq(1; 3) _ : eq(bs ; br )i
= hds ; eq(i s; 1) _ eq(2; 3) _ : eq(bs ; br )i
= � (ds ; bs; i s; br ; 2=ir ):

I.2 Let eq(i r ; 3). Then by I 6, eq(bs; br ). Hence,

� (ds ; bs ; i s; br ; i r ) = hds ; eq(i s; 1) _ eq(3; 3) _ : eq(bs ; br )i
= hds ; Ti
= hds ; eq(i s; 1) _ eq(i r ; 3) _ : eq(bs ; inv (br )) i
= � (ds ; bs; i s; inv (br )=br ; 1=ir ):
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I.3 Let eq(i 0
s; 2). I 6, eq(bs; bl ) together with I 6 yield eq(bs; inv (br )). Hence,

� (ds ; bs; i s; br ; i r ) = hds ; eq(i s; 1) _ eq(i r ; 3) _ : eq(bs; br )i
= hds ; Ti
= hds ; eq(1; 1) _ eq(i r ; 3) _ : eq(inv (bs); br )i
= � (ds ; inv (bs)=bs; 1=is; br ; i r ):

I I.1 Trivial.

I I.2 Let eq(i r ; 2). Then clearly : eq(i r ; 3), and by I 6, eq(bs; br ). Furthermore,
according to I 6, eq(i s; 1) ) eq(i r ; 1), so eq(i r ; 2) also implies : eq(i s; 1).

I I I.1 If : eq(i r ; 2), then eq(i s ; 1) _ eq(i r ; 2) implies eq(i s; 1). If eq(i r ; 2), then by
I 6, eq(bs; br ), so that eq(i s; 1) _ eq(i r ; 3) _ : eq(bs ; br ) implies eq(i s; 1).

I I I.2 If : eq(i s; 1), then eq(i s; 1) _ eq(i r ; 2) implies eq(i r ; 2). If eq(i s; 1), then
: (eq(i s ; 1) _ eq(i r ; 3) _ : eq(bs ; br )) is false, so that it implies eq(i r ; 2).

IV.1 Trivial.

IV.2 Let eq(i r ; 2). Then by I 6, eq(dr ; ds).

V.1 Let eq(i s; 1). Then by I 6, eq(i r ; 1) and eq(bs; br ). So for any d:D ,

� (d=ds ; bs; 2=is; br ; i r ) = hd;eq(2; 1) _ eq(1; 3) _ : eq(bs; br )i
= hd;Fi :

V.2
� (ds ; bs; i s; br ; 3=ir ) = hds ; eq(i s; 1) _ eq(3; 3) _ : eq(bs ; br )i

= hds ; Ti :

Note that � (d;b0; 1; b0; 1) = hd;Ti . So by Theorem 3.2.4 and Lemma 3.4.13,

Sys(d;b0; 1; 1; d;b0; 1; d;b1; 1; b1; 1) $ b B (d;T):

�

3.4.4 Illustration of the pro of framew ork

Let us illustrate the mechanical proof framework set up in Section 3.3 on the
veri�cation of the CABP as it was described in Section 3.4.3. The purposeof
this section is to show how the mechanical framework can be instantiated with
a concrete protocol. A secondgoal is to illustrate in more detail how we can
usethe proof rules (seeLemma 3.2.7) for reachabilit y, to formally prove in PVS
that focus points are always reachable.

To apply the generictheory, we usethe PVS mechanism of theory instantia-
tion. For instance, the theory LPE wasparameterizedby setsof actions, states,
et al. This theory will be imported, using the set of actions, states et al. from
the linearized version of CABP, which we have to de�ne �rst. To this end we
start a new theory, parameterized by an arbitrary type of data elements (D ,
with special element d0:D ).
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De�ning the LPEs. The starting point will be the linearized version of
the CABP, represented by Sys in Lemma 3.4.8. The type cabp state is de-
�ned as a record of all state parameters. Note that we use the prede�ned
PVS-types nat and bool (bool is also used to represent sort B it ). The type
cabp act is de�ned as an abstract data type. The syntax below intro duces
constructors (r1,s2:[D->cabp act] and tau:cabp act ), recognizerpredicates
(r1?,s2?,tau?:[cabp act->bool] ), and another destructors (d:[(r1?)->D]
and d:[(r2?)->D] ). Subsequently we import the theory LPE with the corre-
sponding parameters. The LPE for the implementation of the CABP contains
18 summands(note that summands(3) and (10) in Lemma 3.4.8each represent
three summands). Note that the only local parameter in this LPE that is bound
by

P
has type D.

CABP[D:TYPE+,d0:D]: THEORYBEGIN
cabp state:TYPE= [#ds:D,bs:bool,is:nat,i1s:n at,dr :D,b r:boo l,

ir:nat,dk:D,bk:bool,ik:nat,b l:boo l,il :nat #]
cabp act:DATATYPEBEGIN

r1(d:D):r1? s2(d:D):s2? tau:tau?
ENDcabp act

IMPORTINGLPE[cabp act,cabp state,D,18,tau]

The next step is to de�ne the implementation of the CABP as an LPE
in PVS. It consists of an initial vector, and a list of summands, indexed by
LAMBDAi . The LAMBDA(S,d) indicates the dependencyof each summand on
the state and the local variables. Note that given state S, S`x denotesthe value
of parameter x in S. The notation S WITH[x := v] denotesthe samestate as
S except the value of �eld x which is set to v. We only display the summands
corresponding to summand (1) and (14) of Sys.

i:VAR below(18) S:VAR cabp state d:VAR D
cabp: LPE= (#

init:= (#ds:=d0,bs:=FALSE,is:=1,i1s:= 1,dr :=d0,
br:=FALSE,ir:=1,dk:=d0,bk:=TRU E,ik :=1, bl:=T RUE,il:=1 #),

sums:=LAMBDAi: LAMBDA(S,d):COND
i=0->(#act:=r1(d),guard:=S`is= 1,

next:=S WITH[ds:=d,is:=2]#),
...
i=17->(#act:=tau,guard:=S`is=2 ANDS`i1s=2,

next:=S WITH[bs:=NOT S`bs,is:=1,i1s:=1]#)
ENDCOND#)

In a similar way, the desiredexternal behavior of the CABP is presented as
a one-datum bu�er. The representation of the LPE B from De�nition 3.4.9 in
PVS is:
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buf state:TYPE=[#d:D,b:bool#]
B:VAR buf state d1:VAR D j:VAR below(2)
IMPORTINGLPE[cabp act,buf state,D,2,tau]
buffer: LPE=

(#init:=(#d:=d0,b:=TRUE#),
sums:=LAMBDAj: LAMBDA(B,d1):COND

j=0->(#act:=r1(d1),guard:=B` b,ne xt:=( #d:=d1,b :=FALSE#)#),
j=1->(#act:=s2(B`d),guard:=N OT B`b,next:=B

WITH[b:=TRUE]#)
ENDCOND#)

In varian ts, state mapping, focus poin ts. The next step is to de�ne the
ingredients for the conesand foci method. We needto de�ne invariants, a state
mapping and focuspoints. In PVS theseare all functions that take state vectors
as input. We only show a snapshot:

IMPORTINGinvariant[cabp act,cabp state,D,18]
I1(S):bool= S`is=1 ORS`is=2
...
I64(S):bool= (S`bs = NOTS`br) IMPLIES

S`ds=S`dr ANDS`bs=S`bk
I6(S):bool=I61(S) AND... ANDI66(S)

IMPORTINGCONESFOCIMETHOD[cabpstate,buf state,D,cabp act,tau,18,2]
FC(S):bool= S`is=1 ORS`ir=2
h(S):buf state=(#d:=S`ds,b:=S`is=1 ORS`ir=3 ORNOTS`bs=S`br#)

cabp inv:LEMMAinvariant(cabp)(I1 ANDI2 ANDI3 ANDI4 ANDI5 ANDI6)
matching:LEMMAReachable(cabp)(S) IMPLIES MC(cabp,buffer,k,h,FC)(S)

The proof of the reachabilit y criterion will be discussedin the next para-
graph. The correctnessof the invariants and the matching criteria were proved
already (seeSection3.4). Theseproofscould be formalized in PVS in a straight-
forward fashion. The proof script follows a �xed pattern: �rst we unfold the
de�nitions of LPE and invariants or matching criteria. Then we use rewriting
to generate a �nite conjunction from the quanti�cation FORALLi:below(n) .
Subsequently (using the PVS tactic THEN*), we apply the powerful PVS tactic
(GRIND) to the subgoals. Sometimesa few subgoalsremain, which are then
proved manually.

Reachabilit y of focus poin ts. We formally prove Lemma 3.4.13, which
states that each reachable state of the CABP can reach a focus point by a
sequenceof � -transitions using the rules in Lemma 3.2.7. This corresponds
to the theorem CABPRCin the PVS part below. Using the general theorems
CONESFOCIand REACHCRIT, we concludefrom the speci�c theoremscabp inv ,
matching and CABPRCthat CABPis indeedCORRECTw.r.t. the one-datum bu�er
speci�cation.
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IMPORTINGPRECONDITION[cabpact,cabp state,D,18]
...
CABPRC:LEMMA

Reach(step(cabp,tau))(I1 ANDI2 ANDI3 ANDI4 ANDI5,FC)
CABPCORRECT:

THEOREMbrbisimilar(lpe2lts(cabp),lpe2 lts(b uffe r))
ENDCABP

We now explain the structure of the proof of CABPRC. This proof is basedon
the proof rules for reachabilit y, intro ducedin Sections3.2.2and 3.3.4. It requires
some manual work, viz. the identi�cation of the intermediate predicates, and
characterizing the reachable set of states after a number of steps. Each step
corresponds to a separatelemma in PVS. The atomic steps are proved by the
precondition rule (semi-automatically). An exampleof such a lemma in PVS is:

Q2(S):bool = S`ir=1 ANDS`is=2 ANDS`ik=2 ANDS`i1s=1
ANDS`bk = S`bs

Q3(S):bool = S`ir=1 ANDS`is=2 ANDS`ik=3 ANDS`i1s=1
ANDS`bk = S`bs

Q2to Q3: LEMMAReach(Tau)(Q2,Q3)

Thesebasicstepsare combined by using mainly the transitivit y rule and the dis-
junction rule. We now provide the complete list of the intermediate predicates,
together with the usedproof rules. We do not display the useof implication and
invariant rules, but of coursethe PVS proofs contain all details. The fragment
before corresponds to the third step of item (5) below, where summand (3) is
usedto increasei k .

1. f i r = 1 ^ i s = 2 ^ i k = 4g � f i r = 1 ^ i s = 2 ^ i k = 1g �
f i r = 1 ^ i s = 2 ^ i k = 2g � f i r = 1 ^ i s = 2 ^ i k = 3g
Using the precondition rule, on summands(6), (2) and (3), respectively.

2. fI 3 ^ i r = 1 ^ i s = 2g � f i r = 1 ^ i s = 2 ^ i k = 3g
Using the disjunction rule with i k = 1 _ i k = 2 _ i k = 3 _ i k = 4, and the
transitivit y rule on the results of step 1.

3. f i r = 1 ^ i s = 2 ^ i k = 3 ^ br = bk g � F C
Using the precondition rule on summand (4).

4. f i r = 1 ^ i s = 2 ^ i k = 3 ^ i 0
s = 2g � F C

Using the precondition rule on summand (14).

5. f i r = 1 ^ i s = 2 ^ i k = 3 ^ i 0
s = 1 ^ br 6= bk g �

f i r = 1 ^ i s = 2 ^ i k = 1 ^ i 0
s = 1g �

f i r = 1 ^ i s = 2 ^ i k = 2 ^ i 0
s = 1 ^ bk = bsg �

f i r = 1 ^ i s = 2 ^ i k = 3 ^ i 0
s = 1 ^ bk = bsg =: Q

Using the precondition rule on summands(5), (2) and (3).
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6. f Q ^ i l = 2g � f Q ^ i l = 1g;
f Q ^ i l = 4g � f Q ^ i l = 1g;
f Q ^ i l = 3 ^ bl 6= bsg � f Q ^ i l = 1g � f Q ^ i l = 2 ^ bl 6= br g �
f Q ^ i l = 3 ^ bl 6= br g
Using the precondition rule on summands(10), (13), (12), (9) and (10),
respectively.

7. f Q ^ (i l 2 f 1; 2; 4g_ (i l = 3 ^ bl 6= bs))g � f Q ^ i l = 3 ^ bl 6= br g.
Using the disjunction rule and the transitivit y rule on the results of step
6.

8. f Q ^ i l = 3 ^ bl = bsg � f i r = 1 ^ i s = 2 ^ i k = 3 ^ i 0
s = 2g � FC.

Using the precondition rule on summand (11), and then the transitivit y
rule with step 4.

9. f Q ^ I 5g � FC.
By I 5, i l 2 f 1; 2; 3; 4g. So we can distinguish the casesi l 2 f 1; 2; 4g,
i l = 3 ^ bl 6= bs and i l = 3 ^ bl = bs . In all but the last case,we arrive
at a situation where bk = bs ^ bl 6= br (by step 7). Note that this implies
bk = br _ bl = bs. So we can use casedistinction again, and reach the
focus condition via step 3 or step 8.

10. f i r = 1 ^ i s = 2 ^ i k = 3 ^ I 2 ^ I 5g � FC .
From I 2 and the disjunction rule we can distinguish the casesbr = bk ,
i 0
s = 2 and i 0

s = 1 ^ br 6= bk . We solve them by the results of step 3, step
4, and transitivit y of 5 and 9, respectively.

11. f i r = 3 ^ i s = 2g � f i r = 1 ^ i s = 2g.
Using the precondition rule on summand (8).

12. I 1 ^ I 2 ^ I 3 ^ I 4 ^ I 5 � FC .
Using the invariants I 1 and I 4, we can distinguish the following cases:

� i s = 1 or i s = 2 ^ i r = 2 (both reach FC in zero steps);

� i s = 2 ^ i r = 3 (leads to the next caseby step 11);

� i s = 2 ^ i r = 1. This leads to i s = 2 ^ i r = 1 ^ i k = 3 by step 2 and
then to FC by step 10.

This �nishes the complete mechanical veri�cation of the CABP in PVS using
the conesand foci method. The �les of the veri�cation of the CABP in PVS
can be found at http://www.cwi.nl /~v dpol/ conesfo ci / .

3.5 Conclusions

In this chapter, we havedeveloped a mechanical framework for protocol veri�ca-
tion, basedon the conesand foci method. We summarizeour main contribution
as follows:
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� We generalizedthe original conesand foci method [79]. Compared to the
original one, our method is more generally applicable, in the sensethat
it can deal with � -loops without requiring a cumbersometreatment to
eliminate them.

� We presented a set of rules to support the reachabilit y analysis of focus
points. They have beenproved to be quite powerful in two casestudies.

� We formalized the complete conesand foci method in PVS.

The feasibility of this mechanical framework has been illustrated by the
veri�cation of the CABP. We are con�dent that the framework forms a solid
basis for mechanical protocol veri�cation. For instance, the same framework
has beenapplied to the veri�cation of a sliding window protocol in � CRL (see
Chapter 4), which we consider a true milestone in veri�cation e�orts using
processalgebra.

The foci and conesmethod provides a systematic approach to protocol ver-
i�cation. It allows for fully rigorous correctnessproofs in a generalsetting with
possibly in�nite state spaces(i.e. with arbitrary data, arbitrary window size,
et al.). The method requires intelligent manual steps, such as the invention of
invariants, a state mapping, and the focus criterion. However, the method is
such that after these creative parts a number of veri�cation conditions can be
generatedand proved (semi-)automatically. So the strength of the mechanical
framework is that one can focus on the creative steps, and check the tedious
parts by a theorem prover. Yet, a complete machine-checked proof is obtained,
becausethe meta-theory has also beenproof-checked in a genericmanner. We
experiencedthat many proofsand proof scripts canbereusedafter small changes
in the protocol, or after a changein the invariants. Actually , in somecasesthe
PVS theorem prover assistedin �nding the correct invariants.
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Chapter 4

Verifying a Sliding Windo w Proto col in
� CRL

4.1 In tro duction

Sliding window protocols[30] (SWPs) ensuresuccessfultransmissionof messages
from a sender to a receiver through a medium, in which messagesmay get
lost. Their main characteristic is that the senderdoesnot wait for an incoming
acknowledgment before sending next messages,for optimal use of bandwidth.
This is the reasonwhy many data communication systemsinclude the SWP, in
one of its many variations.

In SWPs, both the senderand the receiver maintain a bu�er. In practice
the bu�er at the receiver is often much smaller than at the sender,but here we
make the simplifying assumptionthat both bu�ers can contain up to n messages
(n > 0). By providing the messageswith sequencenumbers, reliable in-order
delivery without duplications is guaranteed. The sequencenumberscanbetaken
modulo 2n (and not less,see[165] for a nice argument). The messagesat the
senderare numberedfrom i to i + n (modulo 2n); this is called a window. When
an acknowledgment reachesthe sender,indicating that k messageshave arrived
correctly, the window slides forward, so that the sending bu�er can contain
messageswith sequencenumbers i + k to i + k + n (modulo 2n). The window
of the receiver slidesforward when the �rst element in this window is passedon
to the environment.

Within the processalgebraic communit y, SWPs have attracted much at-
tention, becausetheir preciseformal veri�cation turned out to be surprisingly
di�cult. We provide a comparison with veri�cations of SWPs from the liter-
ature in Section 4.2, and restrict ourselves here to the context in which this
chapter waswritten. After the advent of processalgebra in the early eighties of
last century , it was observed that simple protocols, such as the alternating bit
protocol, could readily be veri�ed. In an attempt to show that more di�cult
protocols could also be dealt with, SWPs were considered. Middeldorp [125]
and Brunekreef [25] gave speci�cations in ACP [16] and PSF [123], respectively.
Vaandrager [171], Groenveld [68], van Wamel [176] and Bezemand Groote [19]

51
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manually veri�ed one-bit SWPs, in which the sizeof the sendingand receiving
window is one.

Starting in 1990,we attempted to prove the most complex SWP from [165]
(not taking into account additional features such as duplex messagepassing
and piggybacking) correct using � CRL, which is a suitable processalgebraic
formalism for such purposes. This turned out to be unexpectedly hard, and
has led to the development of new proof methods for protocol veri�cation. We
therefore consider the current chapter as a true milestone in processalgebraic
veri�cation.

Our �rst observation was that the external behavior of the protocol, as
given in [165], was unclear. We adapted the SWP such that it nicely behaves
as a queueof capacity 2n. The secondobservation was that the SWP of [165]
contained a deadlock [69, Stelling 7], which could only occur after at least n
messageswere transmitted. This error was communicated to Tanenbaum, and
has been repaired in more recent editions of [165]. Another bug in the � CRL
speci�cation of the SWP was detected by meansof a model checking analysis.
A �rst attempt to prove the resulting SWP correct led to the veri�cation of a
bakery protocol [71], and to the development of the conesand foci proof method
[79, 54]. This method plays an essential role in the proof in the current chapter,
and has been used to prove many other protocols and distributed algorithms
correct. But the correctnessproof required an additional idea, already put
forward by Schoone [154], to �rst perform the proof with unbounded sequence
numbers, and to separately eliminate modulo arithmetic.

We present a speci�cation in � CRL of a SWP with bu�er size2n and win-
dow size n, for arbitrary n. The medium between the senderand the receiver
is modeled as a lossy queue of unbounded capacity. We manually prove that
the external behavior of this protocol is branching bisimilar [64] to a FIFO
queue of capacity 2n. This proof is entirely based on the axiomatic theory
underlying � CRL and the axioms characterizing the data types. It implies
both safety and livenessof the protocol (the latter under the assumption of
fairness). First, we linearize the speci�cation, meaning that we get rid of par-
allel operators. Moreover, communication actions are stripp ed from their data
parameters. Then we eliminate modulo arithmetic, using the proof principle
CL-RSP [20]. Finally, we apply the conesand foci technique, to prove that
the linear speci�cation without modulo arithmetic is branching bisimilar to a
FIFO queueof capacity 2n. All lemmas for the data types, all invariants and
all correctnessproofs have beenchecked using PVS. The PVS �les are available
via http://www.cwi.n l/ ~pangjun /s wp/.

A conciseoverview of other veri�cations of SWPs is presented in Section
4.2. Many of theseveri�cations deal with either unbounded sequencenumbers,
in which casethe intricacies of modulo arithmetic disappear, or a �xed �nite
window size. The papers that do treat arbitrary �nite window sizesin most
casesrestrict to safety properties.
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Outline of the chapter. This chapter is set up as follows. Section 4.2 gives
an overview of related work on verifying SWPs. Section 4.3 intro duces the
proof techniques of � CRL used in this chapter. In Section 4.4, the data types
neededfor specifying the SWP and its external behavior are presented. Section
4.5 features the � CRL speci�cations of the SWP and its external behavior. In
Section4.6, three consecutive transformations are applied to the speci�cation of
the SWP, to linearize the speci�cation, eliminate arguments of communication
actions, and get rid of modulo arithmetic. In Section4.7, properties of the data
typesand invariants of the transformed speci�cation are proved. In Section4.8,
it is proved that the three transformations preserve branching bisimulation, and
that the transformed speci�cation behaveslike a FIFO queue. We concludethis
chapter in Section 4.9.

4.2 Related Work

Sliding window protocols have attracted considerableinterest from the formal
veri�cation communit y. In this section we present an overview. Many of these
veri�cations deal with unbounded sequencenumbers, in which case modulo
arithmetic is avoided, or with a �xed �nite window size. The papers that do
treat arbitrary �nite window sizesmostly restrict to safety properties.

In�nite windo w size Stenning [163] studied a SWP with unbounded se-
quencenumbers and an in�nite window size, in which messagescan be lost,
duplicated or reordered. A timeout mechanism is used to trigger retransmis-
sion. Stenning gave informal manual proofs of somesafety properties. Knuth
[103] examined more generalprinciples behind Stenning's protocol, and manu-
ally veri�ed somesafety properties. Hailpern [82] usedtemporal logic to formu-
late safety and livenessproperties for Stenning's protocol, and establishedtheir
validit y by informal reasoning. Jonsson[97] also veri�ed both safety and live-
nesspropertiesof the protocol, using temporal logic and a manual compositional
veri�cation technique.

Fixed �nite windo w size Richier et al. [146] speci�ed a SWP in a process
algebrabasedlanguageEstelle/R, and veri�ed safety properties for window size
up to eight using the model checker Xesar. Madelaineand Vergamini [119] spec-
i�ed a SWP in LOTOS, with the help of the simulation environment Lite, and
proved somesafety properties for window sizesix. Holzmann [91, 92] used the
Spin model checker to verify both safety and livenessproperties of a SWP with
sequencenumbers up to �v e. Kaivola [99] veri�ed safety and livenessproper-
ties using model checking for a SWP with window sizeup to seven. Godefroid
and Long [65] speci�ed a full duplex SWP in a guarded command language,
and veri�ed the protocol for window size two using a model checker basedon
Queue BDDs. Stahl et al. [162] used a combination of abstraction, data in-
dependence,compositional reasoningand model checking to verify safety and
livenessproperties for a SWP with window size up to sixteen. The protocol
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wasspeci�ed in Promela, the input languagefor the Spin model checker. Smith
and Klarlund [160] speci�ed a SWP in the high-level languageIOA, and used
the theorem prover MONA to verify a safety property for unbounded sequence
numbers with window sizeup to 256. Latvala [112] modeled a SWP using Col-
ored Petri nets. A livenessproperty wasmodel checkedwith fairnessconstraints
for window sizeup to eleven.

Arbitrary �nite windo w size Cardell-Oliver [29] speci�ed a SWP using
higher order logic, and manually proved and mechanically checked safety prop-
erties using HOL. (Van de Snepscheut [161] noted that what Cardell-Oliver
claims to be a livenessproperty is in fact a safety property.) Schoone [154]
manually proved safety properties for several SWPs using assertional veri�ca-
tion. Van de Snepscheut [161] gave a correctnessproof of a SWP as a sequence
of correctnesspreservingtransformations of a sequential program. Paliwoda and
Sanders[132] speci�ed a reduced version of what they call a SWP (but which
is in fact very similar to the bakery protocol from [71]) in the processalgebra
CSP, and veri�ed a safety property modulo trace semantics. R•ockl and Esparza
[148] veri�ed the correctnessof this bakery protocol modulo weak bisimulation
using Isabelle/HOL, by explicitly checking a bisimulation relation. Jonssonand
Nilsson [98] usedan automated reachabilit y analysis to verify safety properties
for a SWP with arbitrary sending window size and receiving window size one.
Rusu [152] usedthe theorem prover PVS to verify both safety and livenessprop-
erties for a SWP with unbounded sequencenumbers. Chkliaev et al. [33] used
a timed state machine in PVS to specify a SWP with a timeout mechanism and
proved somesafety properties with the mechanical support of PVS. Correctness
is basedon the timeout mechanism, which allows messagesin the mediums to
be reordered.

4.3 Pro of Techniques

The goal of this chapter is to prove that the initial state of the forthcoming
� CRL speci�cation of a SWP is branching bisimilar to a FIFO queue. In the
proof of this fact, we will usethree proof principles from the literature to derive
that two � CRL speci�cations are branching (or even strongly) bisimilar: sum
elimination, CL-RSP, and conesand foci.

� Sum elimination [71] statesthat a summation over a data type from which
only one element can be selectedcan be removed. To be more precise,

X

d:D

p(d) / d = e^ b . � $ p(e) / b . � :

� CL-RSP [20] states that the solutions of a linear � CRL speci�cation that
does not contain any in�nite � sequenceare all strongly bisimilar. This
proof principle basically extends RSP [18] to a setting with data. The
reader is referred to [20] for more details regarding CL-RSP.
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� The cones and foci method from [54, 79] rephrasesthe question whether
two linear � CRL speci�cations � I (S1) and S2 are branching bisimilar,
where S2 does not contain actions from some set I of internal actions,
in terms of data equalities. The reader is referred to Chapter 3 for the
technical details of the conesand foci technique.

4.4 Data T yp es

In this section, the data types used in the � CRL speci�cation of the SWP are
presented: booleans, natural numbers supplied with modulo arithmetic, and
bu�ers. Furthermore, basic properties are given for the operations de�ned on
thesedata types.

4.4.1 Bo oleans

We intro duce the data type Bool of booleans.

T; F :! Bool
^ ; _ : Bool � Bool ! Bool
: : Bool ! Bool
) ; , : Bool � Bool ! Bool

T and F denote true and false, respectively. The in�x operations ^ and _
represent conjunction and disjunction, respectively. Finally, : denotesnegation.
The de�ning equations are:

b^ T = b : T = F
b^ F = F : F = T
b_ T = T b ) b0 = b0_ : b
b_ F = b b , b0 = (b ) b0) ^ (b0 ) b)

4.4.2 If-then-else and equalit y

For each data type D in this chapter we assumethe presenceof an operation

if : Bool � D � D ! D

with as de�ning equations

if (T; d;e) = d
if (F; d;e) = e

Furthermore, for each data type D in this chapter one can easily de�ne a map-
ping eq : D � D ! Bool such that eq(d;e) holds if and only if d = e can be
derived. For notational conveniencewe take the liberty to write d = e instead
of eq(d;e).
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4.4.3 Natural num bers

We intro duce the data type Nat of natural numbers.

0 :! Nat
S : Nat ! Nat
+ ; :� ; � : Nat � Nat ! Nat
� ; <; � ; > : Nat � Nat ! Bool

0 denoteszero and S(n) the successorof n. The in�x operations +, :� and �
represent addition, monus (also called proper subtraction) and multiplication,
respectively. Finally, the in�x operations � , < , � and > are the less-than(-or-
equal) and greater-than(-or-equal) operations. Usually, the sign for multiplica-
tion is omitted, and : (i = j ) is abbreviated to i 6= j .

i + 0 = i 0 � i = T
i + S(j ) = S(i + j ) S(i ) � 0 = F
i :� 0 = i S(i ) � S(j ) = i � j
0 :� i = 0 0 < S(i ) = T
S(i ) :� S(j ) = i :� j i < 0 = F
i �0 = 0 S(i ) < S(j ) = i < j
i �S(j ) = (i �j ) + i i � j = : (j < i )

i > j = : (j � i )

We take as binding convention:

f = ; 6= g > f�g > f + ; :�g > f� ; <; � ; > g > f:g > f^ ; _g > f) ; ,g :

4.4.4 Mo dulo arithmetic

Sincethe sizeof the bu�ers at the senderand the receiver in the sliding window
are of size2n, calculations modulo 2n play an important role. We intro ducethe
following notation for modulo calculations:

j : Nat � Nat ! Nat
div : Nat � Nat ! Nat

i jn denotesi modulo n, while i div n denotesi integer divided by n. The modulo
operations are de�ned by the following equations (for n > 0):

i jn = if (i < n; i; (i :� n)jn )
i div n = if (i < n; 0; S(( i :� n) div n))

4.4.5 Bu�ers

The sender and the receiver in the SWP both maintain a bu�er containing
the sendingand the receivingwindow, respectively (outside thesewindows both
bu�ers are empty). Let � be the set of data elements that can be communicated
between senderand receiver. The bu�ers are modeled as a list of pairs (d; i )
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with d:� and i :Nat , representing that position (or sequencenumber) i of the
bu�er is occupiedby datum d. The data type Buf is speci�ed as follows, where
[] denotesthe empty bu�er:

[] :! Buf
inb : � � Nat � Buf ! Buf

qjn denotesbu�er q with all sequencenumbers taken modulo n.

[]jn = []
inb(d; i; q)jn = inb(d; i jn ; qjn )

test(i; q) produces T if and only if position i in q is occupied, retrieve(i; q)
produces the datum that residesat position i in bu�er q (if this position is
occupied),1 and remove(i; q) is obtained by emptying position i in bu�er q.

test(i; []) = F
test(i; inb(d; j; q)) = i= j _ test(i; q)
retrieve(i; inb(d; j; q)) = if (i= j; d; retrieve(i; q))
remove(i; []) = []
remove(i; inb(d; j; q)) = if (i= j; remove(i; q); inb(d; j; remove(i; q)))

release(i; j; q) is obtained by emptying positions i up to j in q. releasejn (i; j; q)
does the samemodulo n.

release(i; j; q) = if (i � j; q; release(S(i ); j; remove(i; q)))
releasejn (i; j; q) = if (i jn = j jn ; q; releasejn (S(i ); j; remove(i; q)))

next-empty(i; q) producesthe �rst empty position in q, counting upwards from
sequencenumber i onward. next-emptyjn (i; q) does the samemodulo n.

next-empty(i; q) = if (test(i; q); next-empty(S(i ); q); i )
next-emptyjn (i; q) = if (next-empty(i jn ; qjn ) < n; next-empty(i jn ; qjn );

next-empty(0; qjn ))

Intuitiv ely, in-window(i; j; k) producesT if and only if j lies in the range from
i to k :� 1, modulo n, where n is greater than i , j and k.

in-window(i; j; k) = i � j < k _ k < i � j _ j < k < i

Finally, we de�ne an operation on bu�ers that is only neededin the derivation
of somedata equalities in Section 4.7.1: max(q) producesthe greatest sequence
number that is occupied in q.

max([]) = 0
max(inb(d; i; q)) = if (i � max(q); i; max(q))

1Note that retrieve(i; []) is unde�ned. One could choose to equate it to a default value in
�, or to a fresh error element in �. However, the �rst approach could cover up a ws in the
� CRL speci�cation of the SWP, and the second approach would needlessly complicate the
data type �. We prefer to work with a partially de�ned version of retrieve , which is allowed
in � CRL. All operations in � CRL models, however, are total; partially speci�ed operations
just lead to the existence of multiple models.
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4.4.6 Mediums

The medium in the SWP between the sender and the receiver is modeled as
a lossy channel of unbounded capacity with FIFO behavior. We model the
medium containing framesfrom the senderto the receiver by a data type MedK.
It represents a list of pairs (d; i ) with a datum d:� and its sequencenumber
i :Nat . Let []K denote an empty medium.

[]K :! MedK
inm : � � Nat � MedK ! MedK

gjn denotesmedium g with all sequencenumbers taken modulo n.

[]K jn = []K

inm(d; i; g)jn = inm(d; i jn ; gjn )

member(d; i; g) producesT if and only if the pair (d; i ) is in g. length(g) denotes
the length of g. return-dat(i; g) and return-seq(i; g) produce the datum and
the sequencenumber, respectively, that residesat position i in g (positions are
counted from 0). For convenience,we uselast-dat(g) and last-seq(g) to produce
the datum and the sequencenumber, respectively, that residesat the end of g.
delete(i; g) is obtained by emptying position i in g. Similarly, delete-last(g) is
obtained by emptying the last position in g.

member(d; i; []K ) = F
member(d; i; inm(e;j; g)) = (d = e ^ i = j ) _ member(d; i; g)
length([]K ) = 0
length(inm(d; i; g)) = S(length(g))
return-dat(i; inm(d; j; g)) = if (i = 0; d; return-dat(i � 1; g))
return-seq(i; inm(d; j; g)) = if (i = 0; j; return-seq(i � 1; g))
last-dat(inm(d; i; g)) = if (length(g) = 0; d; last-dat(g))
last-seq(inm(d; i; g)) = if (length(g) = 0; i; last-dat(g))
delete(i; inm(d; j; g)) = if (i = 0; g; inm(d; j; delete(i � 1; g)))
delete-last(inm(d; i; g)) = if (length(g) = 0; g;

inm(d; i; delete-last(g)))

The medium containing the sequencenumbersfrom the receiver to the sender
by a data type MedL. Similarly, we have the following de�ning equations.

[]L :! MedL
inm : Nat � MedL ! MedL

[]L jn = []L

inm(i; g0)jn = inm(i jn ; g0jn )
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member(i; []L ) = F
member(i; inm(j; g)) = i = j _ member(d; i; g)
length([]L ) = 0
length(inm(i; g0)) = S(length(g0))
return-seq(i; inm(j; g0)) = if (i = 0; j; return-seq(i � 1; g0))
last-seq(inm(i; g0)) = if (length(g0) = 0; i; last-seq(g0))
delete(i; inm(j; g0)) = if (i = 0; g0; inm(j; delete(i � 1; g0)))
delete-last(inm(j; g0)) = if (length(g0) = 0; g0; inm(j; delete-last(g0)))

4.4.7 Lists

We intro duce the data type of List of lists, which are used in the speci�cation
of the desired external behavior of the SWP: a FIFO queueof size 2n. Let hi
denote the empty list.

hi :! List
inl : � � List ! List

length(� ) denotes the length of � , top(� ) produces the datum that residesat
the top of � , tail (� ) is obtained by removing the top position in � , append(d; � )
adds datum d at the end of � , and � ++ � 0 represents list concatenation.

length(hi) = 0
length(inl (d; � )) = S(length(� ))
top(inl (d; � )) = d
tail (inl (d; � )) = �
append(d;hi) = inl (d;hi)
append(d; inl (e;� )) = inl (e;append(d; � ))
hi++ � = �
inl (d; � )++ � 0 = inl (d; � ++ � 0)

Furthermore, q[i::j i is the list containing the elements in bu�er q at positions i
up to but not including j .

q[i::j i = if (i � j; hi; inl (retrieve(i; q); q[S(i )::j i ))

4.5 Sliding Windo w Proto col

In this section, a � CRL speci�cation of a SWP is presented, together with its
desiredexternal behavior.

4.5.1 Speci�cation of a sliding windo w proto col

Figure 4.1 depicts the SWP. A senderS storesdata elements that it receivesvia
channel A in a bu�er of size2n, in the order in which they are received. S can
senda datum, together with its sequencenumber in the bu�er, to a receiver R
via a medium that behavesas lossy queueof unbounded capacity, represented
by the medium K and the channelsB and C. Upon reception, R may store the
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datum in its bu�er, where its position in the bu�er is dictated by the attached
sequencenumber. In order to avoid a possible overlap between the sequence
numbers of di�eren t data elements in the bu�ers of S and R , no more than
one half of the bu�ers of S and R may be occupied at any time; these halves
are called the sending and the receiving window, respectively. R can passon
a datum that residesat the �rst position in its window via channel D; in that
casethe receiving window slides forward by one position. Furthermore, R can
send the sequencenumber of the �rst empty position in (or just outside) its
window as an acknowledgment to S via a medium that behavesas lossy queue
of unbounded capacity, represented by the medium L and the channels E and
F. If S receivesthis acknowledgment, its window slidesforward accordingly.
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2n� 2

2n� 3
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: : : : : :

2n� 1

2n� 2
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1

2
: : : : : :

0
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Figure 4.1: Sliding window protocol

The senderS is modeledby the processS(`; m; q), where q is a bu�er of size
2n, ` the �rst position in the sendingwindow, and m the �rst empty position in
(or just outside) the sendingwindow. Data elements can be selectedat random
for transmission from (the �lled part of) the sendingwindow.

S(`:Nat ; m:Nat ; q:Buf ) =
P

d:� rA (d)�S(`; S(m)j2n ; inb(d;m; q))
/ in-window(`; m; (` + n)j2n ) . �

+
P

k :Nat sB (retrieve(k; q); k)�S(`; m; q)
/ test(k; q) . �

+
P

k :Nat rF (k)�S(k; m; releasej2n (`; k; q))

The receiver R is modeled by the processR (`0; q0), where q0 is a bu�er of
size2n and `0 the �rst position in the receiving window.
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R (`0:Nat ; q0:Buf ) =
P

d:�

P
k :Nat rC (d;k)�(R (`0; inb(d;k; q0))

/ in-window(`0; k; (`0+ n)j2n ) . R (`0; q0))

+ sD (retrieve(`0; q0)) �R (S(`0)j2n ; remove(`0; q0))
/ test(`0; q0) . �

+ sE (next-emptyj2n (`0; q0)) �R (`0; q0)

Finally, we specify the mediums K and L , which have unbounded capacity
and may lose frames between S and R , and vice versa. We cannot allow re-
ordering of messagesin the medium, as this would violate the correctnessof the
protocol. The medium K (seeFigure 4.2) is modeled by the processK (g; p),
where g:MedK is a bu�er with unbounded capacity, and p:Nat a pointer indi-
cating that the frames in between position 0 and p (excluding p) can still be
lost, and the frames beyond p cannot be lost any more.

position: 1

p

m n

g with length (g) = n + 1

0

(e0; i0) (e1; i1) (en ; in )(em ; im )

Figure 4.2: The medium K

K receives a frame from S, stores it at the front (position 0) of g, and
accordingly increasesp by one. It sendsthe last frame (last-dat(g); last-seq(g))
in g to R . A frame at position k can be lost (if k < p), and p is then decreased
by one. K can also make a choice that the frame at position p cannot be lost
(p:= p� 1). The action j expressesthe nondeterministic choicewhether or not a
frame is lost. In a similar way, we model the medium L by the processL (g0; p0).

K (g:MedK; p:Nat ) =
P

d:�

P
k :Nat rB (d;k)�K (inm(d;k; g); p + 1)

+
P

k :Nat j �K (delete(k; g); p � 1) / k < p . �

+ sC (last-dat(g); last-seq(g)) �K (delete-last(g); p)
/ p < length(g) . �

+ j �K (g; p � 1) / p > 0 . �



62 Chapter 4 Verifying a Sliding Window Protocol in � CRL

L(g0:MedL; p0:Nat ) =
P

k :Nat rE (k)�L (inm(k; g0); p0+ 1)

+
P

k :Nat j �L (delete(k; g0); p0 � 1) / k < p0 . �

+ sF (last-seq(g0)) �L (delete-last(g0); p0)
/ p0 < length(g0) . �

+ j �L (g0; p0 � 1) / p0 > 0 . �

For each channel i 2 f B; C; E; Fg, actions si and r i can communicate, re-
sulting in the action ci . The initial state of the SWP is expressedby

� I (@H (S(0; 0; []) k R (0; []) k K ([]K ; 0) k L ([]L ; 0)))

where the set H consistsof the read and sendactions over the internal channels
B, C, E, and F, namely H = f sB ; rB ; sC ; rC ; sE ; rE ; sF ; rF g, while the set I
consistsof the communication actions over theseinternal channelstogether with
j , namely I = f cB ; cC ; cE ; cF ; j g.

4.5.2 External behavior

Data elements that are read from channel A should be sent into channel D in
the sameorder, and no data elements should be lost. In other words, the SWP
is intended to be a solution for the linear speci�cation.

Z(� :List ) =
P

d:� rA (d)�Z(append(d; � )) / length(� ) < 2n . �

+ sD (top(� )) �Z(tail (� )) / length(� ) > 0 . �

Note that rA (d) can be performed until the list � contains 2n elements, because
in that situation the sendingand receiving windows will be �lled. Furthermore,
sD (top(� )) can only be performed if � is not empty.

The remainder of this chapter is devoted to proving the following theorem,
expressingthat the external behavior of our � CRL speci�cation of a SWP cor-
responds to a FIFO queueof size2n.

Theorem 4.5.1 � I (@H (S(0; 0; []) k R (0; []) k K ([]K ; 0) k L ([]L ; 0))) $ b Z(hi).

4.6 Transformations of the Speci�cation

This sectionwitnessesthree transformations, oneto eliminate parallel operators,
one to eliminate arguments of communication actions, and one to eliminate
modulo arithmetic.

4.6.1 Linearization

The starting point of our correctnessproof is a linear speci�cation M mod , in
which no parallel operators occur. M mod can be obtained from the � CRL
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speci�cation of the SWP without the hiding operator, i.e.,

@H (S(0; 0; []) k R (0; []) k K ([]K ; 0) k L ([]L ; 0))

by meansof a linearization algorithm presented in [76].
The linear speci�cation M mod of the SWP, with encapsulationbut without

hiding, takes the following form. For the sake of presentation, we only present
parameterswhosevaluesare changed.

M mod (`:Nat ; m:Nat ; q:Buf ; `0:Nat ; q0:Buf ; g:MedK; p:Nat ;
g0:MedL; p0:Nat )

=
P

d:� rA (d)�M mod (m:= S(m)j2n ; q:= inb(d;m; q))
/ in-window(`; m; (` + n)j2n ) . �

+
P

k :Nat cB (retrieve(k; q); k)�M mod (g:= inm(retrieve(k; q); k; g); p:= p + 1)
/ test(k; q) . �

+
P

k :Nat j �M mod (g:= delete(k; g); p:= p � 1) / k < p . �

+ j �M mod (p:= p � 1) / p > 0 . �

+ cC (last-dat(g); last-seq(g)) �
M mod (q0:= inb(last-dat(g); last-seq(g); q0); g:= delete-last(g))

/ p < length(g) ^ in-window(`0; last-seq(g); (`0+ n)j2n ) . �

+ cC (last-dat(g); last-seq(g)) �M mod (g:= delete-last(g))
/ p < length(g) ^ : in-window(`0; last-seq(g); (`0+ n)j2n ) . �

+ sD (retrieve(`0; q0)) �M mod (`0:= S(`0)j2n ; q0:= remove(`0; q0)) / test(`0; q0) . �

+ cE (next-emptyj2n (`0; q0)) �
M mod (g0:= inm(next-emptyj2n (`0; q0); g0); p0:= p0+ 1)

+
P

k :Nat j �M mod (g0:= delete(k; g0); p0:= p0 � 1) / k < p0 . �

+ j �M mod (p0:= p0 � 1) / p0 > 0 . �

+ cF (last-seq(g0)) �
M mod (`:= last-seq(g0); q:= releasej2n (`; last-seq(g0); q); g0:= delete-last(g0))

/ p0 < length(g0) . �

Theorem 4.6.1

@H (S(0; 0; []) k R (0; []) k K ([]K ; 0) k L ([]L ; 0))$ M mod (0; 0; []; 0; []; []K ; 0; []L ; 0):

Pro of. It is not hard to seethat replacing M mod (`; m; q; `0; q0; g; p;g0; p0) by
@H (S(`; m; q) k R (`0; q0) k K (g; p) k L (g0; p0)) is a solution for the recursive
equation above, using the axioms of � CRL [74]. (The details are left to the
reader.) Hence,the theorem follows by CL-RSP [20]. �
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4.6.2 Eliminating argumen ts of comm unication actions

The linear speci�cation N mod is obtained from M mod by stripping all arguments
from communication actions, and renaming theseactions to a fresh action c.

N mod (`:Nat ; m:Nat ; q:Buf ; `0:Nat ; q0:Buf ; g:MedK; p:Nat ;
g0:MedL; p0:Nat )

=
P

d:� rA (d)�N mod (m:= S(m)j2n ; q:= inb(d;m; q))
/ in-window(`; m; (` + n)j2n ) . �

+
P

k :Nat c�N mod (g:= inm(retrieve(k; q); k; g); p:= p + 1) / test(k; q) . �

+
P

k :Nat j �N mod (g:= delete(k; g); p:= p � 1) / k < p . �

+ j �N mod (p:= p � 1) / p > 0 . �

+ c�N mod (q0:= inb(last-dat(g); last-seq(g); q0); g:= delete-last(g))
/ p < length(g) ^ in-window(`0; last-seq(g); (`0+ n)j2n ) . �

+ c�N mod (g:= delete-last(g))
/ p < length(g) ^ : in-window(`0; last-seq(g); (`0+ n)j2n ) . �

+ sD (retrieve(`0; q0)) �N mod (`0:= S(`0)j2n ; q0:= remove(`0; q0)) / test(`0; q0) . �

+ c�N mod (g0:= inm(next-emptyj2n (`0; q0); g0); p0:= p0+ 1)

+
P

k :Nat j �N mod (g0:= delete(k; g0); p0:= p0 � 1) / k < p0 . �

+ j �N mod (p0:= p0 � 1) / p0 > 0 . �

+ c�N mod (`:= last-seq(g0); q:= releasej2n (`; last-seq(g0); q); g0:= delete-last(g0))
/ p0 < length(g0) . �

Theorem 4.6.2

� I (M mod (0; 0; []; 0; []; []K ; 0; []L ; 0)) $ � f c;j g(N mod (0; 0; []; 0; []; []K ; 0; []L ; 0)):

Pro of. By a simple renaming. �

4.6.3 Getting rid of mo dulo arithmetic

The speci�cation of N nonmo d is obtained by eliminating all occurrencesof j2n

from N mod , replacing in-window(`; m; (` + n)j2n by m < ` + n, and replacing
in-window(`0; last-seq(g); (`0+ n)j2n by `0 � last-seq(g) < `0+ n.
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N nonmo d (`:Nat ; m:Nat ; q:Buf ; `0:Nat ; q0:Buf ; g:MedK; p:Nat ;
g0:MedL; p0:Nat )

=
P

d:� rA (d)�N nonmo d (m:= S(m); q:= inb(d;m; q)) / m < ` + n . � (A)

+
P

k :Nat c�N nonmo d (g:= inm(retrieve(k; q); k; g); p:= p + 1) / test(k; q) . � (B )

+
P

k :Nat j �N nonmo d (g:= delete(k; g); p:= p � 1) / k < p . � (C)

+ j �N nonmo d (p:= p � 1) / p > 0 . � (D )

+ c�N nonmo d (q0:= inb(last-dat(g); last-seq(g); q0); g:= delete-last(g))
/ p < length(g) ^ (`0 � last-seq(g) < `0+ n) . � (E )

+ c�N nonmo d (g:= delete-last(g))
/ p < length(g) ^ : (`0 � last-seq(g) < `0+ n) . � (F )

+ sD (retrieve(`0; q0)) �N nonmo d (`0:= S(`0); q0:= remove(`0; q0)) / test(`0; q0) . � (G)

+ c�N nonmo d (g0:= inm(next-empty(`0; q0); g0); p0:= p0+ 1) (H )

+
P

k :Nat j �N nonmo d (g0:= delete(k; g0); p0:= p0 � 1) / k < p0 . � (I )

+ j �N nonmo d (p0:= p0 � 1) / p0 > 0 . � (J )

+ c�N nonmo d (`:= last-seq(g0); q:= release(`; last-seq(g0); q); g0:= delete-last(g0))
/ p0 < length(g0) . � (K )

Theorem 4.6.3

N mod (0; 0; []; 0; []; []K ; 0; []L ; 0) $ N nonmo d (0; 0; []; 0; []; []K ; 0; []L ; 0):

The proof of Theorem 4.6.3 is presented in Section 4.8.1. Next, in Section
4.8.2, we prove the correctnessof N nonmo d . In theseproofs we will needa wide
range of data equalities, which we proceedto prove in Section 4.7.

4.7 Prop erties of Data

4.7.1 Basic prop erties

In the correctnessproof we will makeuseof basicproperties of the operations on
Nat and Bool, which are derivable from their axioms (using induction). Some
typical examplesof such properties are:

:: b = b
i + k < j + k = i < j

i � j ) (i :� j ) + k = (i + k) :� j

Lemmas4.7.1and 4.7.2collect basic facts on modulo arithmetic and on bu�ers,
respectively. Lemma 4.7.3contains someresultson modulo arithmetic related to
bu�ers. Lemma 4.7.4presents somefacts on the next-emptyoperation, together
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with oneresult on max, which is neededto derive thosefacts. Lemmas4.7.5and
4.7.6 collect someresults on unbounded bu�ers. Finally, Lemma 4.7.7 contains
basic facts on lists. Unless stated otherwise (this only happens in Lemmas
4.7.3.2-4.7.3.6,4.7.3.9and 4.7.5.12)all variables that occur in a data lemma are
implicitly universally quanti�ed at the outside of the equality.

Lemma 4.7.1 Let n > 0.

1. (i jn + j )jn = (i + j )jn

2. i jn < n

3. (i �n)jn = 0

4. i = (i div n)�n + i jn

5. j � i � j + n
) (i div 2n = j div 2n ^ j j2n � i j2n � j j2n + n) _ (i div 2n = S(j div 2n) ^
i j2n + n � j j2n )

6. i � j ) i div n � j div n

Pro of.

1. By induction on i .

� i < n. Then i jn = i .

� i � n.

(i jn + j )jn
= (( i :� n)jn + j )jn
= (( i :� n) + j )jn (by induction, i; n > 0)
= (( i + j ) :� n)jn (i � n)
= (i + j )jn

2. Trivial, by induction on i .

3. Trivial, by induction on i .

4. By induction on i .

� i < n.
Then i div n = 0 and i jn = i . Clearly, i = 0�n + i .

� i � n.
Then i div n = S(( i :� n) div n) and i jn = (i :� n)jn . Hence,

i
= (i :� n) + n (becausei � n)
= (( i :� n) div n)�n + (i :� n)jn + n (by induction, i; n > 0)
= S(( i :� n) div n)�n + (i :� n)jn
= (i div n)�n + i jn
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5. Let j � i � j + n.
Case 1: i div 2n < j div 2n.

j � i
= (j div 2n)�2n + j j2n � (( i div 2n)�2n + i j2n ) (Lem. 4.7.1.4)
= (j div 2n � i div 2n)�2n + (j j2n � i j2n )
� 2n + (j j2n � i j2n ) (i div 2n < j div 2n)
> 2n � 2n (Lem. 4.7.1.2)
= 0 (contradict with j � i )

Case 2: i div 2n = j div 2n. We needto show j j2n � i j2n � j j2n + n.

j � i � j + n
= (j div 2n)�2n + j j2n � (i div 2n)�2n + i j2n

� (j div 2n)�2n + j j2n + n (Lem. 4.7.1.4)
= j j2n � i j2n � j j2n + n (i div 2n = j div 2n)

Case 3: i div 2n = S(j div 2n). We needto show i j2n + n < j j2n .

i � j + n
= (i div 2n)�2n + i j2n

� (j div 2n)�2n + j j2n + n (Lem. 4.7.1.4)
= (j div 2n)�2n + 2n + i j2n

� (j div 2n)�2n + j j2n + n (i div 2n = S(j div 2n))
= i j2n + n � j j2n

Case 4: i div 2n > S(j div 2n).

i � (j + n)
= (i div 2n)�2n + i j2n

� (( j div 2n)�2n + j j2n ) � n (Lem. 4.7.1.4)
� (j div 2n)�2n + 4n + i j2n

� (j div 2n)�2n � j j2n � n (i div 2n > S(j div 2n))
= 3n + i j2n � j j2n

> 3n � 2n (Lem. 4.7.1.2)
> 0 (contradict with i < j + n)

6. By induction on i .

� i < n. Then i div n = 0.

� i � n.

i div n
= S(( i :� n) div n)
� S(( j :� n) div n) (by induction, becausei � j; n > 0)
= j div n (becausen � i � j )

�
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Lemma 4.7.2 1. test(i; remove(j; q)) = (test(i; q) ^ i 6= j )

2. i 6= j ) retrieve(i; remove(j; q)) = retrieve(i; q)

3. test(i; release(j; k; q)) = (test(i; q) ^ : (j � i < k))

4. : (j � i < k) ) retrieve(i; release(j; k; q)) = retrieve(i; q)

5. q 6= [] ) test(max(q); q)

Pro of.

1. By induction on the structure of q.

� q = [].
test(i; remove(j; [])) = test(i; []) = F = test(i; []) ^ i 6= j .

� q = inb(d;k; q0).
Case 1: j = k.

test(i; remove(j; inb(d;k; q0)))
= test(i; remove(j; q0))
= test(i; q0) ^ i 6= j (by induction)
= test(i; inb(d;k; q0)) ^ i 6= j (becausej = k)

Case 2: j 6= k.
Case 2.1: i = k. Then i 6= j .

test(i; remove(j; inb(d;k; q0)))
= test(i; inb(d;k; remove(j; q0)))
= T
= test(i; inb(d;k; q0)) ^ i 6= j

Case 2.2: i 6= k.

test(i; remove(j; inb(d;k; q0)))
= test(i; inb(d;k; remove(j; q0)))
= test(i; remove(j; q0))
= test(i; q0) ^ i 6= j (by induction)
= test(i; inb(d;k; q0)) ^ i 6= j

2. By induction on the structure of q.

� q = [].
Then remove(j; []) = [].

� q = inb(d;k; q0).
Case 1: j = k.

retrieve(i; remove(j; inb(d;k; q0)))
= retrieve(i; remove(j; q0))
= retrieve(i; q0) (by induction)
= retrieve(i; inb(d;k; q0))
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Case 2: j 6= k.
Case 2.1: i = k.

retrieve(i; remove(j; inb(d;k; q0)))
= retrieve(i; inb(d;k; remove(j; q0)))
= d
= retrieve(i; inb(d;k; q0))

Case 2.2: i 6= k.

retrieve(i; remove(j; inb(d;k; q0)))
= retrieve(i; inb(d;k; remove(j; q0)))
= retrieve(i; remove(j; q0))
= retrieve(i; q0) (by induction)
= retrieve(i; inb(d;k; q0))

3. By induction on k :� j .

� j � k.
Then test(i; release(j; k; q)) = test(i; q) and : (j � i < k) = T.

� j < k.

test(i; release(j; k; q))
= test(i; release(S(j ); k; remove(j; q)))
= test(i; remove(j; q)) ^ : (S(j ) � i < k) (by induction)
= test(i; q) ^ : (j � i < k) (Lem. 4.7.2.1)

4. By induction on k :� j .

� j � k.
Then retrieve(i; release(j; k; q)) = retrieve(i; q).

� j < k.
Then : (j � i < k) implies i 6= j . Hence,

retrieve(i; release(j; k; q))
= retrieve(i; release(S(j ); k; remove(j; q)))
= retrieve(i; remove(j; q)) (by induction)
= retrieve(i; q) (Lem. 4.7.2.2,becausei 6= j )

5. By induction on the structure of q.

� g = [].
This caseis trivial.

� q = inb(d;k; q0).
By de�nition, max(inb(d;k; q0)) = if (k � max(q0); k; max(q0)).
Case 1: k � max(q0). Then max(inb(d;k; q0)) = k.
Clearly, test(k; inb(d;k; q0)).
Case 2: k < max(q0). Then max(inb(d;k; q0)) = max(q0).
test(max(q0); inb(d;k; q0)) = test(max(q0); q0). Hence, by induction,
test(max(q0); q0).
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�

Lemma 4.7.3 1. test(k; qj2n ) ) k = kj2n

2. (8j :Nat (test(j; q) ) i � j < i + n) ^ i � k � i + n)
) test(k; q) = test(kj2n ; qj2n )

3. (8j :Nat (test(j; q) ) i � j < i + n) ^ test(k; q))
) retrieve(k; q) = retrieve(kj2n ; qj2n )

4. (8j :Nat (test(j; q) ) i � j < i + n) ^ i � k � i + n)
) remove(k; q)j2n = remove(kj2n ; qj2n )

5. (8j :Nat (test(j; q) ) i � j < i + n) ^ i � k � i + n)
) release(i; k; q)j2n = releasej2n (i; k; qj2n )

6. (8j :Nat (test(j; q) ) i � j < i + n) ^ i � k � i + n)
) next-empty(k; q)j2n = next-emptyj2n (kj2n ; qj2n )

7. i � k < i + n ) in-window(i j2n ; kj2n ; (i + n)j2n )

8. in-window(i j2n ; kj2n ; (i + n)j2n )
) k + n < i _ i � k < i + n _ k � i + 2n

9. (8j :Nat (test(j; q) ) i � j < i + n) ^ test(k; qj2n ))
) in-window(i j2n ; k; (i + n)j2n )

Pro of.

1. Trivial, by induction on the structure of q, using Lemma 4.7.1.2.

2. By induction on the structure of q.

� q = []. Then test(k; []) = F = test(kj2n ; []j2n ).

� q = inb(d; `; q0).
Let test(j; q) ) i � j < i + n and i � k � i + n.
Case 1: kj2n = `j2n .
test(`; q), so i � ` < i + n. In combination with i � k � i + n,
kj2n = `j2n , Lemmas 4.7.1.4 and 4.7.1.5, this implies k = `. Hence,
test(k; q). Furthermore, kj2n = `j2n implies test(kj2n ; qj2n ).
Case 2: kj2n 6= `j2n . Then also k 6= `.
test(j; q0) ) test(j; q) ) i � j < i + n, so induction can be applied
with respect to q0.

test(k; inb(d; `; q0))
= test(k; q0)
= test(kj2n ; q0j2n ) (by induction)
= test(kj2n ; inb(d; `; q0)j2n )

3. By induction on the structure of q.
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� q = []. Then test(k; []) = F.

� q = inb(d; `; q0).
Let test(j; q) ) i � j < i + n and test(k; q).
Case 1: k = `. Then also kj2n = `j2n .
Hence,retrieve(k; q) = d = retrieve(kj2n ; qj2n ).
Case 2: k 6= `.
test(j; q0) ) test(j; q) ) i � j < i + n, and test(k; q) together with
k 6= ` implies test(k; q0), so induction can be applied with respect
to q0. test(k; q) and test(`; q), so i � k < i + n and i � ` < i + n.
In combination with k 6= `, Lemmas4.7.1.4and 4.7.1.5, this implies
kj2n 6= `j2n . Hence,

retrieve(k; q)
= retrieve(k; q0)
= retrieve(kj2n ; q0j2n ) (by induction)
= retrieve(kj2n ; qj2n )

4. By induction on the structure of q.

� q = [].
remove(k; [])j2n = [] = remove(kj2n ; []j2n ).

� q = inb(d; `; q0).
Let test(j; q) ) i � j < i + n and i � k � i + n.
Case 1: k = `. Then also kj2n = `j2n .

remove(k; q)j2n

= remove(k; q0)j2n

= remove(kj2n ; q0j2n ) (by induction)
= remove(kj2n ; qj2n )

Case 2: k 6= `.
test(`; q), so i � ` < i + n. In combination with i � k � i + n, k 6= `,
Lemmas4.7.1.4and 4.7.1.5, this implies kj2n 6= `j2n . Hence,

remove(k; q)j2n

= inb(d; `; remove(k; q0)) j2n

= inb(d; ` j2n ; remove(k; q0)j2n )
= inb(d; ` j2n ; remove(kj2n ; q0j2n )) (by induction)
= remove(kj2n ; qj2n )

5. By induction on k :� i . Let test(j; q) ) i � j < i + n.

� i = k. Then also i j2n = kj2n .
Hence,release(i; k; q)j2n = qj2n = releasej2n (i; k; qj2n ).
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� i < k � i + n.
By Lemmas4.7.1.4and 4.7.1.5, i j2n 6= kj2n . Hence,

release(i; k; q)j2n

= release(S(i ); k; remove(i; q)) j2n

= releasej2n (S(i ); k; remove(i; q)j2n ) (by induction)
= releasej2n (S(i ); k; remove(i j2n ; qj2n )) (Lem. 4.7.3.4)
= releasej2n (i; k; qj2n )

6. By induction on (i + n) :� k. Let test(j; q) ) i � j < i + n.

� k = i + n.
: test(i + n; q), so by Lemma 4.7.3.2,: test(( i + n)j2n ; qj2n ). Then by
Lemma 4.7.1.2,(i + n)j2n < 2n. Hence,

next-empty(i + n; q)j2n

= (i + n)j2n

= next-empty(( i + n)j2n ; qj2n )
= next-emptyj2n (( i + n)j2n ; qj2n )

� i � k � i + n.
Case 1: : test(k; q). By Lemma 4.7.3.2,also : test(kj2n ; qj2n ).
By Lemma 4.7.1.2,kj2n < 2n. Hence,

next-empty(k; q)j2n

= kj2n

= next-empty(kj2n ; qj2n )
= next-emptyj2n (kj2n ; qj2n )

Case 2: test(k; q). By Lemma 4.7.3.2,also test(kj2n ; qj2n ).
We prove next-emptyj2n (kj2n ; qj2n ) = next-emptyj2n (S(k)j2n ; qj2n ).
Case 2.1: kj2n = 2n � 1.
By Lemma 4.7.4.3,

next-empty(kj2n ; qj2n )
= next-empty(S(kj2n ); qj2n )
= next-empty(2n; qj2n )
� 2n

Hence,
next-emptyj2n (kj2n ; qj2n )

= next-empty(0; qj2n )
= next-emptyj2n (S(k)j2n ; qj2n )

Case 2.2: kj2n < 2n � 1.
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Using Lemma 4.7.1.1,we can derive S(k)j2n = S(kj2n ). Since

next-empty(kj2n ; qj2n )
= next-empty(S(kj2n ); qj2n )
= next-empty(S(k)j2n ; qj2n )

we have next-emptyj2n (kj2n ; qj2n ) = next-emptyj2n (S(k)j2n ; qj2n ).
Concluding,

next-empty(k; q)j2n

= next-empty(S(k); q)j2n

= next-emptyj2n (S(k)j2n ; qj2n ) (by induction)
= next-emptyj2n (kj2n ; qj2n )

7. Let i � k < i + n.

Case 1: S(i div 2n)�2n � k.
Then S(i div 2n)�2n � k < i + n < S(i div 2n)�2n + n (by Lem. 4.7.1.4).
Then by Lemmas 4.7.1.2, 4.7.1.5 and 4.7.1.6 it follows that k div 2n =
(i + n) div 2n = S(i div 2n). Hence, in view of Lemma 4.7.1.4, kj2n <
(i + n)j2n < i j2n .

Case 2: k < S(i div 2n)�2n � i + n.
Then (i div 2n)�2n � i � k < (i div 2n)�2n + 2n, so by Lemma 4.7.1.6
k div 2n = i div 2n. Furthermore, S(i div 2n)�2n � i + n < S(i div 2n)�2n+
n, so (i + n) div 2n = S(i div 2n). Hence,(i + n)j2n < i j2n � kj2n .

Case 3: i + n < S(i div 2n)�2n.
Then (i div 2n)�2n � i � k < i + n < (i div 2n)�2n+ 2n. By Lemma 4.7.1.6,
k div 2n = (i + n) div 2n = i div 2n. Hence,i j2n � kj2n < (i + n)j2n .

By de�nition,

in-window(i j2n ; kj2n ; (i + n)j2n )
= i j2n � kj2n < (i + n)j2n _

(i + n)j2n < i j2n � kj2n _
kj2n < (i + n)j2n < i j2n

so in all three caseswe conclude in-window(i j2n ; kj2n ; (i + n)j2n ).

8. We prove
(i + n � k < i + 2n _ i � k + n < i + n)
) : in-window(i j2n ; kj2n ; (i + n)j2n ):

� i + n � k < i + 2n.
Then i div 2n � (i + n) div 2n � k div 2n � S(i div 2n). We distin-
guish three cases,in which we repeatedly apply Lemma 4.7.1.4.
Case 1: i div 2n = (i + n) div 2n = k div 2n.
Then i < i + n yields i j2n < (i + n)j2n and i + n � k yields (i + n)j2n �
kj2n .
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Case 2: S(i div 2n) = S(( i + n) div 2n) = k div 2n.
Then i < i + n yields i j2n < (i + n)j2n and k < i + 2n yields kj2n <
i j2n .
Case 3: S(i div 2n) = (i + n) div 2n = k div 2n.
Then i + n � k yields (i + n)j2n � kj2n and k < i + 2n yields
kj2n < i j2n .
In all three caseswe can conclude: in-window(i j2n ; kj2n ; (i + n)j2n ).

� i � k + n < i + n.
Then i + n � k + 2n < i + 2n, so by Case 1,
: in-window(i j2n ; (k + 2n)j2n ; (i + n)j2n ).
Hence,: in-window(i j2n ; kj2n ; (i + n)j2n ).

9. By induction on the structure of q.

� q = [].
This casefollows from the fact that test(k; []j2n ) = F.

� q = inb(d; `; q0). Then test(`; q), so i � ` < i + n.
Thus, by Lemma 4.7.3.7, in-window(i j2n ; ` j2n ; (i + n)j2n ). Hence,

test(k; inb(d; `; q0)j2n )
, k = `j2n _ test(k; q0j2n )
) k = `j2n _ in-window(i j2n ; k; (i + n)j2n )
, in-window(i j2n ; k; (i + n)j2n )

�

Lemma 4.7.4 1. test(i; q) ) i � max(q)

2. i � j < next-empty(i; q) ) test(j; q)

3. next-empty(i; q) � i

4. next-empty(i; inb(d; j; q)) � next-empty(i; q)

5. j 6= next-empty(i; q)
) next-empty(i; inb(d; j; q)) = next-empty(i; q)

6. next-empty(i; inb(d;next-empty(i; q); q))
= next-empty(S(next-empty(i; q)) ; q)

7. : (i � j < next-empty(i; q))
) next-empty(i; remove(j; q)) = next-empty(i; q)

Pro of.

1. By induction on the structure of q.

� q = [].
Then test(i; []) = F.
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� q = inb(d; j; q0).
Case 1: i = j . Then clearly i � max(inb(d; j; q0)).
Case 2: i 6= j . Then test(i; inb(d; j; q0)) implies test(i; q0), so

i � max(q0) (by induction) � max(inb(d; j; q0)) :

2. By induction on j :� i .

� i = j .
: test(i; q) implies next-empty(i; q) = i = j .

� i < j .
Case 1: : test(i; q). Then next-empty(i; q) = i < j .
Case 2: test(i; q).

i < j < next-empty(i; q)
, S(i ) � j < next-empty(S(i ); q)
) test(j; q) (by induction)

3. By induction on S(max(q)) :� i .

� : test(i; q). (This includes the basecaseS(max(q)) � i .)
Then next-empty(i; q) = i .

� test(i; q).
By Lemma 4.7.4.1, i � max(q), so S(max(q)) :� S(i ) < S(max(q)) :�
i . Hence,by induction, next-empty(i; q) = next-empty(S(i ); q) > i .

4. By induction on S(max(q)) :� i .

� : test(i; q).
Then next-empty(i; inb(d; j; q)) � i (Lem. 4.7.4.3)= next-empty(i; q).

� test(i; q). Then also test(i; inb(d; j; q)).
By Lemma 4.7.4.1, i � max(q), so S(max(q)) :� S(i ) < S(max(q)) :�
i . Hence,

next-empty(i; inb(d; j; q))
= next-empty(S(i ); inb(d; j; q))
� next-empty(S(i ); q) (by induction)
= next-empty(i; q)

5. By induction on S(max(q)) :� i . Let j 6= next-empty(i; q).

� : test(i; q).
Then next-empty(i; q) = i . This implies j 6= i , so : test(i; inb(d; j; q)).
Hence,next-empty(i; inb(d; j; q)) = i .
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� test(i; q). Then also test(i; inb(d; j; q)).
By Lemma 4.7.4.1, i � max(q), so S(max(q)) :� S(i ) < S(max(q)) :�
i . Furthermore, test(i; q) implies j 6= next-empty(S(i ); q). Hence,

next-empty(i; inb(d; j; q))
= next-empty(S(i ); inb(d; j; q))
= next-empty(S(i ); q) (by induction)
= next-empty(i; q)

6. By induction on S(max(q)) :� i .

� : test(i; q).
Then next-empty(i; q) = i . By Lemma 4.7.4.3,next-empty(S(i ); q) 6=
i . Hence,

next-empty(i; inb(d;next-empty(i; q); q))
= next-empty(i; inb(d; i; q))
= next-empty(S(i ); inb(d; i; q))
= next-empty(S(i ); q) (Lem. 4.7.4.5)
= next-empty(S(next-empty(i; q)) ; q)

� test(i; q).
By Lemma 4.7.4.1, i � max(q), so the induction hypothesis can be
applied with respect to S(i ).

next-empty(i; inb(d;next-empty(i; q); q))
= next-empty(S(i ); inb(d;next-empty(S(i ); q); q))
= next-empty(S(next-empty(S(i ); q)) ; q) (by induction)
= next-empty(S(next-empty(i; q)) ; q)

7. We apply induction on S(max(q)) :� i .

� : test(i; q).
Then, by Lemma 4.7.2.1, : test(i; remove(j; q)). Hence,
next-empty(i; remove(j; q)) = i = next-empty(i; q).

� test(i; q).
Let : (i � j < next-empty(i; q)). test(i; q) implies : (S(i ) � j <
next-empty(S(i ); q)). Furthermore, by Lemma 4.7.4.1, i � max(q),
so the induction hypothesis can be applied with respect to S(i ).
Since next-empty(i; q) = next-empty(S(i ); q) � S(i ) (Lem. 4.7.4.3),
: (i � j < next-empty(i; q)) implies j 6= i . Then, by Lemma 4.7.2.1,
test(i; remove(j; q)). Hence,

next-empty(i; remove(j; q))
= next-empty(S(i ); remove(j; q))
= next-empty(S(i ); q) (by induction)
= next-empty(i; q)
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�

Lemma 4.7.5 1. length(g) = length(gj2n )

2. i < length(g) ) return-seq(i; g)j2n = return-seq(i; gj2n )

3. i < length(g) ) return-dat(i; g) = return-dat(i; gj2n )

4. i < length(g) ) delete(i; g)j2n = delete(i; gj2n )

5. length(g) > 0 ) last-dat(g) = return-dat(length(g) � 1; g)

6. length(g) > 0 ) last-seq(g) = return-seq(length(g) � 1; g)

7. length(g) > 0 ) delete-last(g) = delete(length(g) � 1; g)

8. (i < length(g) ^ member(d; j; delete(i; g))) ) member(d; j; g)

9. i < length(g) ) length(delete(i; g)) = length(g) � 1

10. i < length(g) ) member(return-dat(i; g); return-seq(i; g); g)

11. (i < length(g) � 1 ^ j < length(g))
) return-seq(i; delete(j; g))= if (i < j; return-seq(i; g); return-seq(i + 1; g))

12. member(d; i; g)
) 9j :Nat (j < length(g) ^ return-seq(j; g) = i ^ return-dat(j; g) = d)

Pro of. We prove Lemma 4.7.5.11by induction on the structure of g. The other
lemmasare straightforward, by induction on g, and left to reader.

� g = []K . Then length(g) = 0. This caseis trivial.

� g = inm(e;k; g1).

Let i < length(g1) and j � length(g1).

Case 1: j = 0. Then : (i < j ) and

return-seq(i; delete(j; g))
= return-seq(i; g1)
= return-seq(i + 1; g)

Case 2: j > 0.

If i = 0, then i < j and return-seq(i; delete(j; g)) = k = return-seq(i; g).

If i > 0, then

return-seq(i; delete(j; g))
= return-seq(i � 1; delete(j � 1; g1))
= if (i � 1 < j � 1; return-seq(i � 1; g1); return-seq(i; g1)) (by induction)
= if (i < j; return-seq(i; g); return-seq(i + 1; g))
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�

Lemma 4.7.6 1. length(g0) = length(g0j2n )

2. i < length(g0) ) return-seq(i; g0)j2n = return-seq(i; g0j2n )

3. i < length(g0) ) delete(i; g0)j2n = delete(i; g0j2n )

4. length(g0) > 0 ) last-seq(g0) = return-seq(length(g0) � 1; g0)

5. length(g0) > 0 ) delete-last(g0) = delete(length(g0) � 1; g0)

6. (i < length(g0) ^ member(j; delete(i; g0))) ) member(j; g0)

7. i < length(g0) ) length(delete(i; g0)) = length(g0) � 1

8. i < length(g0) ) member(return-seq(i; g0); g0)

9. (i < length(g0) � 1 ^ j < length(g0))
) return-seq(i; delete(j; g0))= if (i< j; return-seq(i; g0); return-seq(i + 1; g0))

Pro of. The proof of Lemma 4.7.6.9 is similar to the proof of Lemma 4.7.5.11.
The other lemmasare straightforward by induction on g0. �

Lemma 4.7.7 1. (� ++ � 0)++ � 00= � ++( � 0++ � 00)

2. length(� ++ � 0) = length(� ) + length(� 0)

3. append(d; � ++ � 0) = � ++ append(d; � 0)

4. length(q[i::j i ) = j :� i

5. i � k � j ) q[i::j i = q[i::k i ++ q[k::j i

6. i � j ) append(d;q[i::j i ) = inb(d; j; q)[i::S (j )i

7. test(k; q) ) inb(retrieve(k; q); k; q)[i::j i = q[i::j i

8. : (i � k < j ) ) remove(k; q)[i::j i = q[i::j i

9. ` � i ) release(k; `; q)[i::j i = q[i::j i

Pro of. The proofsof thesenine facts are straightforward and left to the reader.
We restrict to a listing of the induction bases.

1. By induction on the length of � .

2. By induction on the length of � .

3. By induction on the length of � .

4. By induction on j :� i .

5. By induction on k :� i .
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6. By induction on j :� i .

7. By induction on j :� i .

8. By induction on j :� i , together with Lemmas4.7.2.1and 4.7.2.2.

9. By induction on j :� i , together with Lemmas4.7.2.3and 4.7.2.4.

�

4.7.2 In varian ts

Invariants of a system are properties of data that are satis�ed throughout the
reachable state space of the system. Lemma 4.7.8 collects 27 invariants of
N nonmo d that are needed in the correctnessproof. Occurrencesof variables
i; j :Nat and d;e:� in an invariant are always implicitly universally quanti�ed
at the outside of the invariant.

Lemma 4.7.8 The invariants hold for N nonmo d (`; m; q; `0; q0; g; p;g0; p0).

1. p � length(g)

2. p0 � length(g0)

3. member(i; g0) ) i � next-empty(`0; q0)

4. ` � next-empty(`0; q0)

5. i < j < length(g0) ) return-seq(i; g0) � return-seq(j; g0)

6. member(i; g0) ) ` � i

7. test(i; q) ) i < m

8. member(d; i; g) ) i < m

9. test(i; q0) ) i < m

10. test(i; q0) ) `0 � i < `0+ n

11. `0 � m

12. next-empty(`0; q0) � m

13. next-empty(`0; q0) � `0+ n

14. ` � m

15. test(i; q) ) ` � i

16. ` � i < m ) test(i; q)

17. ` � `0+ n
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18. m � ` + n

19. i � j < length(g) ) return-seq(i; g) + n > return-seq(j; g)

20. (member(d; i; g) ^ test(j; q0)) ) i + n > j

21. member(d; i; g) ) i + n � `0

22. member(d; i; g) ) i + n � next-empty(`0; q0)

23. (member(d; i; g) ^ test(i; q)) ) retrieve(i; q) = d

24. (test(i; q) ^ test(i; q0)) ) retrieve(i; q) = retrieve(i; q0)

25. (member(d; i; g) ^ member(e;i; g)) ) d = e

26. (member(d; i; g) ^ test(i; q0)) ) retrieve(i; q0) = d

27. (` � i � m ^ j � next-empty(i; q0)) ) q[i::j i = q0[i::j i

Pro of. It is easy to verify that all invariants hold in the initial state (where
the bu�ers and mediums are empty, the parameters in the natural numbers
equal zero). In case1-27 we show that the invariant is preserved by each of the
summandsA-K in the speci�cation of N nonmo d . For each of theseinvariants we
only treat the summandsin which one or more valuesof parameters occurring
in the invariant are updated. In each of theseproof obligations, we list the new
valuesof theseparameterstogether with thoseconjuncts in the condition of the
summand under consideration that play a role in the proof.

1. p � length(g).
SummandsB ; C; D ; E and F needto be checked. F is the sameas E.

B : g := inm(retrieve(k; q); k; g), p := p + 1;
length(inm(retrieve(k; q); k; g)) = length(g) + 1 � p + 1.

C: g := delete(k; g), p := p � 1; under condition k < p;
Sincek < p � length(g), by Lemma 4.7.5.9,
length(delete(k; g)) = length(g) � 1 � p � 1.

D : p := p � 1; under condition p > 0;
p � 1 < p � length(g).

E : g := delete-last(g); under condition p < length(g);
Since0 < length(g), by Lemmas4.7.5.7and 4.7.5.9,
length(delete-last(g)) = length(g) � 1 � p.

2. p0 � length(g0).
SummandsH; I ; J and K needto be checked.

H : g0 := inm(next-empty(`0; q0); g0), p0 := p0+ 1;
length(inm(next-empty(`0; q0); g0)) = length(g0) + 1 � p0+ 1.
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I : g0 := delete(k; g0), p0 := p0 � 1; under condition k < p0;
Sincek < p0 � length(g0), by Lemma 4.7.6.7,
length(delete(k; g0)) = length(g0) � 1 � p0 � 1.

J : p0 := p0 � 1; under condition p0 > 0;
p0 � 1 < p0 � length(g0).

K : g0 := delete-last(g0); under condition p0 < length(g0);
Since0 < length(g0), by Lemmas4.7.6.5and 4.7.6.7,
length(delete-last(g0)) = length(g0) � 1 � p.

3. member(i; g0) ) i � next-empty(`0; q0).
SummandsE, G, H , I and K needto be checked.

E : q0 := inb(last-dat(g); last-seq(g); q0);
Let member(i; g0). Then

i
� next-empty(`0; q0)
� next-empty(`0; inb(last-dat(g); last-seq(g); q0)) (Lem. 4.7.4.4)

G: `0 := S(`0), q0 := remove(`0; q0); under condition test(`0; q0);
Let member(i; g0). Then,

i
� next-empty(`0; q0)
= next-empty(S(`0); q0)
= next-empty(S(`0); remove(`0; q0)) (Lem. 4.7.4.7)

H : g0 := inm(next-empty(`0; q0); g0);
Let member(i; inm(next-empty(`0; q0); g0)).
Case 1: i = next-empty(`0; q0).
next-empty(`0; q0) � next-empty(`0; q0).

Case 2: i 6= next-empty(`0; q0).
member(i; inm(next-empty(`0; q0); g0)) = member(i; g0) )
i � next-empty(`0; q0).

I : g0 := delete(k; g0); under condition k < p0;
Let member(i; delete(k; g0)). By Invariant 4.7.8.2,k < p0 � length(g0). By
Lemma 4.7.6.6,member(i; delete(k; g0)) ) member(i; g0) )
i � next-empty(`0; q0).

K : g0 := delete-last(g0); under condition p0 < length(g0);
Let member(i; delete-last(g0)). By Lemmas4.7.6.5and 4.7.6.6,
member(i; delete-last(g0)) ) member(i; g0) ) i � next-empty(`0; q0).

4. ` � next-empty(`0; q0).
SummandsE, G and K needto be checked.

E : q0 := inb(last-dat(g); last-seq(g); q0);
` � next-empty(`0; q0) � next-empty(`0; inb(last-dat(g); last-seq(g); q0))
(Lem. 4.7.4.4).
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G: `0 := S(`0), q0 := remove(`0; q0); under condition test(`0; q0);

`
� next-empty(`0; q0)
= next-empty(S(`0); q0)
= next-empty(S(`0); remove(`0; q0)) (Lem. 4.7.4.7)

K : ` := last-seq(g0); under condition p0 < length(g0).
0 < length(g0), so by Lemmas4.7.6.4and 4.7.6.8,member(last-seq(g0); g).
Hence,by Invariant 4.7.8.3, last-seq(g0) � next-empty(`0; q0).

5. i < j < length(g0) ) return-seq(i; g0) � return-seq(j; g0).
SummandsH; I and K needto be checked.

H : g0 := inm(next-empty(`0; q0); g0);
Let i < j < length(g0) + 1.
Case 1: i > 0. Then i � 1 < j � 1 < length(g0). So

return-seq(i; inm(next-empty(`0; q0); g0))
= return-seq(i � 1; g0)
� return-seq(j � 1; g0)
= return-seq(j; inm(next-empty(`0; q0); g0))

Case 2: i = 0.
Since j > 0, return-seq(j; inm(next-empty(`0; q0); g0)) = return-seq(j �
1; g0). Since j � 1< length(g0), by Lemma 4.7.6.8, member(return-seq(j �
1; g0); g0). By Invariant 4.7.8.3,

return-seq(j � 1; g0)
� next-empty(`0; q0)
= return-seq(i; inm(next-empty(`0; q0); g0)) (becausei = 0)

I : g0 := delete(k; g0); under condition k < p0;
Let i < j < length(delete(k; g0)). By Invariant 4.7.8.2,k < p0 � length(g0).
So by Lemma 4.7.6.7, length(delete(k; g0)) = length(g0) � 1. Since i <
i + 1 � j < j + 1 < length(g0), return-seq(i; g0) � return-seq(i + 1; g0) �
return-seq(j; g0) � return-seq(j + 1; g0). So by Lemma 4.7.6.9,

return-seq(i; delete(k; g0))
� return-seq(i + 1; g0)
� return-seq(j; g0)
� return-seq(j; delete(k; g0))

K : g0 := delete-last(g0); under condition p0 < length(g0);
Let i < j < length(delete-last(g0)). Since0 < length(g0), Lemmas 4.7.6.5
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and 4.7.6.7imply length(delete-last(g0)) = length(g0) � 1. Hence,by Lem-
mas 4.7.6.5and 4.7.6.9,

return-seq(i; delete-last(g0))
= return-seq(i; g0)
� return-seq(j; g0)
= return-seq(i; delete-last(g0))

6. member(i; g0) ) ` � i .
SummandsH , I and K needto be checked.

H : g0 := inm(next-empty(`0; q0); g0);
Let member(i; inm(next-empty(`0; q0); g0)).
Case 1: i = next-empty(`0; q0).
By Invariant 4.7.8.4,` � next-empty(`0; q0).

Case 2: i 6= next-empty(`0; q0).
member(i; inm(next-empty(`0; q0); g0)) ) member(i; g0) ) ` � i .

I : g0 := delete(k; g0); under condition k < p0;
By Invariant 4.7.8.2,k < p0 � length(g0). So by Lemma 4.7.6.6,
member(i; delete(k; g0)) ) member(i; g0) ) ` � i .

K : g0 := delete-last(g0); under condition p0 < length(g0);
Since0 < length(g0), by Lemmas4.7.6.5and 4.7.6.6,
member(i; delete-last(g0)) ) member(i; g0) ) ` � i .

7. test(i; q) ) i < m.
SummandsA and K needto be checked.

A: m := S(m), q := inb(d;m; q);
test(i; inb(d;m; q)) , (i = m _ test(i; q)) ) (i = m _ i < m) , i < S(m).

K : q := release(`; last-seq(g0); q);
test(i; release(`; last-seq(g0); q)) ) test(i; q) (Lem. 4.7.2.3)) i < m.

8. member(d; i; g) ) i < m.
SummandsA; B ; C; E and F needto be checked. F is the sameas E.

A: m := S(m);
member(d; i; g) ) i < m < S(m).

B : g := inm(retrieve(k; q); k; g); under condition test(k; q);
Let member(d; i; inm(retrieve(k; q); k; g)).
Case 1: i = k. Sincetest(k; q), by Invariant 4.7.8.7,k < m.
Case 2: i 6= k.
member(d; i; inm(retrieve(k; q); k; g)) = member(d; i; g) ) i < m.

C: g := delete(k; g); under condition k < p;
By Invariant 4.7.8.1,k < p � length(g). So by Lemma 4.7.5.8,
member(d; i; delete(k; g)) ) member(d; i; g) ) i < m.

E : g := delete-last(g); under condition p < length(g);
Since0 < length(g), by Lemmas4.7.5.7and 4.7.5.8,
member(d; i; delete-last(g)) ) member(d; i; g) ) i < m.
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9. test(i; q0) ) i < m.
SummandsA, E and G needto be checked.

A: m := S(m);
test(i; q0) ) i < m < S(m).

E : q0 := inb(last-dat(g); last-seq(g); q0); under condition p < length(g);
Since0 < length(g), by Lemmas4.7.5.5,4.7.5.6and 4.7.5.10,
member(last-dat(g); last-seq(g); g). By Invariant 4.7.8.8, last-seq(g)<m .
Hence,

test(i; inb(last-dat(g); last-seq(g); q0))
, (i = last-seq(g) _ test(i; q0))
) (i = last-seq(g) _ i < m)
, i < m

G: q0 := remove(`0; q0);
test(i; remove(`0; q0)) ) test(i; q0) (Lem. 4.7.2.1)) i < m.

10. test(i; q0) ) `0 � i < `0+ n.
SummandsE and G needto be checked.

E : q0 := inb(last-dat(g); last-seq(g); q0); under condition `0 � last-seq(g) <
`0+ n;

test(i; inb(last-dat(g); last-seq(g); q0))
, (i = last-seq(g) _ test(i; q0))
) (i = last-seq(g) _ `0 � i < `0+ n)
, `0 � i < `0+ n

G: `0 := S(`0), q0 := remove(`0; q0);

test(i; remove(`0; q0))
, (test(i; q0) ^ i 6= `0) (Lem. 4.7.2.1)
) (`0 � i < `0+ n ^ i 6= `0)
) S(`0) � i < S(`0) + n

11. `0 � m.
SummandsA and G needto be checked.

A: m := S(m);
`0 � m < S(m).

G: `0 := S(`0); under condition test(`0; q0);
By Invariant 4.7.8.9, test(`0; q0) ) `0 < m. Hence,S(`0) � m.

12. next-empty(`0; q0) � m.
By Invariant 4.7.8.11,`0 � m. By Invariant 4.7.8.9, : test(m; q0). Hence,
by Lemma 4.7.4.2,next-empty(`0; q0) � m.

13. next-empty(`0; q0) � `0+ n.
By Invariant 4.7.8.10,: test(`0+ n; q0). Hence,by Lemma 4.7.4.2,
next-empty(`0; q0) � `0+ n.
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14. ` � m.
By Invariants 4.7.8.4and 4.7.8.12.

15. test(i; q) ) ` � i .
SummandsA and K needto be checked.

A: q := inb(d;m; q);
By Invariant 4.7.8.14,` � m. Hence,

test(i; inb(d;m; q))
, (i = m _ test(i; q))
) (i = m _ ` � i )
, ` � i

K : ` := last-seq(g0), q := release(`; last-seq(g0); q);

test(i; release(`; last-seq(g0); q))
, (test(i; q) ^ : (` � i < last-seq(g0))) (Lem. 4.7.2.3)
) (` � i ^ : (` � i < last-seq(g0)))
) last-seq(g0) � i

16. ` � i < m ) test(i; q).
SummandsA and K needto be checked.

A: m := S(m), q := inb(d;m; q);

` � i < S(m)
) (i = m _ ` � i < m)
) (i = m _ test(i; q))
, test(i; inb(d;m; q))

K : ` := last-seq(g0), q := release(`; last-seq(g0); q); under condition
p0 < length(g0);
Since0 < length(g0), by Lemmas4.7.6.4and 4.7.6.8,
member(last-seq(g0); g0). Then by Invariant 4.7.8.6,` � last-seq(g0). So,

last-seq(g0) � i < m
, (` � i < m ^ : (` � i < last-seq(g0)))
) (test(i; q) ^ : (` � i < last-seq(g0)))
, test(i; release(`; last-seq(g0); q)) (Lem. 4.7.2.3)

17. ` � `0+ n.
By Invariants 4.7.8.4and 4.7.8.13.

18. m � ` + n.
SummandsA and K needto be checked.

A: m := S(m); under condition m < ` + n;
Then S(m) � ` + n.
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K : ` := last-seq(g0); under condition p0 < length(g0);
Since0 < length(g0), by Lemmas4.7.6.4and 4.7.6.8,
member(last-seq(g0); g0). Then by Invariant 4.7.8.6,` � last-seq(g0).
Hence,m � ` + n � last-seq(g0) + n.

19. i � j < length(g) ) return-seq(i; g) + n > return-seq(j; g).
SummandsB ; C; E and F needto be checked. F is the sameas E.

B : g := inm(retrieve(k; q); k; g); under condition test(k; q);
Case 1: i > 0. Let i � j < length(g) + 1.

return-seq(j; inm(retrieve(k; q); k; g))
= return-seq(j � 1; g)
< return-seq(i � 1; g) + n
= return-seq(i; inm(retrieve(k; q); k; g)) + n

Case 2: i = 0.
Case 2.1: j = 0. This caseis trivial.

Case 2.2: j 6= 0.
Lemma 4.7.5.10yields member(return-dat(j � 1; g); return-seq(j � 1; g); g).
By Invariant 4.7.8.8, return-seq(j � 1; g) < m. By Invariant 4.7.8.15,
test(k; q) ) ` � k.

return-seq(j; inm(retrieve(k; q); k; g))
= return-seq(j � 1; g)
< m
� ` + n (Lem. 4.7.8.18)
� k + n
= return-seq(i; inm(retrieve(k; q); k; g)) + n (becausei = 0)

C: g := delete(k; g); under condition k < p;
Let i � j < length(delete(k; g)). By Invariant 4.7.8.1, k < p � length(g).
By Lemma 4.7.5.9, length(delete(k; g)) = length(g) � 1.

Case 1: k � i .
Since i + 1 � j + 1 < length(g), by Lemma 4.7.5.11,

return-seq(i; delete(k; g)) + n
= return-seq(i + 1; g) + n
> return-seq(j + 1; g)
= return-seq(j; delete(k; g))

Case 2: i < k � j .
Since i < j + 1 < length(g), by Lemma 4.7.5.11,

return-seq(i; delete(k; g)) + n
= return-seq(i; g) + n
> return-seq(j + 1; g)
= return-seq(j; delete(k; g))
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Case 3: j < k.
Since i � j < length(g), by Lemma 4.7.5.11,

return-seq(i; delete(k; g)) + n
= return-seq(i; g) + n
> return-seq(j; g)
= return-seq(j; delete(k; g))

E : g := delete-last(g); under condition p < length(g);
Let i � j < length(delete-last(g)). By Lemmas 4.7.5.6 and 4.7.5.9, 0 <
length(g) implies length(delete-last(g)) = length(g) � 1. Since i � j <
length(g), by Lemma 4.7.5.11,

return-seq(i; delete-last(g)) + n
= return-seq(i; g) + n
> return-seq(j; g)
= return-seq(j; delete-last(g))

20. (member(d; i; g) ^ test(j; q0)) ) i + n > j .
SummandsB ; C; E ; F and G needto be checked.

B : g := inm(retrieve(k; q); k; g); under condition test(k; q);
Let member(d; i; inm(retrieve(k; q); k; g)) and test(j; q0).
Case 1: i = k.
By Invariant 4.7.8.15, test(k; q) yields ` � k, and by Invariant 4.7.8.9,
test(j; q0) yields j < m. Hence,k + n � ` + n � m (Inv. 4.7.8.18)> j .

Case 2: i 6= k.
member(d; i; inm(retrieve(k; q); k; g)) = member(d; i; g). Hence,i + n > j .

C: g := delete(k; g); under condition k < p;
Let member(d; i; delete(k; g)) and test(j; q0). By Invariant 4.7.8.1, k <
p � length(g). In view of Lemma 4.7.5.8, member(d; i; delete(k; g)) )
member(d; i; g). Hence,i + n > j .

E : q0 := inb(last-dat(g); last-seq(g); q0), g := delete-last(g); under condi-
tion p < length(g) and `0 � last-seq(g) < `0+ n.
Let member(d; i; delete-last(g)) and test(j; inb(last-dat(g); last-seq(g); q0)).
Since0 < length(g), by Lemmas4.7.5.7and 4.7.5.8,
member(d; i; delete-last(g)) ) member(d; i; g).

Case 1: j = last-seq(g).
Case 1.1: i = last-seq(g). This caseis trivial.

Case 1.2: i 6= last-seq(g).
Since0 < length(g), by Lemma 4.7.5.6,last-seq(g)= return-seq(length(g) �
1; g). Sincemember(d; i; g), by Lemma 4.7.5.12,there exists a k such that
k < length(g) and return-seq(k; g) = i . By Invariant 4.7.8.19,
i + n > return-seq(length(g) � 1; g) = last-seq(g).
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Case 2: j 6= last-seq(g).
test(j; inb(last-dat(g); last-seq(g); q0)) = test(j; q0). Hence,i + n > j .

F : g := delete-last(g); under condition p < length(g);
Let member(d; i; delete-last(g)) and test(j; q0). Since 0 < length(g), by
Lemmas4.7.5.7and 4.7.5.8,member(d; i; delete-last(g)) ) member(d; i; g).
Hence,i + n > j .

G: q0 := remove(`0; q0);
Let member(d; i; g) and test(j; remove(`0; q0)). By Lemma 4.7.2.1,
test(j; remove(`0; q0)) ) test(j; q0). Hence,i + n > j .

21. member(d; i; g) ) i + n � `0.
SummandsB ; C; E ; F and G needto be checked. F is the sameas E.

B : g := inm(retrieve(k; q); k; g); under condition test(k; q);
Let member(d; i; inm(retrieve(k; q); k; g)).

Case 1: i = k.
By Invariant 4.7.8.15, test(k; q) yields ` � k. Hence, k + n � ` + n �
m (Inv. 4.7.8.18)� `0 (Inv. 4.7.8.11).

Case 2: i 6= k.
member(d; i; inm(retrieve(k; q); k; g)) = member(d; i; g) ) i + n � `0.

C: g := delete(k; g); under condition k < p;
Let member(d; i; delete(k; g)). By Invariant 4.7.8.1,k < p � length(g). By
Lemma 4.7.5.8,we have
member(d; i; delete(k; g)) ) member(d; i; g) ) i + n � `0.

E : g := delete-last(g); under condition p < length(g);
Let member(d; i; delete-last(g)). Since 0 < length(g), by Lemmas 4.7.5.7
and 4.7.5.8,we have
member(d; i; delete-last(g)) ) member(d; i; g) ) i + n � `0.

G: `0 = S(`0); under condition test(`0; q0);
Let member(d; i; g). By Invariant 4.7.8.20, test(`0; q0) implies i + n > `0.
Hence,i + n � S(`0).

22. member(d; i; g) ) i + n � next-empty(`0; q0).
We distinguish two cases.
Case 1: q0 = []. Then next-empty(`0; q0) = `0.
By Invariant 4.7.8.21,member(d; i; g) ) i + n � `0.

Case 2: q0 6= [].
By Lemma 4.7.2.5, test(max(q0); q0). So Invariant 4.7.8.20yields
member(d; i; g) ) i + n > max(q0). By Lemmas 4.7.4.1 and 4.7.4.2,
next-empty(`0; q0) � max(q0) + 1. Hence, member(d; i; g) ) i + n �
next-empty(`0; q0).

23. (member(d; i; g) ^ test(i; q)) ) retrieve(i; q) = d.
SummandsA; B ; C; E ; F and K needto be checked. F is the sameas E.



4.7 Properties of Data 89

A: q := inb(e;m; q);
By Invariant 4.7.8.8,member(d; i; g) ) i < m.
So retrieve(i; inb(e;m; q)) = retrieve(i; q) = d.

B : g := inm(retrieve(k; q); k; g);
Let member(d; i; inm(retrieve(k; q); k; g)) and test(i; q).
Case 1: d = retrieve(k; q) and i = k. This caseis trivial.

Case 2: Otherwise. member(d; i; inm(retrieve(k; q); k; g))= member(d; i; g).
Sincetest(i; q), retrieve(i; q) = d.

C: g := delete(k; g); under condition k < p;
Let member(d; i; delete(k; g)) and test(i; q). By Invariant 4.7.8.1, k <
p � length(g). Then by Lemma 4.7.5.8, member(d; i; delete(k; g)) )
member(d; i; g). Sincetest(i; q), retrieve(i; q) = d.

E : g := delete-last(g); under condition p < length(g);
Let member(d; i; delete-last(g)) and test(i; q). Since 0 < length(g), by
Lemmas4.7.5.7and 4.7.5.8,member(d; i; delete-last(g)) ) member(d; i; g).
Sincetest(i; q), retrieve(i; q) = d.

K : q := release(`; last-seq(g0); q);
Let member(d; i; delete-last(g)) and test(i; release(`; last-seq(g0); q)). By
Lemma 4.7.2.3, test(i; q) and : (` � i < last-seq(g0)). By Lemma 4.7.2.4,
retrieve(i; release(`; last-seq(g0); q)) = retrieve(i; q) = d.

24. (test(i; q) ^ test(i; q0)) ) retrieve(i; q) = retrieve(i; q0).
SummandsA, E , G and K must be checked.

A: q := inb(d;m; q);
By Invariant 4.7.8.9, test(i; q0) implies i 6= m. So

test(i; inb(d;m; q)) ^ test(i; q0)
, test(i; q) ^ test(i; q0)
) retrieve(i; inb(d;m; q)) = retrieve(i; q) = retrieve(i; q0)

E : q0 := inb(last-dat(g); last-seq(g); q0); under condition p < length(g);
Let test(i; q) and test(i; inb(last-dat(g); last-seq(g); q0)).

Case 1: i 6= last-seq(g).

test(i; q) ^ test(i; inb(last-dat(g); last-seq(g); q0))
) test(i; q) ^ test(i; q0)
) retrieve(i; q) = retrieve(i; q0)

= retrieve(i; inb(last-dat(g); last-seq(g); q0))

Case 2: i = last-seq(g).
Since0 < length(g), by Lemmas4.7.5.5,4.7.5.6and 4.7.5.10,
member(last-dat(g); last-seq(g); g). Sincetest(last-seq(g); q),

retrieve(last-seq(g); q)
= last-dat(g) (Inv. 4.7.8.23)
= retrieve(last-dat(g); inb(last-dat(g); last-seq(g); q0))
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G: q0 := remove(`0; q0);

test(i; q) ^ test(i; remove(`0; q0))
, test(i; q) ^ test(i; q0) ^ i 6= `0 (Lem. 4.7.2.1)
) retrieve(i; q) = retrieve(i; q0)

= retrieve(i; remove(`0; q0)) (Lem. 4.7.2.2)

K : q := release(`; last-seq(g0); q);

test(i; release(`; last-seq(g0); q)) ^ test(i; q0)
, test(i; q) ^ test(i; q0) ^ : (` � i < last-seq(g0)) (Lem. 4.7.2.3)
) retrieve(i; q0) = retrieve(i; q)

= retrieve(i; release(`; h0; q)) (Lem. 4.7.2.4)

25. (member(d; i; g) ^ member(e;i; g)) ) d = e.
SummandsB ; C; E and F needto be checked. F is the sameas E.

B : g := inm(retrieve(k; q); k; g); under condition test(k; q);
Let member(d; i; inm(retrieve(k; q); k; g)) and
member(e;i; inm(retrieve(k; q); k; g)).

Case 1: i = k.
By Invariant 4.7.8.23,test(k; q) implies d = retrieve(k; q) = e.

Case 2: i 6= k.
member(d; i; inm(retrieve(k; q); k; g)) ) member(d; i; g) and
member(e;i; inm(retrieve(k; q); k; g)) ) member(e;i; g). Hence,d = e.

C: g := delete(k; g); under condition k < p;
By Invariant 4.7.8.1,k < p � length(g). By Lemma 4.7.5.8,

member(d; i; delete(k; g)) ^ member(e;i; delete(k; g))
) member(d; i; g) ^ member(e;i; g)
) d = e

E: g := delete-last(g); under condition p < length(g);
Since0 < length(g), by Lemmas4.7.5.7and 4.7.5.8,

member(d; i; delete-last(g)) ^ member(e;i; delete-last(g))
) member(d; i; g) ^ member(e;i; g)
) d = e

26. (member(d; i; g) ^ test(i; q0)) ) retrieve(i; q0) = d.
SummandsB ; C; E ; F and G needto be checked.

B : g := inm(retrieve(k; q); k; g); under condition test(k; q);
Let member(d; i; inm(retrieve(k; q); k; g)) and test(i; q0).

Case 1: d = retrieve(k; q) and i = k.
Since test(k; q) and test(k; q0), by Invariant 4.7.8.24,retrieve(k; q0) = d =
retrieve(k; q).
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Case 2: Otherwise.
member(d; i; inm(retrieve(k; q); k; g)) = member(d; i; g). Since test(i; q0),
retrieve(i; q0) = d.

C: g := delete(k; g); under condition k < p;
Let member(d; i; delete(k; g)) and test(i; q0). By Invariant 4.7.8.1,k < p �
length(g). By Lemma 4.7.5.8,member(d; i; delete(k; g)) ) member(d; i; g).
Sincetest(i; q0), retrieve(i; q0) = d.

E : q0 := inb(last-dat(g); last-seq(g); q0), g := delete-last(g); under condi-
tion p < length(g);
Let member(d; i; delete-last(g)) and test(i; inb(last-dat(g); last-seq(g); q0)).
Since0 < length(g), by Lemmas4.7.5.7and 4.7.5.8,
member(d; i; delete-last(g)) ) member(d; i; g).

Case 1: i = last-seq(g).
Since 0 < length(g), by Lemmas 4.7.5.5, 4.7.5.6 and 4.7.5.10, we have
member(last-dat(g); last-seq(g); g).
Sincemember(d; last-seq(g); delete-last(g)), by Invariant 4.7.8.25,
d = last-dat(g) = retrieve(last-seq(g); inb(last-dat(g); last-seq(g); q0)).

Case 2: i 6= last-seq(g).
Then test(i; inb(last-dat(g); last-seq(g); q0)) ) test(i; q0).
By member(d; i; g), retrieve(i; q0) = d.

F : g := delete-last(g); under condition p < length(g);
Let member(d; i; delete-last(g)) and test(i; q0). Since 0 < length(g), by
Lemmas4.7.5.7and 4.7.5.8,member(d; i; delete-last(g)) ) member(d; i; g).
Sincetest(i; q0), retrieve(i; q0) = d

G: q0 := remove(`0; q0);
By Lemma 4.7.2.1, test(i; remove(`0; q0)) implies test(i; q0) and i 6= `0.
Hence,member(d; i; g) ) retrieve(i; remove(`0; q0)) = retrieve(i; q0) (Lem.
4.7.2.2)= d.

27. (` � i � m ^ j � next-empty(i; q0)) ) q[i::j i = q0[i::j i .
Let ` � i � m and j � next-empty(i; q0)). We apply induction on j :� i .

If i � j , then q[i::j i = hi = q0[i::j i .

Let i < j .
Case 1: i = m.
By Invariant 4.7.8.9, j � next-empty(i; q0) = m. Hence, q[i::j i = hi =
q0[i::j i .

Case 2: ` � i < m.
Then by Invariant 4.7.8.16, test(i; q). Furthermore, by Lemma 4.7.4.2,
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i < j � next-empty(i; q0) implies test(i; q0). Hence,

q[i::j i
= inb(retrieve(i; q); q[S(i )::j i )
= inb(retrieve(i; q); q0[S(i )::j i ) (by induction)
= inb(retrieve(i; q0); q0[S(i )::j i ) (Inv. 4.7.8.24)
= q0[i::j i :

�

4.8 Correctness of N mod

In Section4.8.1,we prove Theorem 4.6.3,which states that N mod and N nonmo d

are strongly bisimilar. Next, in Section 4.8.2 we prove that N nonmo d behaves
like a FIFO queueof size2n. Theorem 4.5.1 is proved in Section 4.8.3.

4.8.1 Equalit y of N mod and N nonmo d

In this section we present a proof of Theorem 4.6.3. It su�ces to prove that for
all `; m; `0:Nat , q; q0:Buf , g:MedK and g0:MedL,

N mod (` j2n ; mj2n ; qj2n ; `0j2n ; q0j2n ; gj2n ; p;g0j2n ; p0)
$ N nonmo d (`; m; q; `0; q0; g; p;g0; p0)

Pro of. We show that N mod (` j2n ; mj2n ; qj2n ; `0j2n ; q0j2n ; gj2n ; p;g0j2n ; p0) is a so-
lution for the de�ning equation of N nonmo d (`; m; q; `0; q0; g; p;g0; p0). Hence,we
must derive the following equation.2

N mod (` j2n ; mj2n ; qj2n ; `0j2n ; q0j2n ; gj2n ; p;g0j2n ; p0)

=
P

d:� rA (d)�N mod (m:= S(m)j2n ; q:= inb(d;m; q)j2n )
/ m < ` + n . � (A)

+
P

k :Nat c�N mod (g:= inm(retrieve(k; q); k; g)j2n ; p:= p + 1)
/ test(k; q) . � (B )

+
P

k :Nat j �N mod (g:= delete(k; g)j2n ; p:= p � 1) / k < p . � (C)

+ j �N mod (p:= p � 1) / p > 0 . � (D )

+ c�N mod (q0:= inb(last-dat(g); last-seq(g); q0)j2n ; g:= delete-last(g)j2n )
/ p < length(g) ^ (`0 � last-seq(g) < `0+ n) . � (E )

+ c�N mod (g:= delete-last(g)j2n )
/ p < length(g) ^ : (`0 � last-seq(g) < `0+ n) . � (F )

2By abuse of notation, we use the parameters ` , m, q, ` 0, q0, g, g0 in an ambiguous way. For
example, m refers both to the second parameter of N mod and to the value of this parameter.
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+ sD (retrieve(`0; q0)) �N mod (`0:= S(`0)j2n ; q0:= remove(`0; q0)j2n )
/ test(`0; q0) . � (G)

+ c�N mod (g0:= inm(next-empty(`0; q0); g0)j2n ; p0:= p0+ 1) (H )

+
P

k :Nat j �N mod (g0:= delete(k; g0)j2n ; p0:= p0 � 1) / k < p0 . � (I )

+ j �N mod (p0:= p0 � 1) / p0 > 0 . � (J )

+ c�N mod (`:= last-seq(g0)j2n ; q:= release(`; last-seq(g0); q)j2n ;
g0:= delete-last(g0)j2n ) / p0 < length(g0) . � (K )

In order to prove this, we instantiate the parametersin the de�ning equation
of N mod with `j2n ; mj2n ; qj2n ; `0j2n ; gj2n ; p;g0j2n ; p0.

N mod (` j2n ; mj2n ; qj2n ; `0j2n ; q0j2n ; gj2n ; p;g0j2n ; p0)

=
P

d:� rA (d)�N mod (m:= S(mj2n )j2n ; q:= inb(d;mj2n ; qj2n ))
/ in-window(`j2n ; mj2n ; (` j2n + n)j2n ) . � (A)

+
P

k :Nat c�N mod (g:= inm(retrieve(k; qj2n ); k; gj2n ); p:= p + 1)
/ test(k; qj2n ) . � (B )

+
P

k :Nat j �N mod (g:= delete(k; gj2n ); p:= p � 1) / k < p . � (C)

+ j �N mod (p:= p � 1) / p > 0 . � (D )

+ c�N mod (q0:= inb(last-dat(gj2n ); last-seq(gj2n ); q0j2n );
g:= delete-last(gj2n )) / p < length(gj2n )^
in-window(`0j2n ; last-seq(gj2n ); (`0j2n + n)j2n ) . � (E )

+ c�N mod (g:= delete-last(gj2n )) / p < length(gj2n )^
: in-window(`0j2n ; last-seq(gj2n ); (`0j2n + n)j2n ) . � (F )

+ sD (retrieve(`0j2n ; q0j2n )) �N mod (`0:= S(`0j2n )j2n ; q0:= remove(`0j2n ; q0j2n ))
/ test(`0j2n ; q0j2n ) . � (G)

+ c�N mod (g0:= inm(next-emptyj2n (`0j2n ; q0j2n ); g0j2n ); p0:= p0+ 1) (H )

+
P

k :Nat j �N mod (g0:= delete(k; g0j2n ); p0:= p0 � 1) / k < p0 . � (I )

+ j �N mod (p0:= p0 � 1) / p0 > 0 . � (J )

+ c�N mod (`:= last-seq(g0j2n )j2n ; q:= releasej2n (` j2n ; last-seq(g0j2n )j2n ; qj2n );
g0:= delete-last(g0j2n )) / p0 < length(g0j2n ) . � (K )

In order to equate the eleven summands in both speci�cations, we obtain
the following proof obligations. Casesfor summandsthat are syntactically the
sameare omitted.
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A � m < ` + n , in-window(`j2n ; mj2n ; (` j2n + n)j2n ).

m < ` + n
, ` � m < ` + n (Inv. 4.7.8.14)
) in-window(`j2n ; mj2n ; (` + n)j2n ) (Lem. 4.7.3.7)

Reversely,

in-window(`j2n ; mj2n ; (` + n)j2n )
) m + n < ` _ ` � m < ` + n _ m � ` + 2n (Lem. 4.7.3.8)
, m < ` + n (Inv. 4.7.8.14,4.7.8.18)

Moreover, by Lemma 4.7.1.1,(` + n)j2n = (`j2n + n)j2n .

� S(m)j2n = S(mj2n )j2n .
This follows from Lemma 4.7.1.1.

� inb(d;m; q)j2n = inb(d;mj2n ; qj2n ).
This follows from the de�nition of bu�ers modulo 2n.

B Below we equate the entire summand B of the two speci�cations. The
argument p := p+ 1 is omitted, becauseit is irrelevant for this derivation.

P
k :Nat c�N mod (g:= inm(retrieve(k; q); k; g)j2n )

/ test(k; q) . �

=
P

k :Nat c�N mod (g:= inm(retrieve(k; q); kj2n ; gj2n ))
/ test(k; q) ^ ` � k < ` + n . � (Inv. 4.7.8.7,4.7.8.15,4.7.8.18)

=
P

k :Nat c�N mod (g:= inm(retrieve(kj2n ; qj2n ); kj2n ; gj2n ))
/ test(kj2n ; qj2n ) ^ ` � k < ` + n . � (Lem. 4.7.3.2,4.7.3.3)

=
P

k 0:Nat

P
k :Nat c�N mod (g:= inm(retrieve(k0; qj2n ); k0; gj2n ))

/ test(k0; qj2n ) ^ ` � k < ` + n ^ k0 = kj2n . � (sum elim.)

=
P

k 0:Nat

P
k :Nat c�N mod (g:= inm(retrieve(k0; qj2n ); k0; gj2n ))

/ test(k0; qj2n ) ^ k = (` div 2n)2n + k 0̂

` j2n � k0 < `j2n + n ^ k0 = kj2n . �

+
P

k 0:Nat

P
k :Nat c�N mod (g:= inm(retrieve(k0; qj2n ); k0; gj2n ))

/ test(k0; qj2n ) ^ k = S(` div 2n)2n + k 0̂

k0+ n < `j2n ^ k0 = kj2n . � (Lem. 4.7.1.4,4.7.1.5)

=
P

k 0:Nat c�N mod (g:= inm(retrieve(k0; qj2n ); k0; gj2n ))
/ test(k0; qj2n ) ^ `j2n � k0 < `j2n + n ^ k0 = k0 . �

+
P

k 0:Nat c�N mod (g:= inm(retrieve(k0; qj2n ); k0; gj2n ))
/ test(k0; qj2n ) ^ k0+ n < `j2n ^ k0 = k0 . � (sum elim., Lem. 4.7.1.3)

=
P

k 0:Nat c�N mod (g:= inm(retrieve(k0; qj2n ); k0; gj2n ))
/ test(k0; qj2n ) . � (seebelow)
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The last equality follows from the following derivation:

test(k0; qj2n )
) test(k0j2n ; qj2n ) (Lem. 4.7.3.1)
) ` � k0j2n < ` + n (Inv. 4.7.8.7,4.7.8.15,4.7.8.18)
) in-window(`j2n ; k0j2n ; (` + n)j2n ) (Lem. 4.7.3.9)
) k0+ n < `j2n _ `j2n � k0 < `j2n + n

_k0 � ` j2n + 2n (Lem. 4.7.1.1,4.7.3.8)
, k0+ n < `j2n _ `j2n � k0 < `j2n + n (Lem. 4.7.1.2,4.7.3.1)

C k < p ) delete(k; g)j2n = delete(k; gj2n ).

By Invariant 4.7.8.1,k< p � length(g). Sothis followsfrom Lemma4.7.5.4.

E � length(g) = length(gj2n ).
This follows from Lemma 4.7.5.1.

� p < length(g) ) (`0 � last-seq(g) < `0+ n =
in-window(`0j2n ; last-seq(g)j2n ; (`0j2n + n)j2n )).
Since 0 < length(g), Lemmas 4.7.5.5, 4.7.5.6, and 4.7.5.10 yield
member(last-dat(g); last-seq(g); g). So in combination with Invariant
4.7.8.22, this implies next-empty(`0; q0) � last-seq(g) + n. Hence,
by Lemma 4.7.4.3, `0 � last-seq(g) + n. Furthermore, by Invariant
4.7.8.8, last-seq(g) < m, by Invariant 4.7.8.18, m � ` + n, and by
Invariant 4.7.8.17, ` � `0 + n. Hence, last-seq(g) < `0 + 2n. So by
Lemmas4.7.3.7and 4.7.3.8,
`0 � last-seq(g) < `0+ n = in-window(`0j2n ; last-seq(g)j2n ; (`0+ n)j2n ).
And by Lemma 4.7.1.1,(`0+ n)j2n = (`0j2n + n)j2n .

� p < length(g) ) inb(last-dat(g); last-seq(g); q0)j2n =
inb(last-dat(gj2n ); last-seq(gj2n ); q0j2n ).
This follows from the de�nitions of bu�ers modulo 2n, and Lem-
mas 4.7.5.5,4.7.5.6,4.7.5.2and 4.7.5.3.

� p < length(g) ) delete-last(g)j2n = delete-last(gj2n ).
This follows from Lemmas4.7.5.7and 4.7.5.4.

F � : (`0 � last-seq(g) < `0+ n)
, : in-window(`0j2n ; last-seq(g)j2n ; (`0j2n + n)j2n ).
This follows immediately from the seconditem of the previous case.

� p < length(g) ) delete-last(g)j2n = delete-last(gj2n ).
This follows immediately from the fourth item of the previous case.

G � test(`0; q0) = test(`0j2n ; q0j2n ).
This follows from Lemma 4.7.3.2together with Invariant 4.7.8.10.

� test(`0; q0) ) (retrieve(`0; q0) = retrieve(`0j2n ; q0j2n )).
This follows from Lemma 4.7.3.3together with Invariant 4.7.8.10.
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� S(`0)j2n = S(`0j2n )j2n .
This follows from Lemma 4.7.1.1.

� remove(`0; q0)j2n = remove(`0j2n ; q0j2n ).
This follows from Lemma 4.7.3.4together with Invariant 4.7.8.10.

H inm(next-empty(`0; q0)j2n ; g0)j2n = inm(next-emptyj2n (`0j2n ; q0j2n ); g0j2n ).

By Lemma 4.7.3.6and Invariant 4.7.8.10,
next-empty(`0; q0)j2n = next-emptyj2n (`0j2n ; q0j2n ). So the desired equality
follows the de�nition of mediums modulo 2n.

I k < p0 ) delete(k; g0)j2n = delete(k; g0j2n ).
By Invariant 4.7.8.2, k < p0 � length(g0). So the desired equality follows
from Lemma 4.7.6.3.

K � length(g0) = length(g0j2n ).
This follows from Lemma 4.7.6.1.

� p0 < length(g0) ) last-seq(g0)j2n = last-seq(g0j2n )j2n .
This follows from Lemmas4.7.6.4,4.7.6.2and 4.7.1.1.

� release(`; last-seq(g0); q)j2n = releasej2n (` j2n ; last-seq(g0)j2n ; qj2n ).
By Lemmas4.7.6.4and 4.7.6.8,the condition p0 < length(g0) implies
member(last-seq(g0); g0). So by Invariant 4.7.8.6,` � last-seq(g0). By
Invariants 4.7.8.3and 4.7.8.12,last-seq(g0) � next-empty(`0; q0) � m.
And by Invariant 4.7.8.18,m � ` + n. So ` � last-seq(g0) � ` + n.
Furthermore, by Invariants 4.7.8.7,4.7.8.15and 4.7.8.18,test(i; q) )
` � i < ` + n. Hence, the desired equation follows from Lemma
4.7.3.5.

� p0 < length(g0) ) delete-last(g0)j2n = delete-last(g0j2n ).
This follows from Lemmas4.7.6.3and 4.7.6.5.

Hence, N mod (` j2n ; mj2n ; qj2n ; `0j2n ; q0j2n ; gj2n ; p;g0j2n ; p0) is a solution for the
de�ning equation of N nonmo d (`; m; q; `0; q0; g; p;g0; p0). So by CL-RSP, they are
strongly (and thus branching) bisimilar. �

4.8.2 Correctness of N nonmo d

We prove that N nonmo d is branching bisimilar to the FIFO queueZ of size2n
(seeSection 4.5.2), using the conesand foci method [54].

Let � abbreviate Nat � Nat � Buf � Nat � Buf � MedK � Nat � MedL � Nat .
Furthermore, let � :� denote (`; m; q; `0; q0; g; p;g0; p0). The state mapping � :
� ) List , which maps states of N nonmo d to states of Z, is de�ned by:

� (� ) = q0[`0::next-empty(`0; q0)i ++ q[next-empty(`0; q0)::mi

Intuitiv ely, � collects the data elements in the sending and receiving windows,
starting at the �rst position of the receivingwindow (i.e., `0) until the �rst empty
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position in this window, and then continuing in the sending window until the
�rst empty position in that window (i.e., m). Note that � is independent of
`; g; p;g0; p0; we therefore write � (m; q; `0; q0).

The focus points are those states where either the sendingwindow is empty
(meaning that ` = m), or the receiving window is full and all data elements in
the receiving window have beenacknowledged,meaning that ` = `0 + n. That
is, the focus condition for N nonmo d (`; m; q; `0; q0; g; p;g0; p0) is

FC(`; m; q; `0; q0; g; p;g0; p0) := ` = m _ ` = `0+ n

Lemma 4.8.1 For each � :� where the invariants in Lemma 4.7.8hold, there is
a �̂ :� with FC(�̂ ) such that N nonmo d (� )

c1! � � �
cn! N nonmo d (�̂ ), wherec1; : : : ; cn 2

I .

Pro of. By Invariants 4.7.8.12and 4.7.8.13,next-empty(`0; q0) � minf m; `0+ ng.
We prove by induction on minf m; `0+ ng� next-empty(`0; q0) that for each state
� where the invariants in Lemma 4.7.8 hold, a focus point can be reached by a
sequenceof internal actions.
Basis: next-empty(`0; q0) = minf m; `0+ ng.
Let y = length(g0) and x = next-empty(`0; q0) at state � . By summand H ,
we reach a state � 0 with g0 := inm(x; g0). Hence, at state � 0 there exists a
0 � k < y such that return-seq(k; g0) = x and return-seq(i; g0) 6= x for any
k < i < y. In view of Invariant 4.7.8.5,k < i < y ) x > return-seq(i; g0). Then,
by repeating summand J (p0 times), we reach a state � 00 with p0 = 0. Then,
by repeating summand K (y � (k + 1) times), we reach a state � 000such that
last-seq(g0) = x. During these executionsof H ; J and K the values of m; `0; q0

remain the same. By again performing summand K , we reach a state �̂ where
` = last-seq(g0) = x = minf m; `0+ ng. Then ` = m or ` = `0+ n, so F C(�̂ ).
Induction step: next-empty(`0; q0) < minf m; `0+ ng.
Let y = length(g) and x = next-empty(`0; q0) at state � . By Invariants 4.7.8.4and
4.7.8.12,` � x < m. Soby Invariant 4.7.8.16,test(x; q). Furthermore, in view of
Lemma4.7.4.3,`0 � x < `0+ n. By summandB , weperform an internal action to
a state � 0 with g:= inm(d;x; g) (where d denotesretrieve(x; q)). Hence,at state
� 0 there existsa 0 � k < y such that return-seq(k; g) = x and return-seq(i; g) 6= x
for any k < i < y. Then, by repeating summand D (p times), we reach a state
� 00 with p = 0. Then, by repeating summands E and F (y � (k + 1) times),
we reach a state � 000with last-dat(g) = d and last-seq(g) = x. During these
executions of B ; D ; E and F , the values of m; `0 remain the same; and since
during the executionsof E and F last-seq(g) 6= x, in view of Lemma 4.7.4.5,the
value of next-empty(`0; q0) remains the same. By again performing summandE,
we reach a state � 0000whereq0 := inb(d;x; q0). Recall that x = next-empty(`0; q0).

next-empty(`0; in (d;next-empty(`0; q0); q0))
= next-empty(S(next-empty(`0; q0)) ; q0) (Lem. 4.7.4.6)
> next-empty(`0; q0) (Lem. 4.7.4.3)
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So we can apply the induction hypothesis to conclude that from � 0000a focus
point �̂ can be reached by a sequenceof internal actions.

�

Theorem 4.8.2 For all e:�,

� f c;j g(N nonmo d (0; 0; []; 0; []; []K ; 0; []L ; 0)) $ b Z(hi):

Pro of. By the conesand foci method we obtain the following matching criteria
(seeDe�nition 3.2.3). Trivial matching criteria are left out.
Class I:

(p < length(g) ^ `0 � last-seq(g) < `0+ n)
) � (m; q; `0; q0) = � (m; q; `0; inb(last-dat(g); last-seq(g); q0))

p0 < length(g0) ) � (m; q; `0; q0) = � (m; release(`; last-seq(g0); q); `0; q0)

Class I I:
m < ` + n ) length(� (m; q; `0; q0)) < 2n

test(`0; q0) ) length(� (m; q; `0; q0)) > 0

Class I I I:

(( ` = m _ ` = `0+ n) ^ length(� (m; q; `0; q0)) < 2n) ) m < ` + n

((` = m _ ` = `0+ n) ^ length(� (m; q; `0; q0)) > 0) ) test(`0; q0)

Class IV:
test(`0; q0) ) retrieve(`0; q0) = top(� (m; q; `0; q0))

ClassV:

m < ` + n ) � (S(m); inb(d;m; q); `0; q0) = append(d; � (m; q; `0; q0))

test(`0; q0) ) � (m; q; S(`0); remove(`0; q0)) = tail (� (m; q; `0; q0))

I.1 (p < length(g) ^ `0 � last-seq(g) < `0+ n)
) � (m; q; `0; q0) = � (m; q; `0; inb(last-dat(g); last-seq(g); q0)).

Let p < length(g). By Lemmas4.7.5.5,4.7.5.6and 4.7.5.10,
member(last-dat(g); last-seq(g); g).

Case 1: last-seq(g) 6= next-empty(`0; q0). By Lemma 4.7.4.5,
next-empty(`0; inb(last-dat(g); last-seq(g); q0)) = next-empty(`0; q0). Hence,

� (m; q; `0; inb(last-dat(g); last-seq(g); q0))
= inb(last-dat(g); last-seq(g); q0)[`0::next-empty(`0; q0)i

++ q[next-empty(`0; q0)::mi

Case 1.1: `0 � last-seq(g) < next-empty(`0; q0).
By Lemma 4.7.4.2, test(last-seq(g); q0), so by Invariant 4.7.8.26and
member(last-dat(g); last-seq(g); g), retrieve(last-seq(g); q0) = last-dat(g).
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So by Lemma 4.7.7.7, inb(last-dat(g); last-seq(g); q0)[`0::next-empty(`0; q0)i
= q0[`0::next-empty(`0; q0)i .

Case 1.2: : (`0 � last-seq(g) < next-empty(`0; q0)). Using Lemma 4.7.7.8,
it follows that

inb(last-dat(g); last-seq(g); q0)[`0::next-empty(`0; q0)i
= remove(last-seq(g); inb(last-dat(g); last-seq(g); q0))

[`0::next-empty(`0; q0)i
= remove(last-seq(g); q0)[`0::next-empty(`0; q0)i
= q0[`0::next-empty(`0; q0)i

Case 2: last-seq(g) = next-empty(`0; q0).
The derivation splits into two parts.

(1) Using Lemma 4.7.7.8, it follows that

inb(last-dat(g); last-seq(g); q0)[`0::last-seq(g)i
= remove(last-dat(g); inb(last-dat(g); last-seq(g); q0))[ `0::last-seq(g)i
= remove(last-dat(g); q0)[`0::last-seq(g)i
= q0[`0::last-seq(g)i

(2) By Invariant 4.7.8.4,` � last-seq(g).
By Invariant 4.7.8.8 and member(last-dat(g); last-seq(g); g), last-seq(g) <
m. Thus,by Invariant 4.7.8.16,test(last-seq(g); q). Soby Invariant 4.7.8.23
together with member(last-dat(g); last-seq(g); g), retrieve(last-seq(g); q) =
last-dat(g). Since` � S(last-seq(g)) � m, by Invariant 4.7.8.27,

q0[S(last-seq(g)) ::next-empty(S(last-seq(g)) ; q0)i
= q[S(last-seq(g)) ::next-empty(S(last-seq(g)) ; q0)i

Hence,

inb(last-dat(g); last-seq(g); q0)
[last-seq(g)::next-empty(S(last-seq(g)) ; q0)i

= inl (last-dat(g); inb(last-dat(g); last-seq(g); q0)
[S(last-seq(g)) ::next-empty(S(last-seq(g)) ; q0)i )

= inl (last-dat(g); remove(last-seq(g); inb(last-dat(g); last-seq(g); q0))
[S(last-seq(g)) ::next-empty(S(last-seq(g)) ; q0)i ) (Lem. 4.7.7.8)

= inl (last-dat(g); remove(last-seq(g); q0)
[S(last-seq(g)) ::next-empty(S(last-seq(g)) ; q0)i )

= inl (last-dat(g); q0[S(last-seq(g)) ::next-empty(S(last-seq(g)) ; q0)i )
(Lem. 4.7.7.8)

= inl (last-dat(g); q[S(last-seq(g)) ::next-empty(S(last-seq(g)) ; q0)i )
(seeabove)

= q[last-seq(g)::next-empty(S(last-seq(g)) ; q0)i
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We combine (1) and (2). Recall that last-seq(g) = next-empty(`0; q0).

(inb(last-dat(g); last-seq(g); q0)
[`0::next-empty(`0; inb(last-dat(g); last-seq(g); q0)) i )
++ q[next-empty(`0; inb(last-dat(g); last-seq(g); q0)) ::mi

= inb(last-dat(g); last-seq(g); q0)[`0::next-empty(S(last-seq(g)) ; q0)i
++ q[next-empty(S(last-seq(g)) ; q0)::mi (Lem. 4.7.4.6)

= (inb(last-dat(g); last-seq(g); q0)[`0::last-seq(g)i
++ inb(last-dat(g); last-seq(g); q0)
[last-seq(g)::next-empty(S(last-seq(g)) ; q0)i )
++ q[next-empty(S(last-seq(g)) ; q0)::mi (Lem. 4.7.4.3,4.7.7.5)

= (q0[`0::last-seq(g)i ++ q[last-seq(g)::next-empty(S(last-seq(g)) ; q0)i
++ q[next-empty(S(last-seq(g)) ; q0)::mi ((1), (2))

= q0[`0::last-seq(g)i ++ q[last-seq(g)::mi (Lem. 4.7.7.1,4.7.4.2,4.7.7.5)

I.2 p0 < length(g0) ) � (m; q; `0; q0) = � (m; release(`; last-seq(g0); q); `0; q0).

p0< length(g0), so by Lemmas4.7.6.4and 4.7.6.8,member(last-seq(g0); g0).

By Invariant 4.7.8.3,last-seq(g0)� next-empty(`0; q0). Soby Lemma 4.7.7.9,

release(`; last-seq(g0); q)[next-empty(`0; q0)::mi = q[next-empty(`0; q0)::mi

I I.1 m < ` + n ) length(� (m; q; `0; q0)) < 2n.

Let m < ` + n.

length(q0[`0::next-empty(`0; q0)i ++ q[next-empty(`0; q0)::mi )
= length(q0[`0::next-empty(`0; q0)i )

+ length(q[next-empty(`0; q0)::mi )) (Lem. 4.7.7.2)
= (next-empty(`0; q0) :� `0) + (m :� next-empty(`0; q0)) (Lem. 4.7.7.4)
� n + (m :� `) (Inv. 4.7.8.13,4.7.8.4)
< 2n

I I.2 test(`0; q0) ) length(� (m; q; `0; q0)) > 0.

test(`0; q0) together with Lemma 4.7.4.3yields
next-empty(`0; q0) = next-empty(S(`0); q0) � S(`0). Hence, by Lemmas
4.7.7.2and 4.7.7.4,

length(� (m; q; `0; q0))
= (next-empty(`0; q0) :� `0) + (m :� next-empty(`0; q0))
> 0

I I I.1 (( ` = m _ ` = `0+ n) ^ length(� (m; q; `0; q0)) < 2n) ) m < ` + n.

Case 1: ` = m. Then m < ` + n holds trivially .
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Case 2: ` = `0+ n.

length(� (m; q; `0; q0))
= (next-empty(`0; q0) :� `0)

+( m :� next-empty(`0; q0)) (Lem. 4.7.7.2,4.7.7.4)
� (( `0+ n) :� `0) + (m :� `) (Inv. 4.7.8.13,4.7.8.4)
= n + (m :� `)

So length(� (m; q; `0; q0)) < 2n implies m < ` + n.

I I I.2 (( ` = m _ ` = `0+ n) ^ length(� (m; q; `0; q0)) > 0) ) test(`0; q0).

Case 1: ` = m. Then m :� next-empty(`0; q0) � m :� ` (Inv. 4.7.8.4)= 0.
Hence,

length(� (m; q; `0; q0))
= (next-empty(`0; q0) :� `0)

+( m :� next-empty(`0; q0)) (Lem. 4.7.7.2,4.7.7.4)
= next-empty(`0; q0) :� `0

Hence, length(� (m; q; `0; q0)) > 0 yields next-empty(`0; q0) > `0, which im-
plies test(`0; q0).

Case 2: ` = `0+ n. Then by Invariant 4.7.8.4,next-empty(`0; q0) � `0+ n,
which implies test(`0; q0).

IV test(`0; q0) ) retrieve(`0; q0) = top(� (m; q; `0; q0)).

test(`0; q0) implies next-empty(`0; q0) = next-empty(S(`0); q0) � S(`0) (Lem.
4.7.4.3). Hence,

q0[`0::next-empty(`0; q0)i
= inl (retrieve(`0; q0); q0[S(`0)::next-empty(`0; q0)i )

So
top(� (m; q; `0; q0))

= top(inl (retrieve(`0; q0); q0[S(`0)::next-empty(`0; q0)i
++ q[next-empty(`0; q0)::mi ))

= retrieve(`0; q0)

V.1 m < ` + n ) � (S(m); inb(d;m; q); `0; q0) = append(d; � (m; q; `0; q0)).

q0[`0::next-empty(`0; q0)i ++
inb(d;m; q)[next-empty(`0; q0)::S(m)i

= q0[`0::next-empty(`0; q0)i ++
append(d;q[next-empty(`0; q0)::mi ) (Lem. 4.7.7.6, Inv. 4.7.8.12)

= append(d;q0[`0::next-empty(`0; q0)i ++
q[next-empty(`0; q0)::mi ) (Lem. 4.7.7.3)
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V.2 test(`0; q0) ) � (m; q; S(`0); remove(`0; q0)) = tail (� (m; q; `0; q0)).

test(`0; q0), together with Lemma 4.7.4.3 implies next-empty(`0; q0) =
next-empty(S(`0); q0) � S(`0). Hence,

remove(`0; q0)[S(`0)::next-empty(S(`0); remove(`0; q0)) i
++ q[next-empty(S(`0); remove(`0; q0)) ::mi

= remove(`0; q0)[S(`0)::next-empty(S(`0); q0)i
++ q[next-empty(S(`0); q0)::mi (Lem. 4.7.4.7)

= remove(`0; q0)[S(`0)::next-empty(`0; q0)i ++ q[next-empty(`0; q0)::mi
= q0[S(`0)::next-empty(`0; q0)i ++ q[next-empty(`0; q0)::mi (Lem. 4.7.7.8)
= tail (q0[`0::next-empty(`0; q0)i ++ q[next-empty(`0; q0)::mi )

�

4.8.3 Correctness of the sliding windo w proto col

Finally, we can prove Theorem 4.5.1.

Pro of.

� I (@H (S(0; 0; []) k R (0; []) k K ([]K ; 0) k L ([]L ; 0)))
$ � I (M mod (0; 0; []; 0; []; []K ; 0; []L ; 0)) (Thm. 4.6.1)
$ � f c;j g(N mod (0; 0; []; 0; []; []K ; 0; []L ; 0)) (Thm. 4.6.2)
$ � f c;j g(N nonmo d (0; 0; []; 0; []; []K ; 0; []L ; 0)) (Thm. 4.6.3)
$ b Z(hi) (Thm. 4.8.2)

�

4.9 Conclusions

In this chapter, we have proved the correctnessof a sliding window protocol
with an arbitrary �nite window size n and sequencenumbers modulo 2n. We
showed that the sliding window protocol is branching bisimilar to a queue of
capacity 2n. This proof is entirely basedon the axiomatic theory underlying
� CRL and the axioms characterizing the data types,and was checked with the
help of PVS. It implies both safety and livenessof the protocol.



Chapter 5

A Note on K -state Self-Stabilization in
a Ring with K = N

5.1 In tro duction

In his seminal paper [40], Dijkstra intro duced the notion of self-stabilization. A
distributed system is said to be self-stabilizing if it satis�es the following two
properties:

1. convergence: starting from an arbitrary state, the systemis guaranteed to
reach a stable state;

2. closure: oncethe systemreachesa stable state, it cannot becomeunstable
anymore.

A systemwith the property of self-stabilization can have the advantagesof fault
tolerance, robustnessfor dynamic topologies,and straightforward initialization.

Consider a system with a number of processessharing a common resource
(usually called critical section). Given an arbitrary initial state of the system,
there might be more than one processenabledto accessthe common resource.
The problem of mutual exclusion is to guarantee that the common resource
cannot be accessedby more than one processsimultaneously. Self-stabilizing
algorithms for mutual exclusion make sure that each in�nite run of the system
reachesa stable state where exactly one processis enabled;and from then on,
mutual exclusion of the common resourceis guaranteed.

In [40], Dijkstra presented three elementary self-stabilizing algorithms for
mutual exclusion on a ring network: an algorithm with K -state processes,an
algorithm with four-state processes,and an algorithm with three-stateprocesses.
Regarding their correctness,he wrote:

\F or brevity's sake most of the heuristics that led me to �nd them,
together with the proofs that they satisfy the requirements, have
beenomitted, [...]".
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After more than ten years,Dijkstra [42] published a proof of self-stabilization of
his algorithm with three-state processes,and acknowledgedthat the veri�cation
was actually not trivial.

In this chapter, we focuson Dijkstra's algorithm with K -state processes.We
consider a system of N + 1 processes,numbered from 0 through N , arranged
in a unidirectional ring. Each processpi has a counter v(i ) that can hold a
value from 0 to K � 1. Each processcan observe its own counter value and the
counter value of its anti-clo ckwiseneighbor. p0 is a distinguished processthat is
enabledwhen v(0) = v(N ), and when enabled, it can increment its counter by
1 modulo K . Each processpi for i = 1; : : : ; N is enabledwhen v(i ) 6= v(i � 1),
and when enabled,it can update its counter value so that v(i ) = v(i � 1). Thus
the behavior of the system can be presented as follows:

Dijkstra's K -state algorithm for mutual exclusion.
Assumethat processesp0; : : : ; pN form a unidirectional ring, wherethe counter
for each processpi holds a value v(i ) 2 f 0; : : : ; K � 1g.

� if v(0) = v(N ), then v(0) := (v(0) + 1) mod K ;

� if v(i ) 6= v(i � 1) for i = 1; : : : ; N , then v(i ) := v(i � 1).

The system is said to be in a stable state if it contains exactly one enabled
process,which can be interpreted as holding a token. This token can be passed
along the ring network; a processcan accessthe common resourceonly when it
holds the token.

This algorithm has beenproved correct by di�eren t proof methods for self-
stabilization, e.g. [172, 167, 168]. It attracted much attention from the formal
veri�cation communit y. There are two distinct traditions in automatic veri�ca-
tion: theorem proving and model checking. Merz [124] formalized the algorithm
and proved it correct in Isabelle/HOL [130]. Qadeerand Shankar [144] applied
PVS [131] to prove its correctness. Later on, Kulkarni et al. [106] also proved
its correctnessusing PVS in a di�eren t fashion. Model checking techniqueswere
applied to this algorithm in [159, 169]. Due to the state explosionproblem, this
approach has somerestrictions: it cannot be directly usedfor any possibleini-
tial state, and/or it can only prove the algorithm correct with a limited number
of processesand states.

However, all theseproofs only showed correctnessof the algorithm under a
weaker condition, namely the algorithm is correct if K > N . This alsohappened
in Schneider's survey paper on self-stabilization [153]. The only exception we
could �nd is [106]. Although they proved the algorithm correct for K > N ,
almost at the end of the paper, they stated:

\it is possible to prove stabilization when K � N { we will need
to redo only the proofs that depend on this assumption, namely
Lemmas6.4, 6.6, 6.8."

However, the validit y of this claim is not clear, especially their formulation of
Lemma 6.4 is false when K = N .
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Judging on the literature, it seemsto be a common belief that Dijkstra's
K -state mutual exclusionalgorithm on a ring only stabilizeswhen K > N . But
in fact, Dijkstra gavea note after presenting the solution with K -state machines
in [40] as follows:

\Note 1. [...] the relation K � N is su�cien t."

A brief informal proof sketch was given by himself in [41]. In addition, he said:

\(and for smaller valuesof K counter exampleskill the assumption
of self-stabilization.)"

We note that, if K = N , there should be at least three processesin the ring;
namely, if K = N = 1, then clearly p0 is always enabledand p1 is never enabled.
If K > N , then the algorithm also works for a ring with two processes.

In this chapter, we formally prove that if N > 1, then K � N is su�cien t
for the stabilization of Dijkstra's K -state mutual exclusion algorithm. For the
condition K > N , the proofs in [172, 167, 144, 124, 106] usedthe classicpigeon-
hole principle. The proof for K = N becomesconsiderably more complicated,
since the pigeonholeprinciple cannot be simply applied for any state of the al-
gorithm. This will be explained in detail in Section 5.3. Our proof, which is
di�eren t from the proof sketch in [41], has beenchecked in PVS.

Outline of the chapter. In Section 5.2, we show that Dijkstra's K -state
mutual exclusion algorithm on a ring also stabilizes when the number of states
per processis onelessthan the number of processeson the ring, namely K � N .
We formalized the algorithm and checked our proof in PVS. Our veri�cation in
PVS is basedon [144], we reusedtheir formalization of the algorithm and most
of their lemmas. We present the crucial lemmas of our PVS veri�cation in
Section5.3. In Section5.4, we show that K � N is sharp by a counter-example,
which was missing in [41]. Section 5.5 contains someconclusions.

5.2 Pro of of Self-Stabilization

We give the proof that Dijkstra's K -state mutual exclusionalgorithm on a ring
stabilizeswhenK � N . First we prove the closureproperty for self-stabilization
(seeProposition 5.2.2).

Lemma 5.2.1 In each state of the algorithm, there is at least one enabled
process.

Pro of. We distinguish two cases:

� for all i 2 f 1; : : : ; N g, v(i ) = v(0). In particular, v(0) = v(N ), which
implies p0 is enabled;

� otherwise, there exists a j 2 f 1; : : : ; N g such that v(j ) 6= v(0), and for all
i 2 f 1; : : : ; j � 1g, v(i ) = v(0). Sincev(j ) 6= v(j � 1), pj is enabled.
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�

Lemma5.2.1implies that no run of the algorithm ever deadlocks, asin each state
the enabledprocess(es)can \�re", meaning that the counter value is updated.

Prop osition 5.2.2 Once in a stable state, the system will remain in stable
states.

Pro of. We assumepi is the only enabled processin somestable state. It is
easyto seethat when pi �res, it makesitself disabled,and it makesat most pi 's
clockwise neighbor enabled. By Lemma 5.2.1, in each state of the algorithm,
there exists at least one enabled process. Therefore, after the �ring of pi , the
clockwise neighbor of pi is the only enabledprocess,so the systemremains in a
stable state. �

We proceedto prove the convergenceproperty for self-stabilization (seeThe-
orem 5.2.5).

Lemma 5.2.3 In each in�nite run of the algorithm, p0 �res in�nitely often.

Pro of. Given a state, consider the sum over all elements in the set f N � i j
i 2 f 1; : : : ; N g^ pi is enabledg. Clearly, when a nonzeroprocess�res, this sum
strictly decreases.Furthermore, for each state, this sum is at least 0. Hence,in
each in�nite run, p0 must �re in�nitely often. �

De�nition 5.2.4 The legitimate states are those states that satisfy v(i ) = x
for all i < j and v(i ) = (x � 1) mod K for all j � i � N , for somechoice of
x < K and j � N .

Note that a legitimate state is stable, as only pj is enabled.

Theorem 5.2.5 Let N > 1. Even if K = N , Dijkstra's K -state mutual exclu-
sion algorithm for N + 1 processesstabilizes.

Pro of. By Lemma 5.2.1, no run of the algorithm deadlocks. By Lemma 5.2.3,
in each in�nite run of the algorithm p0 �res in�nitely often.

Let N > 1. We prove that each in�nite run of the algorithm visits a le-
gitimate state. Consider the casewhere p0 �res for the �rst time. Then just
before that, v(0) = v(N ) = y for somey, and the new value of v(0) becomes
(y+ 1) mod K . Now considerthe casewhenp0 �res again. Then just beforethat,
v(0) = v(N ) = (y + 1) mod K . In order for pN to changeits counter value from
y to (y + 1) mod K , it must have copied (y + 1) mod K from its anti-clo ckwise
neighbor pN � 1. This moment must have occurred after p0 changed its counter
value to v(0) = (y + 1) mod K . But then, just after pN copies(y + 1) mod K
from pN � 1, we actually have v(N � 1) = v(N ) = (y + 1) mod K . In other
words, since N > 1 implies that pN � 1 6= p0, two di�eren t nonzero processes
hold the samecounter value (y+ 1) mod K . Then the N nonzeroprocesseshold



5.3 Mechanical Veri�cation in PVS 107

at most N � 1 di�eren t counter values from f 0; : : : ; K � 1g. When K � N (so
in particular when K = N ), then at this point in time there is an x < K that
doesnot occur as the counter value of any nonzeroprocessin the ring.

Sincep0 �res in�nitely often, eventually v(0) becomesx. The other processes
merely copy counter valuesfrom their anti-clo ckwise neighbors, so at this point
no other processholds x. The next time p0 �res, v(N ) = v(0) = x. The only
way that pN gets the counter value x is if all intermediate processeshave copied
x from p0. We concludethat all processeshave the counter value x, which is a
legitimate state. �

Dijkstra [41] gave a speci�c scenarioto show that the system will de�nitely
reach a legitimate state, after p0 has beenenabled for N times. In most cases,
a legitimate state can be detected earlier than in that scenario,as shown in the
above proof.

5.3 Mec hanical Veri�cation in PVS

In [144], Qadeer and Shankar presented a detailed description of a mechanical
veri�cation in PVS of stabilization of Dijkstra's K -state mutual exclusion al-
gorithm. Although they only checked the correctnessof the algorithm under
the condition K > N , their PVS formalism and proof could for a large part be
reused,1 which saved us much e�ort and gave us many insightful thoughts on
the veri�cation in PVS.

First, we present Qadeerand Shankar's claims to sketch their proof skeleton.
Then we show the lemma that we had to adapt for our proof. The algorithm
satis�es the following properties, for each state of the system, and each in�nite
run from this state:

I. there is always at least one enabledprocess;

I I. the number of enabledprocessesnever increases;

I I I. the enablednessof each processis eventually toggled;

IV. p0 eventually takes on any counter value below K (follows by Property
I I I);

Theseproperties require no restriction on the relation betweenN and K . Prop-
erty I corresponds to Lemma 5.2.1. Property I I follows the fact that when a
process�res, it makesitself disabled, and it makesat most its clockwise neigh-
bor enabled. Property I I I is a more general version of Lemma 5.2.3. Qadeer
and Shankar's PVS proof of these �rst four properties could be (more or less)
reusedby us directly.

V. there is somevalue x below K such that v(i ) 6= x for all i 2 f 1; : : : ; N g
(follows by Property IV, and the proof of Theorem 5.2.5);

1The URL http://www.csl.sri.com/ pvs/exa mples/s elf - st abil ity / contains their PVS
formalization and proofs.
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VI. eventually v(0) = x, and v(i ) 6= x for all i 2 f 1; : : : ; N g; then p0 is disabled
until v(i ) = v(0) for all i 2 f 1; : : : ; N g (follows by Property V);

VI I. the system is self-stabilizing (follows by properties VI, I, and I I).

The proof of Property V usesthe pigeonholeprinciple, which states that if each
of n + 1 pigeonsis assignedto oneof n pigeonholes,then somehole must contain
at least two pigeons. This principle was also formulated and proved in [144].

Let S(v) denote the set f x < K j 9i 2 f 1; : : : ; N g(v(i ) = x)g. The following
lemma corresponds to Property V. It states that the nonzeroprocessesdo not
contain all the possiblecounter values.

Lemma 5.3.1 (Lemma 4.13 in [144]) If K > N , then 9x < K (x 62S(v)).

Under the condition K > N , this can be informally proved as follows [144]:
there are N nonzero processes,and hence at most N distinct counter values
at theseprocesses;if there are K (K > N ) possiblecounter values, then there
must be somex < K that is not the counter value at any nonzeroprocess.

If we relax the condition to K � N , the above proof fails, becausethe
pigeonhole principle does not apply when the number of pigeons equals the
number of pigeonholes.

Starting from this point, we assumethat K � N . We de�ne T(v) to denote
the set f x < K j 9i 2 f 1; : : : ; N � 1g(v(i ) = x)g. In the following lemma the
pigeonholeprinciple doesapply.

Lemma 5.3.2 9x < K (x 62T(v)).

Pro of. T (v) contains at most N � 1 distinct counter valuesat processesfrom
p1 to pN � 1. If there are K (K � N ) possiblecounter values, then there must
be somex < K with x 62T(v). �

To check the proof of Lemma 5.3.2 in PVS, we could simply follow the PVS
proof stepsof Lemma 5.3.1 in [144]. Now we intro duce an extra lemma.

Lemma 5.3.3 v(N ) 2 T(v) ) S(v) = T(v).

Pro of. This is straightforward by the de�nitions of S(v) and T(v). �

In PVS, Lemma 5.3.3 could be proved by using existing PVS libraries for the
�nite cardinalities. Now we present the main lemma for our PVS proof, corre-
sponding to Lemma 5.3.1 in [144] (Property VI).

Lemma 5.3.4 Each in�nite run of the algorithm eventually reaches a state
where the nonzeroprocessesdo not contain all the possiblecounter values.

Pro of. We know from Property I I I that pN will eventually �re. By the algo-
rithm, we then have v(N ) = v(N � 1), so that v(N ) 2 T(v). By Lemma 5.3.3,
S(v) = T(v). By Lemma 5.3.2, we can �nd an x < K with x 62T(v), so
x 62S(v). �
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After proving Lemma 5.3.4, and reusing (more or less) the lemmasand the
PVS proof stepsfor properties VI and VI I in [144], we could mechanically prove
self-stabilization of Dijkstra's K -state algorithm in PVS.

5.4 K = N is Sharp

In this section, we give a counter-example showing that a smaller value of K
would kill self-stabilization. For example, in Figure 5.1 (which assumesthat
N � 3), we have a system with K = N � 1, meaning that each processcan
have a counter value f 0; : : : ; N � 2g. Consider the initial state shown at the top
left-hand side of Figure 5.1, in which p0; : : : ; pN � 2 hold counter values from 0
to N � 2, pN � 1 holds counter value 0, and pN holds counter value 1. By the
algorithm, p1; : : : ; pN are enabled,so the number of enabledprocessesis N . (In
Figure 5.1, black processesare enabled.)
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Figure 5.1: A counter-example: a ring with K = N � 1

We have a run as follows:

Step 1: pN �res and makesp0 enabled;

Step 2: pN � 1 �res and makespN enabled;

: : : : : :

Step N � 1: p2 �res and makesp3 enabled;

Step N : p1 �res and makesp2 enabled;
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Step N + 1: p0 �res and makesp1 enabled.

From the initial state, after the above N + 1 steps(all processeshave �red only
once), the system ends in a state where the counter valuesof the processesare
symmetric (modulo N � 1) to the initial state, soit still hasN enabledprocesses.
This scenariocan be executedin�nitely often without breaking the symmetry.
So the system will never reach a legitimate state. Thus K = N is sharp!

5.5 Conclusions

Judging on the literature on self-stabilization, it seemsto be commonbelief that
Dijkstra's K -state algorithm on a ring stabilizes when K > N . In this chapter
we show that, contrary to this commonbelief, the algorithm alsostabilizeswhen
the number of statesper processis onelessthan the number of processeson the
ring (namely K = N ). Our proof was formalized and checked in PVS, basedon
[144]. We have given a counter-example showing that K = N is indeed sharp.

One important fact (Lemma 5.3.4) used in our proof is that the nonzero
processesdo not contain all the possiblecounter values. By this observation,
together with the fact that each processis in�nitely often enabled,we can prove
that each in�nite run of the algorithm will reach a legitimate state. For the
caseK > N , this fact can be proved using the pigeonholeprinciple, as is done
in [172, 167, 144, 124, 106]. For the caseK = N in this chapter, we choosethe
moment that pN is enabledand �res, which makesv(N ) = v(N � 1). After that
we can apply the pigeonholeprinciple. Another important fact (Lemma 5.2.2) is
that whenever the system reachesa stable state, it will remain in stable states.
Thus we have proved the properties for self-stabilization.

Regarding the veri�cation in PVS, we downloaded the PVS code and proof
by Qadeerand Shankar. Following their proof stepsin PVS, we simply addeda
newde�nition of T(v), provedtwo newlemmas(Lemma 5.3.2and Lemma5.3.3),
and adaptedonelemmaasLemma 5.3.4. The wholeveri�cation did not take too
much e�ort. First, we spent a few days to understand the formalism and proof
in [144]. Since the PVS system, including PVS libraries, has been updated
after 1998, the downloaded PVS proof could not be simply rerun. We made
someadaptions to make their PVS proof work again. After that, when we had
the idea to prove (as shown in Section 5.2) the algorithm correct under the
condition K = N , the proof was completely checked in PVS within one day.
The �les containing our PVS formalization and proofs can be found at the URL
http://www.cwi.n l/ ~pangjun /s ta bil iz ati on/ .
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Chapter 6

Analysis of a Distributed System for
Lifting Truc ks

6.1 In tro duction

This chapter reports on the analysisof a real-life systemfor lifting trucks (lorries,
railway carriages,busesand other vehicles). The system consistsof a number
of lifts; each lift supports one wheel of the truck that is being lifted and has its
own micro-controller. The controls of the di�eren t lifts are connectedby means
of a network. A special purpose protocol has been developed to let the lifts
operate synchronously.

This system has beendesignedand implemented by a Dutch company, that
is specialized in the designof embeddedsystems. When testing the implemen-
tation the developers found three problems. They solved these problems by
trial and error, partly becausethe causesof two of the three problems were
unclear. In closecooperation with the developers,we speci�ed the lift systemin
� CRL. Next, we analyzedthe resulting speci�cation with the � CRL tool set and
CADP. The three known problems turned up in our speci�cation (which adds
to our con�dence that the speci�cation is closeto the actual implementation).
In addition we found a fourth error. This error was unknown and found its
way into the implementation of the lift system. We incorporated solutions for
these problems in the speci�cation. We have analyzed the � CRL speci�cation
that results from the incorporation of the proposedsolutions, showing that this
speci�cation meetsthe requirements of the developers.

However, this happened independently of the developers, who decided not
to wait for the results of the formal analysis in � CRL and to redesign their
implementation basedon their own solutions. To distinguish between the two
lift systems,we call the �rst lift system `original design' and the one with the
solutions of the developers `redesign'.

The developersexperienceda new problem in the redesign.Again the reason
wasunclear. Sincethe error tracesdisplayeda regular pattern in time, the devel-
opers thought modeling exact timing might reveal the reasonfor this problem.
In the � CRL speci�cation, time is abstracted away. We could extend the � CRL
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model with exact timing information, but there is no automated veri�cation
tool set for timed processalgebras. Therefore it was decided to use UPPAAL
[111], which is a tool set for validation and model checking of real-time systems.

The UPPAAL model of the redesignwasachieved in several steps. First the
� CRL model was translated into UPPAAL. Then the UPPAAL model was re-
�ned to move it closerto the real system;each lift is split into two components,
where one component communicates with the other lifts and the other compo-
nent can receive input from the environment. The developers' solutions for the
aforementioned problems were adopted. After discussionswith the developers,
exact timing information was added. The requirements for the lift systemwere
formulated in UPPAAL, using its requirement speci�cation languageand test
automata, and model checked. Using the graphic simulation tool in UPPAAL,
we detected the reasonfor the new problem, which the developers encountered
in the redesign. We proposea new solution, which is basedon the solution that
was already put forward in the analysis of the original design. The UPPAAL
model with the new solution satis�es all the requirements.

The developers acknowledgethe e�ciency and usefulnessof formal veri�ca-
tion for their redesign. Our solution is being implemented in the new releaseof
the lift system; they are now more con�dent in the correct functioning of the
redesignedlift system.

Outline of the chapter. This chapter is organized as follows. After this
intro duction, we give an informal speci�cation of the lift system in Section 6.2.
Next we discussthe requirements which the systemshould satisfy in Section6.3.
From Section6.4 to Section6.6, we present the analysisof the original designof
the lift systemin � CRL. From Section6.7 to Section6.9, we present the analysis
of the redesignof the lift systemin UPPAAL. We show that the solutions of the
developers do not solve theseproblems found in the original designcompletely,
while a re�ned version of our solution in the � CRL speci�cation does. We
concludethis chapter in Section 6.10.

6.2 Description of the Lift System

First, we explain the general layout of the lift system (Section 6.2.1). Then we
explain the manner in which lift movement is controlled (Section 6.2.2).

6.2.1 Layout of the lift system

The system studied in this chapter consists of an arbitrary number of lifts.
Each lift supports one wheel of a vehicle being lifted. The system is operated
by meansof buttons on the lifts. There are four such buttons on each lift: up,
down , setref and axle . The system knows three kinds of movements. If the
up or down button of a certain lift is pressed,all the lifts of the systemshould
go up, respectively down. If the up (or down ) button is pressedtogether with
setref , only one lift (the one of which the buttons are pressed)should go up
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(or down). This allows the operator to adjust the height of a lift to inequalities
in the surfaceof the o or. If the up or down button is pressedtogether with
the axle button, the opposite lifts (and only those) are supposedto move up
or down, respectively. This is neededto replacethe axle of a truck. As di�eren t
trucks may have di�eren t numbers of wheels,the operator may add or remove
lifts to or from the system. We have only studied the �rst kind of movement.

Normally, the lifts contain a locking pin which is intended to prevent the lift
from moving down when motors fail, or oil is leaking from the hydraulic pumps
or valves. This pin restricts the movement of the lifts. If onewants to move the
lifts over a larger distance this pin has to be retracted. This detail is not taken
into account in our speci�cation.

Lift movement is controlled by meansof a micro-controller. In real life, the
lift controller can adopt eight di�eren t states. For our study the following states
are important: st ar tup , st andby , up, and down . The meaningof thesestates
will becomeclear in the courseof the discussion.

The controllers of the di�eren t lifts belonging to a system are connected
to a CAN (Controller Area Network) bus [147] which is interrupted by relays
(seeFigure 6.1). Theserelays do not exist in real systems,they are part of the
protocol developed by the developers. The di�eren t controllers connectedto the
bus are called stations. There is a relay betweenevery pair of adjacent stations
and each relay is controlled by the station at its left side.

The CAN bus is a simple, low-cost, multi-master serial bus with error detec-
tion capabilities. Multi-master meansthat all stations can claim the bus at each
bus cycle and several stations can claim the bus simultaneously, in which casea
non-destructive arbitration mechanism determines which messageis transmit-
ted by the bus. A messageon the bus is immediately received by all other
stations connectedto the sendingstation via closedrelays. The CAN protocol
doesnot useaddresses.

In the lift system, the user data �eld of the messagestransferred over the
bus contains three piecesof information: the position of the sender station,
the type of the message,and the (measured)height of the sender'slift. There
are two kinds of messages:state messagesand sync messages.State messages
report the state of the sender station (e.g. st ar tup , st andby , up, down ).
sync messagesinitiate physical movement. In responseto a sync messageeach
station will immediately report its state to the motor of its lift. This means
that if the station is in the up state after a sync message,the lift will move up
a �xed distance; if the station is in the down state, the lift will move down a
�xed distance; and if the station is in st andby it will not move.

The system continuously checks the heights broadcast in the messagesto
determine if they do not di�er too much. If there is something wrong an emer-
gency stop is brought about. This is not modeled in our speci�cation as this
would increasethe number of states of the system tremendously.
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Figure 6.1: State of the relays before (left) and after (right) initialization

6.2.2 Con trol of lift movement

To assurethat all lifts move simultaneously in the samedirection, the station
initiating a certain movement must verify whether all stations are in the appro-
priate state before it sendsthe sync message.

The CAN protocol allows several stations to claim the bus at the sametime.
However, in the lift system, the stations are programmed in such a way that
(during normal operation) the stations take turns claiming the bus. They claim
the bus in a �xed order (clockwise in Figure 6.1).

To achieve this orderly usageof the bus, each station must know its position
in the network. Furthermore, in order to be able to �nd out whether all stations
are in the samestate, each station must know how many stations there are in
the network. This is achieved by means of a startup phase in which all the
stations cometo know their position in the network aswell as the total number
of stations in the network. This startup phaseis discussedbelow:

Startup

When the system is switched on, all the relays are open (see the left part of
Figure 6.1).

In the startup phasetwo things might happen to a station:

� The setref button of that station might be pressed. In this casethe
station will initiate the startup phaseas follows:

1. it stores that it has position 1;

2. it adopts the st ar tup state;

3. it closesits relay;

4. it broadcastsa st ar tup message;

5. it opensits relay, this guaranteesthat this station will only receive a
st ar tup messagewhen all stations have determined their positions;
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6. it waits for a st ar tup message;

7. it stores the position of the senderof that messageas the number of
stations in the network;

8. it adopts the st andby state;

9. it broadcaststhis state.

� The station might receive a st ar tup messagefrom another station. In
this case:

1. it adds1 to the position of the senderof that messageand storesthis
as its own position;

2. it stores its own position as the number of stations in the network;

3. it adopts the st ar tup state;

4. it closesits relay;

5. it sendsa st ar tup message(note that unlike the previous part the
station doesnot open its relay, it will receive all subsequent st ar tup
messages);

6. { if it receivesanother st ar tup messageit stores the position of
the senderof that messageas the number of stations in the net-
work;

{ if it receives a st andby messageit adopts the st andby state
(if the station has position 2 it will in addition initiate normal
operation by broadcasting a st andby message).

Assume, for example that in the system of Figure 6.1 the setref button
of station B is pressed. The station of this lift gets position 1. It closesthe
relay between B and C, broadcastsa st ar tup message,and opens this relay
again. The st ar tup messagefrom B is received by only one station (C). This
station draws the conclusion that it has position 2. It subsequently closesthe
relay to D and broadcasts a st ar tup message. This messageis received by
only one station (D). This station draws the conclusion that it has position 3,
closesthe relay to A and sendsa st ar tup message.This messageis received
by A and C. C draws the conclusion that now there are three stations in the
network. A draws the conclusionthat it hasposition 4, closesthe relay to B and
broadcastsa st ar tup message.This messageis received by B, C, and D. C and
D draw the conclusionthat now there are four stations in the network. Station
B draws the conclusionthat the circle is completed. It storesthe position of the
senderof that message(4) as the number of stations in the network, adopts the
st andby state and initiates normal operation by sendinga st andby message.
This messageis received by C, D, and A which adopt the st andby state in
response.

The result is that all stations are connectedin the manner pictured in the
right part of Figure 6.1, that all stations know how many stations there are in
the network and what their position is, and that all stations are in st andby .
Normal operation starts when station 2 broadcastsits state.
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Normal op eration

During normal operation, the �rst station (with position 1) broadcastsits state
and height, then the next station broadcastsits state and height and soon, until
the last station has broadcast its state and height, after which the �rst station
starts again.

Passive
Down

Active
Down

STANDBY

Active
UP

Passive
Up

receive DOWN
receive STANDBY

receive UP UP pressed

UP released

receive SYNC, move(up)

      receive SYNC, move(down)
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receive SYNC, move(down)

receive UP
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receive STANDBY

receive SYNC

receive DOWN

DOWN released

DOWN pressed
receive UP

Figure 6.2: State transitions of an individual lift during normal operation

The transition diagram of each lift during normal operation is sketched in
Figure 6.2.1 Initially all stations are in st andby . A station in st andby changes
to another state if one of its buttons is pressedor if it receivesa messagewith
another state. The station that is initiating a certain change (i.e. when it is
in st andby and a button is pressed) is called the active station. All other
stations are passive. If the up or down button of a certain lift is pressedand
its station is in st andby , that station becomesactive and changesits state to
up or down , respectively. When a passive station receivesa state message,it
adopts the state in that message.An active station doesnot changeits state in
responseto state messages.The state of an active station changesonly if the
pressedbutton is released. In that caseits state changesto st andby and the
station becomespassive again.

As said, physical movement is initiated by a sync message. In order to
assurethat all lifts move in the same direction, the active station will count
the number of messagesthat contain the intended state. The active station will
send a sync messageif and only if it has counted enough messageswith the

1Some actions of pressing or releasing a button are not represented in this �gure, since
those actions do not make any state transition of a lift during normal operation phase.
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right state (i.e. all the other stations are in the samestate as itself ), when it is
its turn to usethe bus.

Assume, for example, that all stations are in st andby and that the up
button of station 4 (in the right part of Figure 6.2) is pressed. This station
adopts the up state. When it is this station's turn to use the bus (getting a
messagefrom its predecessor),it will broadcast its state; in responsethe other
stations will adopt the up state too. Next, it is station 1's turn to usethe bus.
This station will broadcast its state (which is up). The messagefrom station 1
is received by all other stations, among which the active station 4. As the state
in the messageis the sameas that of the active station 4, this latter station will
count this message.In the next two cyclesstation 2 and station 3 claim the bus
in turn and broadcast their states (up), both messagesare counted by station
4. So, station 4 will have received the right number of up messageswhen it is
its turn to usethe bus again and it will senda sync messageto initiate physical
movement.

6.3 Requiremen ts

There are �v e requirements for the lift system, that have been formulated in
cooperation with the developers. Each requirement describesa di�eren t aspect
of the system'sbehavior.

1. Deadlock freeness: the lift systemnever endsup in a state whereit cannot
perform any action.

2. LivenessI : it is always possiblefor the system to get to a state in which
pressing the up or down button of any lift will yield the appropriate
response.

3. Liveness II : if exactly one up or exactly one down button is pressed
and not released, then all the lifts will (eventually) move up or down,
respectively.

4. Safety I : if oneof the lifts moves,all the other lifts should simultaneously
move in the samedirection.

5. Safety II : if the lifts move, an appropriate button was pressed. In other
words, the lifts will not move if no one has presseda button.

The two livenessrequirements make surethat buttons can always be pressed
and in responsethe lifts will always move. The two safety requirements make
sure that the system will move properly.

6.4 � CRL Mo del of the Original Design

We speci�ed the lift system in � CRL. As is demonstrated by this casestudy,
this languageis useful as a tool to analyzeembeddedcontrollers.
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As we described in Section6.2, our speci�cation is an abstraction of the real
system. Such details as the locking pins, the parameter of height containing
in the messages,and the checking of the height broadcast in messagesare not
modeled in our speci�cation. And we only studied two kinds of movement of
the lift system: If the up or down button of one lift is pressed,all the lifts of
the systemshould go up, respectively down. The initial speci�cation for system
with three lifts is given at http://www.cwi.n l/~ pangj un/l ift / . Here we only
highlight someparts of this speci�cation. The part on data types is discussed
in Section 6.4.1, and the part on processesin Section 6.4.2.

6.4.1 Data typ es

Obviously we needto represent the physical structure of the lift system. This is
doneby meansof the sort Address. The constructors of this data type consistof
identi�ers (one for each station). The functions suc and pre yield the identi�ers
of the neighbors in the circle. suc yields the one at the right-hand side, pre
yields the one at the left-hand side (seeFigure 6.1). Becauseof the similarit y
in structure, we use this data type also to represent the position of a station.
We specify the sort Address with three elements below:

sort Address
func 1, 2, 3: ! Address
map suc: Address! Address

pre: Address! Address
eq: Address� Address! Bool

rew suc(1)=2 pre(1)=3
suc(2)=3 pre(2)=1
suc(3)=1 pre(3)=2
eq(1,1)=T eq(1,2)=F eq(1,3)=F
eq(2,2)=T eq(2,1)=F eq(2,3)=F
eq(3,3)=T eq(3,1)=F eq(3,2)=F

This data type is also usedto identify the position of relays. Relay n is the one
between the station with addressn and the station with addresssuc(n); it is
controlled by the station at the left side (addressedas n).

To model the bus, we must record which relays are closed. This is done by
meansof the sort Alist, which is a list of addresses.The constructors of this
sort are ema and insert. ema stands for an empty list. insert constructs a
new list by inserting an addressinto a list. The function remove(a; A) removes
all the occurrencesof the addressa from the list A. Function test(a; A) tells
us whether the addressa is in list A. The function empty(A) is used to judge
whether a list is empty, or not. if (b;A; A0) is an auxiliary function to specify
test and reset, where b is a data term of sort Bool. It is used to simulate
conditional equations,meaning that if b holds then A is selected,otherwise A' .
And the concatenation of two lists is represented by the function conc(A; A0).
The function Addresses(A; a) is usedto get the list of all stations connectedto
the station a via list A of closedrelays. a is excluded in the result. Functions
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Addresses-up, Addresses-down, Addresses-up-auxand Addresses-down-auxare
usedto help the speci�cation of Addresses.

sort Alist
func ema: ! Alist

insert: Address� Alist! Alist
map remove:Address� Alist! Alist

test: Address� Alist! Bool
empty: Alist! Bool
if: Bool� Alist� Alist! Alist
conc: Alist� Alist! Alist
Addresses:Alist� Address! Alist
Addresses-up:Alist� Address� Address! Alist
Addresses-down: Alist� Address� Address! Alist
Addresses-up-aux:Bool� Bool� Alist� Address� Address! Alist
Addresses-down-aux: Bool� Bool� Alist� Address� Address! Alist

var a, a': Address
A, A': Alist
b: Bool

rew remove(a,ema)=ema
remove(a,insert(a',A))=if(eq(a,a'),remove(a,A),insert(a',remove(a,A)))
test(a,ema)=F
test(a,insert(a',A))=if(eq(a,a'),f,test(a,A))
empty(ema)=T
empty(insert(a,A))=F
if(T,A,A')=A
if(F,A,A')=A'
conc(ema,A)=A
conc(insert(a,A),A')=insert(a,conc(A,A'))
Addresses(A,a)=conc(Address-up(A,a,a),Address-down(A,a,a))
Addresses-up(A,a,a')=Addresses-up-aux(test(a,A),eq(suc(a),a'),A,a,a')
Addresses-down(A,a,a')=

Addresses-down-aux(eq(pre(a),a'),test(pre(a),A),A,a,a')
Addresses-up-aux(T,T,A,a,a')=insert(suc(a),ema)
Addresses-up-aux(T,F,A,a,a')=insert(suc(a),Address-up(A,suc(a),a'))
Addresses-up-aux(F,b,A,a,a')=ema
Addresses-down-aux(T,b,A,a,a')=ema
Addresses-down-aux(F,T,A,a,a')=

insert(pre(a),Addresses-down(A,pre(a),a'))
Addresses-down-aux(F,F,A,a,a')=ema

In our model, the following states of stations are speci�ed by a sort State:
st andby , up, down , st ar tup and sync . The state sync is not really a state,
but it can be broadcast in a messageinstead of the states. This kind of message
is usedto synchronize the physical movement of all the lifts.

sort State
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func st andby, up, down, st ar tup, sync : ! State

The messagestraveling in the network are speci�ed by a sort Message. A
messagehasthe form mes(a; s): a is the position of the station sendingthe mes-
sageand s is the state of the sendingstation. By using the functions getaddress
and getstate, we can get the position, respectively the state of the station.

sort Message
func mes: Address� State! Message
map getaddress:Message! Address

getstate: Message! State
var a: Addresss: State
rew getaddress(mes(a,s))=a

getstate(mes(a,s))=s

6.4.2 Pro cesses

In this section, we focus on the processpart of our speci�cation. The bus and
the stations are both modeled as separateprocesses.

The speci�cation of the bus posestwo problems. First, we must represent
which relays are open and which onesare closed. This is doneby parameterizing
the bus processwith an Alist R of identi�ers of all closedrelays. If a station
closesa relay, the identi�er of the relay is added to this list. If it opensa relay,
the identi�er of the relay is removed from this list. This is achieved with the
help of two actions r open-relay(n) and r close-relay(n).

Second,we must represent the transportation of messagesover the bus. In
the system,a messageput on the bus by onestation is received by all the other
stations connectedto the sendingstation via closedrelays. This is modeled by
meansof a delivery process(Deliver) parameterizedwith an Alist A of stations
that have yet to receive the message.After accepting a messagefrom a station
with the action r stob(m; a) (receive messagem from station a to the bus),
the bus processmoves to the delivery phase, provided that the list R is not
empty. This phaseconsistsof a number of cycles. In each cycle, the message
is delivered to one station in list A by the action s btos(m; a) (send messagem
from the bus to station a) and then the next cycle is entered with the station
a removed from list A. If the last station is removed, the bus processreturns
to the Bus phase. The Deliver processhas R as one of its parameters; this is
neededto restart the Bus processafter the delivery phasewith the correct list
of closedrelays. In the delivery phase,the bus does not accept messagesfrom
the stations, which ensuresthat a messagebroadcastby a station is received by
all stations connectedto it before the next station can senda message.

act r stob, s btos: Message� Address
r open-relay, r close-relay: Address

proc Bus(R:Alist) =P
mes:Message

P
a:Addressr stob(mes,a)�
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(Bus(R)� empty(Addresses(R,a))� Deliver(mes,R,Addresses(R,a)))
+

P
a:Addressr open-relay(a)�Bus(remove(a,R))

+
P

a:Addressr close-relay(a)�Bus(insert(a,R))

proc Deliver(mes:Message,R:Alist, A:Alist) =P
a:Addresss btos(mes,a)�

(Bus(R)� empty(remove(a,A))� Deliver(mes,R,remove(a,A)))
� test(a,A)� �
+

P
a:Addressr open-relay(a)�Deliver(mes,remove(a,R),A)

+
P

a:Addressr close-relay(a)�Deliver(mes,insert(a,R),A)

The actions r stob and s btos are intended to communicate with the actions
s stob (send a messagefrom a station to the bus) and r btos (receive a message
from the bus to a station) into c stob and c btos, respectively. Likewise, the
actions r open-relay and r close-relay are synchronized with the actions s open-
relay and s close-relay.

comm s stob j r stob = c stob
s btos j r btos = c btos
s open-relay j r open-relay = c open-relay
s close-relay j r close-relay = c close-relay

After modeling the bus process, we come to the speci�cation of the lift
controller. The following actions are associated with the buttons of a lift. They
do not represent all physical actions of pressing a button of the real system.
Only thoseactions of pressinga button which have e�ect on the behavior of the
system are modeled in our speci�cation (seeFigure 6.2). For example, in the
normal operation phase,a setref button can be physically pressed. Since in
this phasea station does not respond to this action, the action setref cannot
occur according to our speci�cation of the normal operation phase (see the
speci�cation of Lift2 ). Leaving out theseactions doesnot a�ect our veri�cation.
The action of outputting state s of station n to the motor input is represented
as the action move(n; s).

act setref,up, down, released:Address
move: Address� State

The control of the lift systemmovement is divided into two phases.Initially ,
all relays are open. In the �rst phase(startup phase), the network connection
is set up, and each station gets to know its position and the number of stations
in the network. In the secondphase (normal operation phase), the stations
claim the bus in a �xed order and the physical movement of the system can be
initiated. Each lift processis parameterizedwith an addressn, which identi�es
the station.

The behavior of a station in the startup phaseis modeled by two processes,
Lift0 and Lift1 . Initially , all stations are in Lift0 . Lift0 speci�es the initial
behavior of a station. In this phase, the setref button of a station can be
pressed,or a station can receive a st ar tup messagefrom another one. Lift1
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models how the stations with a position greater than 1 get to know the number
of stations in the network. The parameter m is added to Lift1 to record the
position of a station. The parameter nos is used to remember the number of
the stations.

The station of which the setref button is pressedgets position 1. It closes
its relay with the action s close-relay(n) and broadcastsa st ar tup message.
Next, it opensits relay with the action s open-relay(n) and waits for a st ar tup
message.When it gets the st ar tup message,it responds by changing its state
to st andby and broadcasting its state, then it goes into the normal operation
phase,which is modeledasLift2 . If a station (not the oneon which the setref
button is pressed)gets a st ar tup message,it adds 1 to the position of the
message'ssender and stores this both as its m and as its nos. It adapts the
st ar tup state, closesits relay and broadcast its own state. Next, it movesinto
Lift1 , where it can changeits own nos accordingto the position of the st ar tup
messagesit receives. In the phaseof Lift1 , each station getsto know the number
of stations in the network by the position of the last st ar tup message.When
a station with a position greater than 1 gets a st andby message,it adopts its
states to st andby and goesinto processLift2 . If it is its turn to claim the bus
(when it receivesa messagefrom its predecessor),it also broadcastsa st andby
message.In this way, the startup phaseis �nished and all stations are connected
to one bus. The processesLift0 and Lift1 are speci�ed as follows:

proc Lift0(n:Address)=
setref(n)�s close-relay(n)� s stob(mes(1,st ar tup ),n)� s open-relay(n)�P

mes:Messager btos(mes,n)�
(s stob(mes(1,st andby ),n)�Lift2(n,1,getaddress(mes),st andby )
� eq(getstate(mes),st ar tup )� � )

+
P

mes:Messager btos(mes,n)�
(s close-relay(n)�s stob(mes(suc(getaddress(mes)),st ar tup ),n)�
Lift1(n,suc(getaddress(mes)),suc(getaddress(mes)))
� eq(getstate(mes),st ar tup )� � )

proc Lift1(n:Address,m:Address,nos:Address)=P
mes:Messager btos(mes,n)�

(Lift1(n,m,getaddress(mes))
� eq(getstate(mes),st ar tup )�

((s stob(mes(1,st andby ),n)�Lift2(n,m,nos,st andby )
� eq(getaddress(mes),pre(m))�
Lift2(n,m,nos,st andby ))

� eq(getstate(mes),st andby )� � ))

Note that during the startup phase,all the stations expect to receive either a
st ar tup messageor a st andby message,otherwiseit will result into a deadlock.
This can be model checked later on.

The behavior of a station during normal operation is speci�ed by meansof
two processes(Lift2 and Lift3 ). The parameter s is used to record the state
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of the station. In this phase, the stations broadcast their messagesin a �xed
order. A station knows that it is its turn to claim the bus when it receives a
messagefrom its predecessor. In both Lift2 and Lift3 , a station responds to
an incoming sync messageby immediately outputting its state to the motor
input with the action move(n; s). Lift2 models the behavior of a station that is
passive or in st andby . In this phase,a station will respond to a state message
by adopting the state in the message.When a station gets the turn to claim the
bus, it adopts the state in the received messageand broadcastsit. In addition, a
station in st andby will respond to an action of pressinga button. It adopts the
corresponding state and becomesactive (Lift3 ). Lift3 models the behavior of
an active station. The parameter count is usedto count the number of stations
that are in the same state as this active one. This counter is initiated with
the number of stations in the network. Each time the active station receivesa
messagewith the samestate as itself, the counter is decreased.When the active
station gets the turn to use the bus, it will determine whether it has received
enough messagesof the right type (i.e. whether its counter equals 2 and the
state of the messageof its predecessoris the sameasthe state of itself ). If so, it
will senda sync message,output its state to the motor, broadcast its own state
and reset the counter to the number of the stations in the network. If not, it
will broadcast its state and reset its counter. When the pressedbutton on the
lift is released(modeledby released(n)), the active station returns to st andby .

proc Lift2(n:Address,m:Address,nos:Address,s:State)=
(up(n)�Lift3(n,m,nos,up,nos)+down(n)�Lift3(n,m,nos,down ,nos))
� eq(s,st andby )� �
+

P
mes:Messager btos(mes,n)�

(move(n,s)�Lift2(n,m,nos,s)
� eq(getstate(mes),sync )�

(s stob(mes(m,getstate(mes)),n)�Lift2(n,m,nos,getstate(mes))
� eq(getaddress(mes),pre(m))�
Lift2(n,m,nos,getstate(mes))))

proc Lift3(n:Address,m:Address,nos:Address,s:State,count:Address)=
released(n)�Lift2(n,m,nos,st andby )
� not(eq(s,st andby )) � �
+

P
mes:Messager btos(mes,n)�

(move(n,s)�Lift3(n,m,nos,s,count)
� eq(getstate(mes),sync )�

((s stob(mes(m,sync ),n)�move(n,s)�
s stob(mes(m,s),n)�Lift3(n,m,nos,s,nos)
� eq((getstate(mes),s)̂ eq(count,2)�
s stob(mes(m,s),n)�Lift3(n,m,nos,s,nos))

� eq(getaddress(mes),pre(m))�
(Lift3(n,m,nos,s,pre(count))
� eq(getstate(mes),s)�
Lift3(n,m,nos,s,count))))
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By putting n Lift0 processesand one Bus processin parallel, we model a
system with n lifts (n � 2) as follows:

init � I @H (Bus(ema)k Lift0(1) k Lift0(2) k ... Lift0(n))

where I denotes the set f c stob, c btos, c open-relay, c close-relayg and H
denotes the set f s open-relay, r open-relay, s close-relay, r close-relay, s stob,
r stob, s btos, r btosg. Initially , the list of identi�ers of closedrelays is empty.

The encapsulationoperator @enforcesthe actionss open-relay, s close-relay,
s btos and s stob to occur in communication with the actions r open-relay,
r close-relay, r btos and r btos, respectively. To analyze the speci�cation, all
internal actions like the communication between bus and stations can be ab-
stracted away, which is achieved by converting them into the � action with the
help of the � operator.

6.5 Analysis the Original Design

In our study, the � CRL tool set wasusedto generatea labeledtransition system
from the � CRL speci�cation. This LTS was analyzed with the CADP tool
set. When an error was found the speci�cation was modi�ed and the modi�ed
speci�cation was analyzedagain.

It is interesting to seethat the problems were being detected in a rather
unordered fashion. For instance problem 1 showed itself by visualizing the
systembehavior for a systemwith 3 lifts after hiding all communications to and
from the bus and reducing the resulting LTS modulo branching bisimulation.
The �rst sign of the problem wasthat not all internal actions had beenremoved.
Trying to understand the reasonfor this uncoveredthe preciseproblem quickly.

Four errors were found in the original design. We discussthese problems
separatelyand proposesolutions (Sections6.5.1{6.5.4). The modi�ed speci�ca-
tion resulting from the incorporation of our suggestionswas shown to meet the
requirements (Section 6.6).

6.5.1 Problem 1

The �rst problem occurs if in the startup phase station 2 sends a st ar tup
messagebefore the relay betweenstation 1 and 2 is opened(seeFigure 6.1 and
the example in Section 6.2.2). This st ar tup messageis received by station 1,
which will draw the erroneousconclusion that the circle is completed. From
this all sorts of errors may occur (depending on the exact timing). For example,
station 1 sendsthe st andby message,which initiates normal operation, while
the relay betweenstation 1 and station 2 is opened,no station will receive this
message.The startup phasewill continue as intended until station 1 receives
the st ar tup messagefrom the last station in the system. As this is unexpected
it will result in a deadlock.

The developershad spotted this problem in the testing phase,but they were
unaware of its cause. They had solved the problem by adding delays before
sendinga st ar tup message.
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In our revised speci�cation, the delay is modeled by the communication of
two actions, s sync and r sync. This is enoughto make surethat station 2 waits
till the relay betweenstation 1 and station 2 is closed,beforeit sendsa st ar tup
message.2

Our experiments have indicated that this solves the problem adequately
(if the delay is long enoughto make sure that the relay betweenstation 1 and
station 2 is openedbeforestation 2 sendsthe st ar tup message).The developers
implemented our solution and con�rmed that it su�ces to delay only the second
st ar tup message.The main modi�cation is made in the de�nition of process
Lift0 . It is shown together with the solution to the secondproblem at the end
of Section 6.5.2.

6.5.2 Problem 2

The secondproblem occurs if the setref buttons of two lifts are pressedat
almost the same time. This may result in di�eren t lifts moving in di�eren t
directions. Assumethat the system consistsof four lifts (A, B, C, D) and that
the setref buttons of A and C are pressedat the sametime (seeFigure 6.1).
Both A and C send a st ar tup message,which is received by respectively B
and D. The relays betweenA and B, and betweenC and D are openedagain.
Next B closesthe relay between B and C and then B broadcasts a st ar tup
message.This messageis received by C. Station C draws the conclusion that
the circle is completed and initiates normal operation. At the same time D
closesthe relay betweenD and A and sendsa st ar tup messagethat is received
by A, after which A initiates normal operation. The result is that there are two
independently operating networks, one consisting of A and D; the other of B
and C. There is no way in which the stations or the bus can prevent or detect
this situation.

A similar situation may occur if the setref buttons of two neighboring
lifts (say A and B) are pressed. Assume that B sends a st ar tup message
before A does so. The messagefrom B is received by C. Assume that next
the relay between B and C is opened again and that A subsequently sendsits
startup message.Station B receives it, draws the conclusion that the circle is
completed, and initiates normal operation. Station A opens the relay between
A and B, and after receiving a st ar tup messagefrom D it �nishes the startup
phase. The result is that B is isolated from the rest of the network. Again the
system will not detect this error.

We have modi�ed the speci�cation in such way that it is impossibleto ini-
tiate the system by pressing the setref button of several lifts at once. The
processSetref monitor is de�ned to prevent that in the startup phasemore than
one setref button is pressedat di�eren t lifts at the same time. The action
setref (n) in Lift0 is replaced by the action s init (n), which applies a lock on
the monitor. After station 1 gets a st ar tup message,it releasesthe lock by
the action s stable. During the period when the monitor is locked, pressing

2The operator @can enforce the two actions s sync and r sync to occur in communication
with each other, and not on their own.
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the setref button at another station doesnot have an e�ect on the whole lift
system.

comm s init j r init = c init
s stablej r stable= c stable
s syncj r sync= c sync

proc Setrefmonitor =P
n:Addressr init(n) �r stable�Setrefmonitor

proc Lift0(n:Address)=
s init(n) �s close-relay(n)�s stob(mes(1,st ar tup ),n)�
s open-relay(n)�s sync�P

mes:Messager btos(mes,n)�
(s stable�s stob(mes(1,st andby ),n)�
Lift2(n,1,getaddress(mes),st andby )
� eq(getstate(mes),st ar tup )� � )
+

P
mes:Messager btos(mes,n)�

(s close-relay(n)�
(r sync�s stob(mes(2,st ar tup ),n)�Lift1(n,2,st ar tup )
� eq(getaddress(mes),1)�
s stob(mes(suc(getaddress(mes)),st ar tup ),n)�
Lift1(n,suc(getaddress(mes)),st ar tup ))

� eq(getstate(mes),st ar tup )� � )

The developers did not implement this solution, but chose to emphasize
in the manual that it is important to make sure that in the initial phase the
setref button of only onelift is pressed.We alsotook this assumption into our
� CRL model. Given the chosenbus it seemsimpossible to solve this problem
satisfactorily. As a result of our analysis, the implementation of the lift system
was adapted. At initialization of the system, a random identi�er is created to
minimize the risk that more than oneindependent network comesinto existence.

6.5.3 Problem 3

The third problem occurs if during normal operation a button is pressedand
releasedat an inappropriate moment. Supposethat in a network of four stations
all stations are st andby , and that the down button of station 1 is pressed,as
a result of which it acquires the down state. When it is the turn of station 1
to use the bus it broadcaststhe down state, and all other stations adopt this
state in response. Supposethat the down button of station 1 is releasedafter
station 3 sendsits down message,but beforestation 4 hasdonethis. As a result
station 1 returns to the st andby state. In this state it adopts the state of all
state messagesit receives, so when station 4 sendsits state messageit adopts
the down state. We now have the situation that all stations are in down state,
but there is no active station. This meansthat they will remain in that state
until the system is shut down.
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This problem was independently discovered by the developers when testing
the system. They tried to use ags to solve this problem, more discussioncan
be found in the analysisof the redesign. Our solution to this problem is simple.
We let the station wait to becomepassive after the button is released,until
it is that station's turn to use the bus. This is the solution incorporated in
our modi�ed speci�cation. The main modi�cation is made in the de�nition of
processLift3 . It is shown together with the solution to the fourth problem at
the end of Section 6.5.4.

6.5.4 Problem 4

The fourth problem occurs when during normal operation two (up or down )
buttons on di�eren t lifts are pressedat almost the sametime. Suppose there
are four stations in the network and that the down buttons of station 1 and
station 2 are pressedat the samemoment, as a result of which both stations
becomeactive. Assume that it is station 1's turn to use the bus. It sendsa
down message,and in responsestation 3 and station 4 adopt the down state.
In turn stations 2, 3 and 4 senda down message.When it is the turn of station
1 to use the bus again, it has counted three down messages,so it sendssync
(after which all lifts move down), and as the down button is still pressedit
then sendsdown . Now it is station 2's turn and as this station is active and
has counted three down messagesit sendsa sync message.Suppose(and now
comesthe problem) that the down button of station 1 is releasedafter station
1 has sent the down messageand beforestation 2 sendsthe sync message.As
a result station 1 is in st andby when it receivesthe sync message,and its lift
remains at the sameheight while the others move down.

A similar problem occurs if the down button of station 2 is releasedjust
after station 3 has sent its down messagebut before station 1 sendsits sync
message.In this caselift 2 will remain at the sameheight while the others move
down.

This problem was not known to the developers and found its way into the
implementation. We propose to solve this problem by allowing a station to
becomeactive only when it is its turn to use the bus and only when at that
moment there is no other station active. In the revised speci�cation, a Bool
parameter is added into the de�nition of processLift2 to mark the station that
wants to be active. It is set true when one button of the station is pressed.
When it is the marked station's turn to usethe bus, but it �nds there is already
an active station in the system, the marked station fails to be active. It adopts
the state of the received messageand broadcaststhe message.Our experiments
indicate that this solvesthe problem adequately.

proc Lift2(n:Address,m:Address,nos:Address,s:State,c:Bool)=
(up(n)�Lift2(n,m,nos,up,nos,T)+down(n)�Lift2(n,m,nos,down ,nos,T))
� eq(s,st andby )� �
+

P
mes:Messager btos(mes,n)�

(move(n,s)�Lift2(n,m,nos,s,c)
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� eq(getstate(mes),sync )�
(((s stob(mes(m,s),n)�Lift3(n,m,nos,s,nos)
� eq(getstate(mes),st andby )�
s stob(mes(m,getstate(mes)),n)�Lift2(n,m,nos,getstate(mes),F))

� c�
s stob(mes(m,getstate(mes)),n)�Lift2(n,m,nos,getstate(mes),F))

� eq(getaddress(mes),pre(m))�
(Lift2(n,m,nos,s,c)� c� Lift2(n,m,nos,getstate(mes),c))))

proc Lift3(n:Address,m:Address,nos:Address,s:State,count:Address)=
released(n)�Lift3(n,m,nos,st andby ,nos)
� not(eq(s,st andby )) � �
+

P
mes:Messager btos(mes,n)�

((s stob(mes(m,st andby ),n)�Lift2(n,m,nos,st andby ,F)
� eq(s,st andby )�

(s stob(mes(m,sync ),n)�move(n,s)�
s stob(mes(m,s),n)�Lift3(n,m,nos,s,nos)
� eq(getstate(mes),s)̂eq(count,2)�
s stob(mes(m,s),n)�Lift3(n,m,nos,s,nos)))

� eq(getaddress(mes),pre(m))�
(Lift3(n,m,nos,s,pre(count))
� eq(getstate(mes),s)�
Lift3(n,m,nos,s,count)))

After these four problems were all repaired, no more problems have been
found. We showed by meansof model checking that that this modi�ed speci�-
cation meets the requirements in the next section. The speci�cation that was
model checked is given at http://www.cwi.n l/ ~pangju n/l if t/ .

6.6 Veri�cation with CADP

6.6.1 Expressing the requiremen ts

There are �v e requirements for the lift system. The �rst property is a universal
one: deadlock freeness. In the regular alternation-free � -calculus syntax (see
Section 2.4) this is speci�ed as follows:

P1 [T � ] hTi T

stating that every reachable state has at least one successor.
The secondproperty is that of LivenessI , which meansthat buttons on the

stations can eventually be pressed.The regular alternation-free � -calculuscode
is given below,3 where `?' is universally quanti�ed on the sort Address:

P2.1 [(: up(:)) � ] h(: up(:)) � �up(?)i T

P2.2 [(: down(:)) � ] h(: down(:)) � �down(?)i T

3 \." is used to match any character in regular expressions.
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It states that all fair executionsequencesleading to an up or down action after
zero or more transitions.

The property of Liveness II is expressedbelow. We use `?' to indicate the
addressof the lift on which the up (or down ) button is pressed,it is universally
quanti�ed on the sort Address.

P3.1 [(: (up(:)jdown(:))) � �up(?)]
�Y :hTi T ^ [(: (up(:)jdown(:)jreleased(?)jmove(:; up)) )] Y

P3.2 [(: (up(:)jdown(:))) � �down(?)]
�Y :hTi T ^ [(: (up(:)jdown(:)jreleased(?)jmove(:; down )) )] Y

It says that in any executionsequencecontaining only onebutton-pressedaction,
and containing no button-released action of the pressedbutton, the system
always begins to move.

The fourth property of our speci�cation is Safety I . It says that if one of
the lifts moves, all the other lifts should not move in the opposite direction.
What is more, to keepthe trucks in balance,all lifts have to move in the same
direction. Note that Safety I also requiresthat all lifts should move at (almost)
the samemoment, the CAN bus can guarantee that a sync messageon the bus
is immediately received by all other stations connectedto the sending station
via closedrelays, we did not take this into account. To formalize this property,
any order of the lifts' movements must be dealt with carefully. This meansthat
the sizeof the formula grows in a factorial fashion with respect to the number
of lifts. To solve this problem, we split the formula into pieceswhich can be
checkedby the model checker Evaluator. Taking a lift systemwith three stations
as an example,one pieceof this property is speci�ed as follows:

P4 [: (move(1; up)jmove(2; up)jmove(3; up)) � �
move(1; up)�
: (move(1; up)jmove(2; up)jmove(3; up)) � �
move(2; up)�
: (move(1; up)jmove(2; up)jmove(3; up)) � �
(move(3; down )jmove(3; st andby ))] F

The above code says that in all paths, lift 1 is the �rst to move up, after that,
no movement of the other stations, and then lift 2 movesup, alsono movements
of other stations following; moreover, the action of lift 3 moving down (or not
moving) always results in a state where F holds. Equivalently , as long as lift 1
and lift 2 move up, lift 3 cannot move down or remain at the sameheight. The
other possibilities of the movement of stations can be speci�ed similarly.

The �fth property of SafetyII statesthat if no up or down button is pressed,
then the systemcannot move up or down . The following shows the code in the
regular alternation-free � -calculus.

P5.1 [(: up(:)) � �move(:; up)] F

P5.2 [(: down(:)) � �move(:; down )] F

This shouldbereadasfollows: if an executionsequencedoesnot contain button-
pressedaction, then in the resulting state the stations cannot move up or down.
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Number of lifts States Transitions
2 383 636
3 7,282 18,957
4 128,901 390,948
5 2,155,576 8,287,715

Table 6.1: Labeled transition system dimensions

6.6.2 Verifying the mo di�ed speci�cation

All �v e requirements stated in Section 6.3 were shown to be satis�ed by our
modi�ed � CRL speci�cation of the lift system with respectively 2, 3, 4 and 5
lifts. The dimensionsof the generatedLTSs are summarized in Table 6.1. For
each of the lift systems,the numbers of states and transitions of the generated
LTS are given. The sizeof the generatedLTS quickly increaseswith the number
of the lifts. This is due to the fact that buttons on each lift can be pressedin
any arbitrary order. Generation and model checking were performed on a 1.4
GHz AMD AthlonTM Processorwith 512 Mb memory.

Owing to a distributed state spacegenerationalgorithm [22], wecangenerate
the LTS for a systemwith six lifts on a cluster at CWI. The generatedLTS has
around 33; 900; 000 states and 165; 000; 000 transitions, which is too large to
serve as an input to the model checker. Hence, the �v e requirements were not
checked on this LTS.

6.7 UPP AAL Mo del of the Redesign

The developersof the original designin � CRL decidednot to wait for the results
of the formal analysis and redesignedtheir implementation basedon their own
solutions.

The developersexperienceda new problem in the redesign. Again the reason
wasunclear. Sincethe error tracesdisplayeda regular pattern in time, the devel-
opers thought modeling exact timing might reveal the reasonfor this problem.
In the � CRL speci�cation, time is abstracted away. We could extend the � CRL
model with exact timing information, but there is no automated veri�cation
tool set for timed processalgebras. Therefore it was decided to use UPPAAL
[111], which is a tool set for validation and model checking of real-time systems.

UPPAAL is a tool set for validation and model checking of real-time systems,
which are modeled as networks of timed automata [3] extended with global
sharedvariables. It consistsof a number of tools including a graphic editor for
systemdescription, a simulator and a model checker. The idea of the UPPAAL
tool set is to model a systemusing timed automata, simulate it and then verify
properties of the system. During the designphase,the graphic simulator is used
intensively to validate the dynamic behavior of each designsketch, in particular
for fault detection, and later on for debugging the generateddiagnostic traces.
The veri�er mainly checks for invariants and reachabilit y properties. It doesso
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by exploring the state spaceof a systemusing `on-the-y' searching techniques.
It usessymbolic techniquesto reducethe veri�cation of modal logic formulas to
solving simple reachabilit y constraints. Somenotable recent casestudies with
UPPAAL are [84, 114, 15].

The UPPAAL model presented in this section is the result of a few steps.
First the � CRL model of the original designwastranslated into UPPAAL. This
model was then changed into a representation of the redesign by adding the
developers' solutions to the problems, that were found in the original design.
The UPPAAL model of the redesign is also more speci�c, since interactions
between the environment and the lift system are added that were abstracted
away in the � CRL model of the original design. Furthermore, the model was
extended with exact timing information. With respect to the explanation of
the original design in Section 6.2, the redesigncan be viewed as a re�nement
of the � CRL model. However, the desired behavior of the lift is basically the
sameas explained in Section 6.2. The redesignshould therefore meet the same
requirements as the original design.

The UPPAAL model contains four components. They are automata: Sta-
tion, Bus, Interface and Timer . In UPPAAL, an automaton can be instantiated
an arbitrary number of times. As explained in Section 6.2, the lift system con-
sists of one bus and an arbitrary number of lifts. The automaton Bus models
the can bus. For each lift in the system, we create two automata: Station and
Interface. The automaton Station models the micro controller. In automaton
Interface, the pressingand releasingof buttons on the lift is modeled. The au-
tomaton Timer is used to model time delay. In this section we walk through
the model. Pictures of theseautomata are presented with only necessaryexpla-
nation.

6.7.1 Transforming the � CRL mo del

To analyze the redesignof this system, we �rst transformed the � CRL model
into UPPAAL. In this section, we discusssomemodel choicesthat were made.

Value passing

In � CRL, two actions can only synchronize if they occur in parallel, and if their
data parameters are semantically the same,which meansthat communication
can be used to represent data transfer from one processto another. The com-
munication function was usedheavily in the � CRL speci�cation of the original
design, to model the communications between the bus and stations. However,
in UPPAAL, data transfer (or value passing)betweenprocesses(or automata)
cannot be modeled in this way.

We de�ne two channelsbetweenthe bus and stations: bustolift and lifttobus,
and declareseveral global variables for data transfer when communication hap-
pens. When a station wants to senda messageto the bus, it has to instantiate
the valuesfor someglobal variablesin the message,for instancethe state and the
sender'sposition. When communication takesplace, the valuesof those global
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Figure 6.3: The automaton Bus

variablesare savedto the variablesusedby the bus. After communication, those
global variables are provided with default values. In a similar fashion, messages
are sent from the bus to stations. Detailed information can be found in the
automata Station and Bus (seeFigure 6.3, Figure 6.5 and Figure 6.6).

Messages broadcasting

In � CRL, summation
P

d:D p(d) providesthe possibly in�nite choiceover a data
type D. In the � CRL speci�cation of the bus, when the bus getsa messagefrom
a station, it can compute the set of stations who can get this messagevia closed
relays. Then the bus can chooseone station from the set nondeterministically,
and send it the message. In this way, we can model the broadcasting of a
message.In UPPAAL, the summation operator is absent. We set a kind of �xed
order for the bus to broadcast a message.The relay controlled by a station is
modeledasa ag. When the relay is closed,the ag is set to 1; otherwise it is 0.
When a bus broadcastsa message,it starts to check the ag at the position of
the messagesender. If the ag is 1, it sendsa messageto the station connected
by this relay, and continues to check the ag of this station. As soon as it
reaches a ag with value 0, it continues at the station preceding the message
sender. If the ag at this station is 1, the messageis sent to the station, and
the bus continues to check the ag at the preceding station. This procedure
moves on until the bus reachesanother ag with value 0. Recall that in both
phasesof the lift system, there is at least oneopen relay, which guaranteesthat
the broadcastingprocedureterminates. In the automaton Bus (seeFigure 6.3),
when a bus getsa messageat the initial node, it starts broadcastingthe message
from the left part of the picture, then continues at the right part, and �nally
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pressed[myid]:=1, 
released[myid]:=0

cyclecounter[myid]==CYCLES
mainloop!
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released[myid]:=0

cyclecounter[myid]==CYCLES

mainloop!

pressed[myid]:=0, 
released[myid]:=0

onesetref>0
buttonstate[myid]:=Standby

Figure 6.4: The automaton Interface

goesback to the initial node.

One SETREF button pressed

In Section 6.5, the secondproblem of the original designwas found during the
startup phase. It occurs if the setref buttons at two lifts are pressed. The
result of the problem is that after the startup phasethere will be two lift systems
instead of one. The situation may lead to the violation of all the requirements.
Given the chosenbus it seemsimpossible to solve this problem satisfactorily.
The developers choseto emphasizein the manual that it is important to make
sure that in the startup phasethe setref button of only onelift is pressed.We
also take this assumption into our analysis of the redesign.

In the UPPAAL model it is impossible to press another setref button
after one is pressed.We useguards on transitions to block pressingof setref
buttons after one setref button has beenpressed.In the automaton Interface
(see Figure 6.4), a variable onesetref is used as a guard on both transitions
from the initial state. Initially the variable is zero, so one Interface can take
the transition with the guard onesetref==0, if the setref button on the lift is
pressed. The variable onesetref is now set to 1. In order to leave their initial
state, the other Interface automata have to take the other transition with the
guard onesetref> 0. Therefore it is simply made impossibleto pressmore than
one setref button in our UPPAAL model.

6.7.2 Adding the solutions

In the automaton Station, the two phasesof the lift system as explained in
Section 6.2 are clearly distinguishable.
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Figure 6.5: The automaton Station: Startup phase

Startup

Until all the stations have reached the node normaloperation, they are in the
startup phase. The main role of the startup phaseis to �nd out which position
a lift has in the network and how many lifts there are in the network. The
variablesposition and number are assignedto each lift to store this information.

The station where the setref button is pressedwill move clockwise in Fig-
ure 6.5 from the initial node. It gets position 1, closesits relay, and sendsa
st ar tup messageto the bus. After that it opens its relay and waits for a
st ar tup message.When it gets the st ar tup message,it adopts the value of
the variable number in this message;iy this way it gets to know how many lifts
there are in the system. Then, it sendsa st andby messageand reaches the
normaloperationnode. The other stations will move anti-clo ckwise in Figure 6.5
from the initial node. They �rst get a st ar tup message,increasethe senderof
the messageby one,and save it astheir own position. They closetheir own relay
and send a st ar tup message.There is a small loop in Figure 6.5, to indicate
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Figure 6.6: The automaton Station: Normal operation

that the stations keepgetting st ar tup messagesand changing the knowledgeof
the number of lifts in the system. In the end, they will get a st andby message,
and end up in the normaloperation node. When all the stations have reached
the normaloperationnode, all the stations are st andby . They all have a unique
value for position, and the value of number of all the lifts is equal to the total
number of lifts in the network.

Some time delays are added into the startup phase to solve one problem
found during testing. The timing information will be discussedin Section6.7.3.

Normal op eration

At node normaloperation, a station enters the normal operation phase,which is
depicted in Figure 6.6. In the normal operation phase, a distinction is made
between two loops which a station can perform. One is the main loop, which
takesplaceat the node normaloperationin Figure 6.6; and the other onewe will
call internal loop, which is the other part of Figure 6.6. The di�erence between
the main loop and the internal loop can be stated as follows: in a main loop
the station receivesstate messagesfrom its Interface and can change its state
accordingly, and in an internal loop the station exchangesstate messageswith
Bus and changesits state accordingly.

The main loop is a short loop in which the automaton Station synchronizes
with its Interface. Executing the main loop is the only way the station can get
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information about which button on the lift (if any) is pressedor released.This
main loop takesplace after a �xed number of internal loops, which is modeled
as a constant CYCLES in the UPPAAL model. And a counter cyclecounter
is used to record the number of internal loops that have happened after the
last main loop. When cyclecounter==CYCLES, the main loop takes place and
cyclecounter is reset to 0. If the station detects a di�erence betweenits current
state (modeledby variable currentstate) and the state of the Interface (modeled
by variable buttonstate), the station may change its state and adopt the one
from the Interface. The main loop is also part of the original design,but it was
abstracted away in the � CRL model in Section 6.4. In the UPPAAL model of
the redesignit could not be left out, becauseas we will seethe solutions from
the developers interact in a critical way with the main loop.

In an internal loop, a station can do several things. First a station can
get messagesfrom the bus. Second,a station can senda messageto the other
stations, if it gets the turn to use the bus. Third, the active station can count
state messagesand initiate a movement of the whole system. In that case
the active station will enter the node activemovement, while the other stations
get a sync messageand enter the node passivemovement. A variable move is
associated to each station to indicate the direction of the current movement.

Flags

Problem three and four found in Section 6.5 occur in the normal operation
phase. The third problem happens when an up or down button is pressed
and releasedat an inappropriate moment. The lift system will end up in the
situation that all stations are in up or down state, but there is no activestation.
This meansthat all the lifts will remain in that state until the system is shut
down. This problem violates property Liveness II in Section 6.3. The reason
for this problem is that in the original systema station becomespassive assoon
as the pressedbutton on this lift is released. This problem was discovered by
the developers when testing the system, and they solved it by meansof ags.

The fourth problem occurs when two up or down buttons on di�eren t lifts
are pressedat the sametime and one of them is releasedat an inappropriate
moment. As a result, some lifts will move, and one lift (where the button
is released) remains at the same height. This violates property Safety I in
Section6.3. The reasonfor this problem is that a station becomesactive assoon
asa button on this lift is pressed.This problem wasunknown to the developers
and found its way into the �nal implementation of the original system. The
detailed description of each problem can be found in Section 6.5. We proposed
to solve this problem by allowing a station to decideto be active or passive only
when it is its turn to usethe bus. In the analysisof the redesign,we focuson the
solutions from the developers,and explain how they fail to solve the problemsin
Section6.8. Furthermore, in Section6.9 we re�ne our solution from Section6.5,
and show that it doessolve the problems.

The developers attempted to solve the third problem with ags. When they
areset their value is 1, and whenthey are resettheir value is 0. The ags serveas
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blocks: they can prevent state changeswhen they are set. Two type of ags are
usedin the redesign,i.e. Can , Echo . Every station has its own ags. Initially
all ags are 0. The Can ag is set when a station receives a state message
from the bus. An exception is the st andby message.If a station receives this
message,the opposite happens: Can is reset,but only when the current state of
the station is also st andby ; otherwise Can is left unchanged. The idea of the
developers was to usethe Can ag to block state changesby the main loop. If
Can is set, the main loop cannot changethe state of the station. In Figure 6.6,
we have two main loops with di�eren t guards. One is CAN==1 , and the other
CAN==0 . If CAN==0 the main loop is taken. The current state of the station
is comparedwith the Interface. In Figure 6.4, Interface can communicate with
Station when it is in the nodes inUp (the up button is pressed), inDown (the
down button is pressed)or inSby (no button is pressed). If CAN==1 , some
counters such as cyclecounter are reset, but nothing elsehappens.

The Echo ag can only be set via the main loop with guard CAN==0 .
When the station detects a di�erence between its current state and the state
of the button, Echo is set. When Echo is set, the state of the station cannot
changeby messagesit receivesfrom the bus. Like Can , Echo can only be reset
when the state of the station is st andby and a st andby messageis received
from the bus. But for Echo , there is an extra requirement that has to be
ful�lled before it can be reset: it has to be the station's turn to usethe bus.

6.7.3 Adding timing information

The time model in UPPAAL is continuousor dense.Clocks are usedto capture
time in UPPAAL. They can be associated with a transition or a node. In a
transition, clock variables can be reset or used as a guard. In a node, clock
variables can be used as a hold up to let the processstay in that node for a
certain amount of time. Such nodesare said to be labeled with an invariant.

The way we modeledthe time information of the lift systemis inuenced by
the developers' solution to solve one problem found in the startup phase. It is
also inuenced by the fact that during normal operation the stations take �xed
turns to use the bus. During the startup phase there is no such order. This
di�erence has led to a di�eren t treatment of the timing information in the two
phases.We �rst discussthe startup phaseand then normal operation.

Startup

The �rst problem found in Section 6.5 occurs in the startup phase. It has to
do with the re-opening of the relay between the �rst and second lift at the
wrong moment. Consider Figure 6.1 in Section 6.2 again. The setref button
is pressedon station B, which closesits relay and sendsa st ar tup message
to station C. If station C sendsa st ar tup messagebefore the relay between
station B and station C is opened,this messageis received by station B, which
draws the incorrect conclusionthat there are only two lifts in the network.

The solution to this problem is to let station C (or in general the station
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with position 2) wait until the relay between the �rst station and the second
station is opened,before sending the st ar tup message.The developers added
delays to the original designto make sure this happens.

In the redesign,during the startup phase,a local clock x is assignedto each
station. The local clock is reset when a station gets a st ar tup message,or a
setref button is pressed.This is usedto capture the moment when the stations
join the network. Receivinga messagefrom the bus or sendinga messageto the
bus costs1 millisecond. The opening and closing of a relay cost 5 milliseconds.
There is a delay of 24 milliseconds before sendinga st ar tup message.This is
all the timing information in the startup phase.

Normal op eration

During normal operation, the local clocks usedduring the startup phaseare not
usedanymore. Instead we useone global clock. We create an extra automaton
Timer depicted in Figure 6.7.

Transitions normally don't take time in UPPAAL, but this doeshappen in
the lift system. Each main loop consumes1 millisecond. After each main loop,
the station waits 0.5 millisecond to get messagesfrom the bus. During the
internal loop, the receiving and sending messagestake 1 millisecond. Before
sendinga sync message,stations delay 1.5 milliseconds. Before sendinga state
message,stations delay 2 milliseconds. This is all the timing information in
the normal operation phase. We use Timer to expresstime consumption by
transitions; this idea is borrowed from [84]. The guard endofST==N makes
surethat the Timer is only usedin normal operation, whereN is the number of
lifts in the system. In node go, time is constrained to not progressat all. This
meansthat in order for time to progress,one of the edgestn? must be taken;
where n 2 f 5; 10; 15; 20g expressesthe amount time of delay. Theseedgesthen
lead to nodeswhere time can progresswith the corresponding number of time
units, where after control returns immediately to the go node.
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6.8 Analysis of the Redesign

Sincethe redesigndoesnot changethe desiredexternal behavior of lifts, the UP-
PAAL model of the redesignshould satisfy all the requirements in Section 6.3.
We formulate thoserequirements in the UPPAAL requirement speci�cation lan-
guage, and verify them, sometimeswith the help of test automata, to check
whether the redesignsolves problems 3 and 4. We give the de�nition and ex-
planation of the UPPAAL requirement speci�cation language [111] briey as
follows:

� A[] P: for all paths p always holds;

� Ehi P: there exists a path where p eventually hold;

� Ahi P: for all paths p will eventually hold;

� E[] P: there exists a path where p always holds;

� p! q: whenever p holds q will eventually hold.

where p and q are state formulas.

6.8.1 Expressing the requiremen ts

We �rst check deadlock freeness. This can be translated into the UPPAAL
requirement speci�cation languagedirectly:

� A[] not deadlock

The redesignsatis�es this property, which indicates that the solution from the
developers solvesthe �rst problem found in Section 6.5. In the implementation
of the lift system,the delay for each st ar tup messageis 24 milliseconds. In the
UPPAAL model, a delay of 6 millisecondsfor each st ar tup messageis already
enoughto solve this problem.

LivenessI says that buttons on a lift can be pressedand releasedwhenever
the user wants, and that the system will respond to this. After implementing
the main loop in the UPPAAL model, it is always possible to pressor release
buttons. So for the redesign,LivenessI becomestrivial.

Liveness II says that if an up or down button is pressedand not released
and no other button is pressed,all lifts will move. In the UPPAAL requirement
speci�cation language, it is impossible to expressthis property. Fortunately,
accordingto [2], we can transform this property into a test automaton, in which
an approach is developed to model-checking of timed automata via reachabilit y
testing. The idea is to create a bad state in the test automaton and let the
veri�er check whether the system can reach this state. If it does, the system
violates a certain property.

The test automaton may need some extra decorations for the veri�cation
purpose. In principle, with the test automaton we can expressall scenarioswe
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want to check. As this would lead to a possibly in�nite state space,somesce-
narios which are not interesting can be abstracted away. For example,in the lift
system, the buttons can be pressedand releasedmany times. We consideronly
those scenarioswhere a button on one lift is pressedand releasedat most once.
The test automaton for the requirement Liveness II is depicted in Figure 6.8
below.

We add new synchronizations betweenthe Interface automata and the test
automaton via pressand releasechannels,to model the number of pressingand
releasing actions. In the test automaton only one pressing and releasing per
lift can take place. nomore is a variable that is used to block more pressing
and releasingactions. This test automaton is used to expressthat if a button
is pressedand not releasedany more, after some period of time (modeled by
variable enoughcycles) all the lifts will move. We now check whether the test
automaton can reach the node bad. If the test automaton reaches the node
bad, it meansthat not all the lifts have moved and the systemviolates property
LivenessII .

� A[] not testautomaton.bad

Test automata are alsousedto model and check the other two safety properties.
With Liveness II , we could check that if one button is pressed,all the lifts

reach their activemovementor passivemovementnode within a certain amount
of time. What we do not check is whether they move in the samedirection.

Safety I demandsthat whenever a lift moves,all the other lifts movesimulta-
neously in the samedirection. The corresponding test automaton is depicted in
Figure 6.9. This test automaton waits for one lift to reach the activemovement
node, which is detected by a synchronization on channel go? between Station
and this test automaton. The test automaton then checks whether the other
lifts move in the samedirection (modeled by guard visitmovement< N) within a
certain amount of time (modeled by enoughcycles==NCYCLES).

Safety II states that there will be no movement when no button has been
pressed. The corresponding test automaton is depicted in Figure 6.10. The
variable noupdown (meaning no up or down button pressed)is used to block
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all pressingsof buttons in the Interfaces. Now we can check whether it is still
possiblefor the lifts to reach movement nodes(modeledby visitmovement> =1 ).

The redesignsatis�es requirement Safety II , and violates requirements Live-
ness II and Safety I . We will discussthe diagnostic traces and the reasonsin
the next section.

6.8.2 Problems

The developers invented ags to solve the third problem found in Section 6.5.
Theseags seemto solve the error scenariodescribed in Section6.5. But during
the testing phase,the developers encountered a new error; again the causefor
this error was not clear to them. We have built a UPPAAL model (seeSec-
tion 6.7) for the redesignand checked it. LivenessII turned out to be violated.
We �rst investigatedthe diagnostic trace generatedby the model checker in UP-
PAAL, and then gave the reasonwhy the solution from the developers failed.
The generated diagnostic trace contains 256 transitions; we used the graphic
simulation tool in UPPAAL to analyze it.

Initially all the ags are 0. When an up button is pressedon one station
(A), Echo will be set and the state of station A will change to up. Station
A sendsan up message.The other stations will set the Can ag and change
their state to up. Suppose the button is releasedagain. The ag of station
A does not change, but its state will change to st andby (see the main loop
in Figure 6.6). Station A will send a st andby messagewhich the others will
adopt. When they have adopted this state, and if they receive another st andby
message,the Can ags of the other stations will be reset. After a short while
all Can ags in the network are 0, Echo of station A is 1, and all the states of
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the stations are st andby . Supposenow that an up button of another station
(B) is pressed. Station B will send an up message.Station A will receive this
but cannot change its state becauseEcho is set. When it is station A's turn
to usethe bus it will therefore senda st andby message.Station B will receive
this st andby message,and it will not count enough up messages.The whole
counting procedurehas to start over again. Station B will sendan up message.
The other stations will adopt this state and senda up message.But when it is
station A's turn, again sinceEcho is set, it will senda st andby messageand
station B will again not count enoughup messages.It is clear that the Echo of
station A should be reset to get out of this situation, but that can only happen
when the state of the station is st andby , a st andby messageis received, and
it is this station's turn to usethe bus. For station A this never happens. As a
result, the whole system will never move, even when an up button is pressed.

The test automaton detects this problem. Even though the solution of the
developers has some virtue, they seem not to have taken into account that
the main reason for the third problem lies in the fact that the active station
immediately changes its state to st andby after a button is released. Their
solution was directed to block state changesto the active station after its state
has changed to st andby . This is not the heart of the problem and therefore
the problem remains in the redesign.

The fourth problem found in Section 6.5 is also still in the redesign. The
redesignviolates property Safety I . The reasonresembles what is already ex-
plained in Section6.5. This is not very surprising, sincethe fourth problem was
unknown to the developers at the time of the redesign.

6.9 A New Solution

In this section,we re�ne the solution proposedin Section6.5 in such a way that
it correspondswith UPPAAL and resemble to the solution from the developers.
The key point why our solution di�ers from the ags added into the redesign
is that our solution creates a link between the state change of a station and
the turn of the station to use the bus. This idea was already mentioned in the
� CRL model in Section 6.5, but it was not further speci�ed. With the more
exact model of the redesign,including the main loop, and using the idea of the
ags the developers cameup with, now we work out the idea in detail.

The new ags are called Change and Active . They are assignedto each
station. Can and Echo are no longer a part of the new solution. When
Active is 1, the corresponding station is active; otherwise,the station is passive.
Change of a station is set when there is a button pressedor releasedat this
station (through the main loop). This is usedto remember that the Active ag
at this station must change from active to passive, or vice versa. Only when
the station gets its turn to use the bus, this change will actually happen. If
onestation wants to becomeactive, it has to make sure that there are no other
active stations in the system,by checking whether the state of the messagefrom
the bus is st andby . If the Change of a station is set, this station does not
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change its state until it is its turn to use the bus to make a decision. Change
is reset together with a setting or resetting of Active .

Changing the new ags has no e�ect on the automata Interface, Bus and
Timer . They are exactly the same as in the redesign. Only the automaton
Station has undergone crucial changes. We will not explain the new Station
automaton in detail, more information can be found in [100]. All requirements
have beenchecked successfullyon the model with this new solution. In partic-
ular, problem three and four are resolved.

Remarks. Sincemore details of the lift system are taken into account in the
UPPAAL model, the state spaceof the redesignincreasesdramatically. For the
UPPAAL model of the redesign,we could only managethe analysis for systems
with three lifts (UPPAAL version 3.2.4). The requirements were checked on a
1.4 GHz AMD AthlonTM Processorwith 512 Mb memory. When it turned out
that the error traces that were discovered by the developers had nothing to do
with exact timing properties, we madea translation of the UPPAAL model into
� CRL, and repeated the veri�cation with � CRL and CADP.

6.10 Conclusions

In this chapter, we have reported an industrial casestudy on applying formal
techniques for the designand analysisof a distributed systemfor lifting trucks.
Our work can be consideredas one piece of evidencethat formal veri�cation
techniques are mature enoughto be applied in industrial projects.

First, we have described a model of the original design of a distributed lift
system in � CRL. Our primary �nding is that such a model is an e�cien t tool
to understand the behavior of embeddeddistributed systems,in the sensethat
it helped us to �nd errors and understand their nature using the available tech-
nology. We also �nd con�rmation of our previous �ndings that the possibility
to describe interactions in a processalgebraic way, and data using equational
abstract data typesprovide exactly the required meansfor this speci�cation and
its validation. The four problems found in the original designare summarized
as follows:

1. During the startup phase,the relay betweenthe �rst and secondlift is re-
openedat the wrong moment; it results in a deadlock in the lift system.

2. During the startup phase,the setref buttons at two lifts are pressed;the
system will have two independent networks instead of one.

3. During normal operation, an up or down button is pressedand released
at an inappropriate moment; this problem violates property LivenessII .

4. During normal operation, two up or down buttons at di�eren t lifts are
pressedat almost the sametime, and one is releasedat an inappropriate
moment; this problem violates property Safety I .
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The �rst three problems were also found by the developers, and the fourth was
new and unknown to them.

Second,the redesignwas then modeled in UPPAAL. The analysis in Sec-
tion 6.8 has produced someinteresting results. It shows that the redesigndoes
not satisfy all the requirements, meaning that the redesignby the developers
doesnot solve all the problems found in the original design. Only one problem
is solved by adding time delays. The third problem, for which those ags were
developed, and the fourth problem are not solved.

We could analyzethe � CRL model of the original designwith up to �v e lifts.
For increasedcertainty, it would beniceto increasethis number, preferably up to
32, as this is the maximal allowed con�guration. It is clear that more advanced
techniques are needed,and much work into these is going on. It leads too far
to mention all of them but work on parametric reduction of state spaces[70],
conuence reduction [78] and parametric composition of parallel processes[81]
are all activities striving to enable the analysis of systemswith many more up
to possibly unbounded parallel components.

The developers of the systemhave fully acknowledgedthat thesetechniques
have increasedtheir understanding and are planning to releasea new versionof
the product including the improvements we suggest.



Chapter 7

Mo del Checking a Cache Coherence
Proto col for Jackal

7.1 In tro duction

Sharedmemory is an attractiv e programming model for interprocesscommuni-
cation and synchronization in multipro cesscomputations. In the past decade,a
popular research topic hasbeenthe designof systemsto provide a sharedmem-
ory abstraction of physically distributed memory machines. This abstraction,
known as Distributed Shared Memory (DSM), has been implemented both in
software (e.g., to provide the sharedmemory programming model on networks of
workstations) and in hardware (e.g., using cache coherenceprotocols to support
sharedmemory acrossphysically distributed main memories).

Multithreading is a programming paradigm for implementing parallel appli-
cationson sharedmemory multipro cessors.The Java memory model (JMM) [67]
prescribescertain abstract rules that any implementation of Java multithreading
must follow. Jackal [174] is a �ne-grained DSM implementation of the Java pro-
gramming language. It aims to implement the JMM and allows multithreaded
Java programs to run unmodi�ed on DSM. It employs a self-invalidation based,
multiple-writer cache coherenceprotocol, which allows processorsto cache a
region (which is either an object or a �xed-size partition of an array) created
on another processor(i.e., the region's home). All threads on oneprocessshare
one copy of a cached region. The home node and the caching processorsstore
this copy at the samevirtual address.A cached region copy remains valid for a
particular thread until that thread reachesa synchronization point. In Jackal,
several optimizations [173, 174] improve both sequential and parallel applica-
tion performance. Among them, the automatic home node migration reduces
the amount of synchronization, by automatically appointing the processorthat
is likely to accessa region most often as the region's home.

In this chapter, we present our formal analysis of a cache coherencepro-
tocol for Jackal using the � CRL toolset and CADP. A � CRL speci�cation of
the protocol (including automatic homenode migration) wasextracted from an
informal (C language-like) description of the protocol. To avoid state explosion,
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wemadecertain abstractionswith respect to the protocol's implementation. Re-
quirements wereveri�ed by the � CRL toolset together with CADP. Our analysis
revealedmany inconsistenciesbetweenthe description and the implementation.
We found two errors were in the description. The developers of the protocol
checked the two errors and found their way in the implementation. Both errors
can happen when a thread is writing a region from remote (i.e., the thread does
not run on the home of the region). During the thread's waiting for a proper
protocol lock or an up-to-date copy of the region, the homenode may migrate to
the thread's processor,so that the thread actually accessesthe region at home.
The �rst error resulted into a deadlock. The second error was found when
model checking the property of only one home for each region. After updating
our formal speci�cation, the requirements were successfullychecked on several
con�gurations. Our solutions to the errors were adapted in the implementation
of the protocol.

Outline of the chapter. The remainder of this chapter is structured as fol-
lows. In Section 7.2, we discuss related work on analyzing the JMM or its
replacement proposaland verifying cache coherenceprotocolsusing formal tech-
niques. An informal description of the JMM is given in Section7.3. Section7.4
presents the Jackal systemand its cache coherenceprotocol. Section7.5 focuses
on our formal analysis in � CRL. The � CRL speci�cations for each component
of the protocol and the veri�cation results are given. Discussionsand future
work are mentioned in Section 7.6.

7.2 Related Work

The use of formal methods to analyze the JMM is an active research topic.
In [151], the authors developed a formal executable speci�cation of the JMM
[67]. Their speci�cation is operational and usesguardedcommands. This model
can be used to verify popular software construction idioms for multithreaded
Java. In [177], the Mur � veri�cation system[43] was applied to study the CRF
memory mode [120]. A suite of test programs was designedto reveal pivotal
properties of the model. This approach wasalso applied to Manson and Pugh's
proposal [121] by the same authors [178]. Two proofs of the correctnessfor
Cachet [158], an adaptive cache coherenceprotocol, were presented in [164].
Each proof demonstratessoundness(conformanceto the CRF memory model)
and liveness.One proof is manual, basedon a term-rewriting systemde�nition;
the other is machine-assisted,basedon a TLA [110] formulation and using the
theoremprover PVS. Similar to [177, 178], weuseformal speci�cation and model
checking techniques. A major di�erence is that we analyzeda cache coherence
protocol within a Java DSM system that is already implemented and far more
complicated than the abstract memory models analyzedin [151, 164, 177, 178].
Our analysis helped to improve the actual design and implementation of the
protocol.

Our work is also related to the veri�cation of cache coherenceprotocols.
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Figure 7.1: JMM memory system

Formal methods have been successfullyapplied in the automatic veri�cation
of cache coherenceon sequentially consistent systems [109], e.g. [24, 38, 87].
Coherencein shared memory multipro cessorsis much more di�cult to verify.
Recently , Pong and Dubois [143] usedtheir state-basedtool for the veri�cation
of a delayed protocol [45], which is an aggressive protocol for relaxed memory
models. We encountered the samedi�culties as [143], such as that the hard-
ware to model is complex, and that the properties of the protocol are hard to
formulate. Di�erences betweenour work and [143] are: we analyzeda protocol
designedfor distributed shared memory machines; and the protocol supports
multithr eaded Java programs, which makesmatters more complicated.

7.3 Java Memory Mo del

The Java language supports multithreaded programming, where threads can
interact among themselvesvia read/write of shareddata. The JMM prescribes
certain abstract rules that any implementation of Java multithreading must
follow. We briey present the current JMM as given in [67].

The JMM allowseach thread to cachevariablesin its working memory, which
keeps its own working copy of the variables. A thread can only manipulate
the values in its working memory, which is inaccessibleto other threads. The
working memoriesare caches of a single main memory, which is shared by all
threads. Main memory keeps the main copy of every variable. A thread's
working memory must be ushed to main memory at each synchronization point.
A synchronization point is a lock or unlock operation corresponding to the entry
or exit of a synchronized block. The memory structure is depicted in Figure 7.1.

The JMM de�nes a set of actions that threads may use to interact with
memory. A thread invokesfour actions: use, assign, lock and unlock. The other
actions: read, load, store and write, are invoked by a multithreaded implemen-
tation following the temporal ordering constraints in the current JMM ([67,
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Chapter 17]). The meaning of each action is as follows:

1. use: Read from the working memory of a variable by a thread.

2. assign: Write into the working memory of a variable by a thread.

3. read: Initiate reading from the main memory of a variable by a thread.

4. load: Complete reading from the main memory of a variable by a thread.

5. store: Initiate writing the working memory into the main memory of a
variable by a thread.

6. write : Complete writing the working memory into the main memory of a
variable by a thread.

7. lock: Get the valuesin the main memory transferred to a thread's working
memory through read and load action.

8. unlock: Put the valuesa thread holds in its working memory back to the
main memory through store and write action.

There are many problems in the current JMM [67], such as that semantics
for �nal variable operations is omitted and that Volatile variable operations
do not have synchronization e�ects for normal variable operations. In view of
theseproblems, the Java Speci�cation Request(JSR) 133is under development.
Two replacement semantics have been proposedto improve the JMM, one by
Mansonand Pugh [121], the other by Maessen,Arind and Shen[120]. A detailed
discussionof the various problemsin the current JMM can be found at http://
www.cs.umd.edu/~pugh/ ja va/ memoryModel/ . Jackal is intended to implement
the memory model in JSR, which will be releasedsoon.

7.4 Jackal DSM System

Jackal [174] is a �ne-grained DSM implementation of the Java programming
language. Its runtime system implements a self-invalidation based, multiple-
writer cache coherenceprotocol for regions.

The Jackal memory model allows processorsto cache a region created on
another processor(i.e., the region's home). All threads on one processorshare
onecopy of a cached region. The homenode and the caching processorsall store
this copy at the samevirtual address.The protocol is basedon self-invalidation,
which meansthe cached copy of a region remains valid until the thread itself
invalidates the copy, which occurs whenever it reachesa synchronization point.
Jackal combines features of HLRC [179] and TreadMarks [101]. As in HLRC,
modi�cations are ushed to a homenode; asin TreadMarks, twinning and di�ng
are usedto allow concurrent writes to shareddata. Unlike TreadMarks, Jackal
usessoftware accesschecks inserted beforeeach object usageto detect non-local
or stable data.
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The implementation of the Jackal memory model contains three compo-
nents: addressspacemanagement, accesschecks and synchronization. Several
optimizations were made to improve both sequential and parallel application
performance[173, 174].

7.4.1 Address space managemen t

Jackal stores all regions in a single, shared virtual addressspace. Each region
occupiesthe samevirtual addressrange on all processorsthat store a copy of
the region. Regionsare namedand accessedthrough their virtual address.Each
processorownspart of the physical memory and createsobjects and arrays in its
own part. In this way, each processorcan allocateobjects without synchronizing
with other processors. When a thread wishes to accessa region created by
another processor,it must potentially allocate physical memory for the virtual
memory pagesin which the object is stored, and retrieve an up-to-date copy of
the region from its home node. If a processorruns out of free physical memory,
it initiates a global garbagecollection that freesboth Java objects and physical
memory pages.

To implement self-invalidation, each thread keeps track of the regions it
accessedand cached since its last synchronization point. The data structure
storing this information is called the ush list. At synchronization points, all
regionson the thread's ush list are invalidated for that thread, by writing di�s
back to their home nodes. A di� contains the di�erence between a region's
object data and its twin data.

7.4.2 Access check

Jackal's compiler generatesa software accesscheck for every use of a region.
The accesscheck determines whether the region referencedby a given pointer
contains a valid local copy. Whenever an accesscheck detects an invalid local
copy, the runtime systemcontacts the region's home. It asksthe homenode for
a copy of the region and stores this copy at the samevirtual addressas at the
home node. The thread requesting the region receivesa pointer to that region
and adds it to its ush list. This ush list is similar to the working memory in
the current JMM [67].

7.4.3 Synchronization

Logically, each Java object contains an object lock and a condition variable.
Since threads can accessobjects from di�eren t processors,Jackal provides dis-
tributed synchronization protocols. Briey , an object's home node acts as the
object's object lock manager. lock, unlock, wait and notify calls are imple-
mented ascontrol messagesto the lock's homenode. To acquire an object lock,
a thread sendsa lock request messageto the object lock manager and waits.
When the lock is available, the manager replies with a notify message;other-
wise, the thread needsto wait for the lock to be released. To unlock, the lock
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holder sendsan unlock messageto the home node. We did not model object
locks, sincethey are not relevant to the requirements that we formulated for the
protocol (seeSection 7.5.2).

7.4.4 Automatic home no de migration

Java programs do not indicate which object locks protect which data items.
This make it di�cult to combine data and synchronization tra�c. Jackal may
have to communicate multiple times to acquire an object lock, to accessthe
data protected by the lock and to releasethe lock. Recall that the home of
a region acts as the manager of the object lock. To decreasesynchronization
tra�c, automatic home node migration has been implemented in Jackal. It
means that Jackal may automatically appoint the processorthat is likely to
accessa region most often as the region's home. This optimization is triggered
during the following two cases.

1. A thread writes to a region, and an accesscheck detects an invalid local
copy; the runtime system contacts the region's home, and �nds that the
thread's processoris the only one from which threads are writing to this
region. Then the home of this region migrates to the thread's processor.

2. A thread ushes at a synchronization point, and there is only oneprocessor
left from which threads are writing to someregion. Then the homeof this
region migrates to this processor.

Jackal can detect thesesituations at runtime, and thus reducesynchronization
tra�c. Automatic home node migration complicatesmeeting the requirements
in Section 7.5.2.

7.4.5 Other features

To improve performance,a source-level global optimization object-graph aggre-
gation, and runtime optimization adaptive lazy ushing , are implemented in
Jackal.

The Jackal compiler can detect situations where an accessto someobject
(called root object ) is always followed by accessesto subobjects. In that case,
the systemviews the root object and the subobjects as an object graph. Jackal
attempts to aggregateall accesschecks on objects in such a graph into a single
accesscheck on the graph's root object. If this check fails, the entire object
graph is fetched, which can reduce the number of network round-trips. We
did not model object-graph aggregationsince we modeled memory at a rather
abstract level.

The Jackal cachecoherenceprotocol invalidatesall data in a thread's working
memory at each synchronization point. That is, the protocol exactly follows
the speci�cation of the JMM, which potentially leads to much interprocessor
communication. Due to adaptive lazy ushing, it is not necessaryto invalidate
and ush a region that is accessedby only a singleprocessoror that is only read
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by its accessingthreads. We did not model adaptive lazy ushing, since it is
not relevant to the requirements that we formulated.

7.5 Speci�cation and Analysis in � CRL

In this section, we present a formal speci�cation of Jackal's cache coherence
protocol in � CRL and verify somerequirements at the behavioral level.

7.5.1 Speci�cation of the proto col

The cache coherenceprotocol in Jackal is more complex than an interleaved
execution of the threads, where each thread executesin program order. The
permitted setof executiontracesis a supersetof the simple interleavedexecution
of the individual threads. Furthermore, the � CRL speci�cation is an exhaustive
nondeterministic description of the cache coherenceprotocol. This may lead to
state explosion. To deal with this problem, we made someabstractions of each
component. In the following discussion, we present the � CRL speci�cation
for each component, together with the abstractions we made. For the sake of
presentation, we only give parts of the speci�cation to illuminate the crucial
points, and omit the speci�cation of data types. The complete speci�cation
can be found at Appendix A (also available at http://www.cwi.n l/ ~pangjun /
ccp/ ).

Our model of the cache coherenceprotocol is a parallel composition of
threads, processors,regions,protocol lock managersand messagequeuesupon a
set of communication actions. Fig. 7.2 shows the various components and their
interactions in the � CRL speci�cation. Pi are identities of processors,and Ti

identities of threads. By means of these communications, data can be trans-
ferred betweentwo processes.The complete � CRL speci�cation of this protocol
consistsof around 1000lines.
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proc Thread(tid:ThreadId,pid:ProcessId,FlushList:RegionIdSet)=
write(tid).ThreadWrite(tid,pid,FlushList)
+
ush(tid).ThreadInvalidate(tid,pid,FlushList)
� not(empty(FlushList))� �

Table 7.1: Speci�cation of a thread

% Synchronization between actions.
comm s refreshj r refresh= c refresh

s norefreshj r norefresh= c norefresh
s sendbackj r sendback= c sendback

proc ThreadWrite(tid:ThreadId,pid:ProcessId,FlushList:RegionIdSet)=
% The thread has written the region (rid1) before.
Thread(tid,pid,FlushList)
� test(rid1,FlushList)�P

r:Region r sendback(tid,pid,r).
% Write the region at home, if pid=gethome(r).

(s norefresh(tid,pid).WriteHome(tid,pid,insert(rid1,FlushList))
� eq(gethome(r),pid)�

% Otherwise, write the region from remote.
s norefresh(tid,pid).WriteRemote(tid,pid,insert(rid1,FlushList)))

Table 7.2: Speci�cation of a thread writing

Threads

Each thread runs on a processor,and can perform a number of actions: read,
write and invalidate. It maintains two lists: ReadList contains the identities
of regions that it is reading or recently read from, and WriteList contains the
identities of regionsthat it is writing or recently wrote to.1 When a thread starts
reading from or writing to a region, the corresponding accesscheck determines
whether there is a valid local copy of this region at the thread's processor.The
server lock is neededif the thread runs on the region's home (i.e., if the thread
reads or writes at home); otherwise, the fault lock of the thread's processoris
acquired (i.e., if the thread reads or writes from remote). When a fault lock
is granted, the thread retrievesan up-to-date copy of the region from its home
node. The thread continues reading from or writing to the region and �nally
releasesthe lock by sending an unlock messageto the protocol lock manager
(seeTable 7.2 and Table 7.3).

When a thread invalidates, it empties both its ReadList and WriteList. If

1We only model threads with a FlushList in � CRL. Seelater discussion.
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% Synchronization between actions.
comm s requirefaultlock j r requirefaultlock = c requirefaultlock

s no faultwait j r no faultwait = c no faultwait
s signal faultwait j r signal faultwait = c signal faultwait
s data requirej r i data require= c i data require
s signalj r signal= c signal
s free faultlock j r free faultlock = c free faultlock

% Thread writes from remote, requires a fault lock,
% and asksfor a freshcopy of the region.

proc WriteRemote(tid:ThreadId,pid:ProcessId,FlushList:RegionIdSet)=
s requirefaultlock(pid).
(r no faultwait(pid)+r signal faultwait(pid)).
(
P

r:Region r sendback(tid,pid,r).
% Ask for a freshcopy of the region.

s data require(tid,pid,gethome(r)).snorefresh(tid,pid).
% Copy arrives, the thread is noti�e d.

(
P

pid0:ProcessIdr signal(tid,pid0).
(
P

newr:Regionr sendback(tid,pid,newr).
s refresh(tid,pid,setlocalthreads(newr,S(getlocalthreads(newr)))).
s free faultlock(pid).Thread(tid,pid,wl))))

Table 7.3: Speci�cation of a thread writing to a region from remote

the thread invalidates a region in its WriteList at home,and it may �nd out that
there is only one processorleft from which threads are writing to the region,
then the homeof the region migrates to this processor.If the thread invalidates
a region in its WriteList from remote, it sendsa Flush messageto the home of
the region, the Flush messagealso contains a di� with the di�erence between
the region's object and twin data. The home processorof the region will take
chargeof automatic home migration. The ush lock of the homeof each region
is acquiredbeforeinvalidating, and releasedafter invalidating (seeTable 7.4 and
Table 7.5).

In the � CRL speci�cation, each thread is modeledasa separateprocesswith
a unique identit y (see Table 7.1). It contains one parameter pid to indicate
on which processorthe corresponding thread executes. Since the behavior of
reading from a region is part of the behavior of writing to a region, and since
writing is far more critical for the correctnessof the protocol than reading, we
abstracted away from the read action of threads. As a result, a thread only
maintains a FlushList and ushes the regions in this FlushList.
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% Synchronization between actions.
comm s requireushlock j r requireushlock = c requireushlock

s no ushwait j r no ushwait = c no ushwait
s signal ushwait j r signal ushwait = c signalushwait

proc ThreadInvalidate(tid:ThreadId,pid:ProcessId,FlushList:RegionIdSet)=
% Thread requires a ush lock.
s requireushlock(pid).
(r no ushwait(pid)+r signalushwait(pid)).P

r:Region r sendback(tid,pid,r).
% Invalidate at home, we only model one region: rid1.

(FlushHome(tid,pid,remove(rid1,FlushList),r)
� eq(gethome(r),pid)�

% Otherwise, invalidate from remote.
FlushRemote(tid,pid,remove(rid1,FlushList),r)))

Table 7.4: Speci�cation of a thread invalidating

% Synchronization between actions.
comm s ush j r i ush = c i ush

s free ushlock j r free ushlock = c free ushlock

proc FlushRemote(tid:ThreadId,pid:ProcessId,FlushList:RegionIdSet,
r:Region)=

% No thread is using this region. Set the last parameter as true.
s ush(tid,pid,gethome(r),r,T).
% Refresh the region's information.
% We use *new-information-of-the-r egion* to indicate the updating.
s refresh(tid,pid,*new-information-of-the-region*).
s free ushlock(pid).
% This invalidation is �nished, the thread is noti�e d.P

pid0:ProcessId r signal(tid,pid').Thread(tid,pid,FlusList)
� eq(sub1(getlocalthreads(r)),0)�
% Otherwise, set the last parameter as false.
s ush(tid,pid,gethome(r),r,F).
% Refresh the region's information.
s refresh(tid,pid,*new-information-of-the-region*).
s free ushlock(pid).
% This invalidation is �nished, the thread is noti�e d.P

pid0:ProcessId r signal(tid,pid').Thread(tid,pid,FlusList)

Table 7.5: Speci�cation of a thread ushing a region from remote
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% pid indicates where the region is;
% r contains the region's information.

proc Region(pid:ProcessId,r:Region)=
% Communication with threads.P

tid :ThreadId s sendback(tid,pid,r).
(r norefresh(tid,pid).Region(pid,r)
+

P
r0:Region r refresh(tid,pid,r').Region(pid,r'))

% Communication with processors.
+ s sendback(pid,r).
(r norefresh(pid).Region(pid,r)
+

P
r0:Regionr refresh(pid,r').Region(pid,r')))

Table 7.6: Speci�cation of a region

Regions

Jackal usesa singlesharedvirtual addressspace.Each region occupiesthe same
virtual addressrange on all processorsthat store a copy of it. When a region
is created on one processor,a copy of this region is also created on every other
processor.A region contains the following information:

1. Location: A processor'sidentit y, denoting at which node the region (or a
copy) is.

2. Home: A processor'sidentit y, denoting the home node for this region.

3. State: A region can evolve into four kinds of states. When no thread uses
this region, the state of the region is Unused; if a region is only used by
threads on its homenode, its state is Homeonly; if all accessesof a region
are read actions, the state of this region is Readonly; in all other cases,
the state of a region is Shared.

4. ReaderList: A list of processors'identities containing threads that are
reading or recently read from this region. It is only maintained at the
home node.

5. WriterList: A list of processors'identities containing threads that are
writing or recently wrote to this region. It is only maintained at the home
node.

6. Object data: An array of bytes.

7. Twin data: An array of bytes. It is a copy of the object data for di�ng
at non-homenodes; initially it is null.

8. Localthreads: A natural number, the number of threads accessingthis
region at the location of the region.
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In � CRL, each region is modeledasa separatecomponent. As a result of our
abstraction of the behavior of threads, wemadesomecorresponding abstractions
for regions. Each region has only two states; we kept the Unused state, while
the other three states are mapped to a state Used. The region only needsto
maintain the WriterList . Furthermore, we did not model object and twin data,
sincethey are not relevant to our requirements for the protocol. Soin our model
a thread cannot write any value to a region. Still, when a thread ushes a region
from remote, a message(without a di� ) is sent back to the home of this region
to unlock its fault lock.

We use a set of synchronized actions to ensure that during an accessto
a region, no other processescan change the information of this region (see
Table7.2). For example,a thread getsthe information of a regionby performing
a synchronized action r sendback, and the accessesto this region are blocked
until this thread executesanother synchronized action s norefresh (if it has
changednothing) or s refresh(if it haschangedsomeinformation of the region).
The synchronized actions on a region are presented in Table 7.6, together with
the speci�cation for regionsin � CRL. To avoid state explosion,weonly analyzed
con�gurations containing one region with identit y rid1.

Messages to pro cessors

Four kinds of messagescan be delivered to a processor.

1. Data Request: This messageis sent when a thread starts writing to a
region from remote. When a processorgets this message,and it is the
home of the region, it adds the thread's processorinto the WriterList of
the region and sendsback an up-to-date copy of the region to the thread's
processorby a Data Return message.If it is not the home of the region
(meaning that the region migrated its homein the meantime), it forwards
the Data Requestmessageto the region's new home.

2. Data Return: This messageis received by a processorwhen an up-to-date
copy of a region has arrived. The processorupdates the object and twin
data of the region. Moreover, if the messageis a home node migration
message,then the processorbecomesthe home of this region, and starts
maintaining the WriterList and the state of the region.

3. Flush: This messageis sent when a thread ushes from remote. When a
processorgets this message,and it is the home of the region, it removes
the thread's processorfrom the WriterList of the region; moreover, it may
senda home node migration messageto a new home of this region (by a
Region Sponmigrate message).When it is not the home of the region, it
forwards the Flush messageto the region's new home.

4. Region Sponmigrate: When a processorgets this message,it becomesthe
home of the region in question.
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% Synchronization between actions.
comm s i data requirej r data require= c o data require

s free homequeuelock j r free homequeuelock = c free homequeuelock
s data return j r o data return = c i data return
s i regionsponmigratej r regionsponmigrate= c o regionsponmigrate

proc Processor(pid:ProcessId)=
% Processorgetsa Data Requestmessage(forwarded) from processorpid'.P

tid :ThreadId

P
pid0:ProcessIdr data require(tid,pid',pid).

% We only model one region: rid1. Check the current state of the region.
% If the processor is not the home of the region,
% then the messageis forwarded to the real home.

r sendback(pid,rid1).
(s data require(tid,pid',gethome(rid1)).
s norefresh(pid).sfree homequeuelock(pid).Processor(pid)
� not(eq(gethome(rid1),pid))�

% Refresh the region's information, and send the region back.
% If the region is UNUSED, then the Data Return message
% is also a home migration message.Set the last parameter as true.

(s data return(tid,pid',pid,*new-infomation-of-the-region*,T).
s refresh(pid,*new-infomation-of-the-region*).
s free homequeuelock(pid).Processor(pid)
� eq(getstate(rid1),UNUSED)�

% It is not a home migration message.Set the last parameter as false.
s data return(tid,pid',pid,*new-infomation-of-the-region*,F).
s refresh(pid,*new-infomation-of-the-region*).
s free homequeuelock(pid).Processor(pid)))

+
% Processorgetsa Region Sponmigrate message.
% It becomesthe region's home node by refreshing
% the region's parameters.P

tid :ThreadId

P
pid0:ProcessId

P
r0:Regionr regionsponmigrate(tid,pid',pid,r').

(
P

r:Regionr sendback(pid,r).
% Set the home by itself; maintain the state and writerlist.

s refresh(pid,*new-infomation-of-the-region*).
s free homequeuelock(pid).Processor(pid))

+ ...

Table 7.7: Speci�cation of a processordealing with a message
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% Synchronization between actions.
comm s requirehomequeuelock j r requirehomequeuelock

= c requirehomequeuelock
s no homequeuewait j r no homequeuewait

= c no homequeuewait
s signalhomequeuewait j r signalhomequeuewait

= c signalhomequeuewait
s regionsponmigratej r i regionsponmigrate

= c i regionsponmigrate

proc HomeQueue(pid:ProcessId)=
% Home queuegetsa Data Requestmessage.
% To deal with it, the homequeuelock is needed.P

tid :ThreadId

P
pid0:ProcessId

% Put a messageinto the queue.
r i data require(tid,pid',pid).srequirehomequeuelock(pid).
(r no homequeuewait(pid)+r signalhomequeuewait(pid)).

% The processor takes this message.
s i data require(tid,pid',pid).HomeQueue(pid)

+
% Home queuegetsa Region Sponmigrate message.
% To deal with it, the homequeuelock is needed.P

tid :ThreadId

P
pid0:ProcessId

P
r:Region

% Put a messageinto the queue.
r i regionsponmigrate(tid,pid',pid,r).srequirehomequeuelock(pid).
(r no homequeuewait(pid)+r signalhomequeuewait(pid)).

% The processor takes this message.
s i regionsponmigrate(tid,pid',pid,r).HomeQueue(pid)

+ ...

Table 7.8: Part of the speci�cation of a home queue
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% Synchronization between actions.
comm s requireremotequeuelock j r requireremotequeuelock

= c requireremotequeuelock
s no remotequeuewait j r no remotequeuewait

= c no remotequeuewait
s signalremotequeuewait j r signalremotequeuewait

= c signalremotequeuewait
s o data return j r data return

= c o data return

proc RemoteQueue(pid:ProcessId)=
% Remote queuegetsa Data Return message.
% To deal with it, the remotequeuelock is needed.P

tid :ThreadId

P
pid0:ProcessId

P
r:Region

P
b:Bool

% Put a messageinto the queue.
r o data return(tid,pid',pid,r,b).s requireremotequeuelock(pid).
(r no remotequeuewait(pid)+r signalremotequeuewait(pid)).

% The processor takes this message.
s o data return(tid,pid',pid,r,b).RemoteQueue(pid)

Table 7.9: Speci�cation of a remote queue

In � CRL, each processoris modeledasa separatecomponent (with a unique
identit y). How a processordeals with Region Sponmigrate and Data Request
messagesis speci�ed in Table 7.7.

Each processormaintains two messagequeuesto store incoming messages.
The HomeQueueis designedto bu�er messagescontaining a request,while the
RemoteQueuebu�ers messagescontaining a reply. For example,when a thread
tries to get an up-to-date data copy from a region's home, �rst a Data Request
messageis put into the homenode'sHomeQueue.When a Data Return message
arrives, it is put into the RemoteQueueof the thread's processor. The � CRL
processfor a messagequeue contains one parameter pid to indicate to which
processorthis messagequeuebelongsto (seeTable 7.8 and Table 7.9). To avoid
state explosion,we only modeled queuesthat can contain one message.

Proto col lo cks

As already explained in the speci�cation of threads, protocol locks guarantee
exclusivity when threads write to or ush a region. Each processoracts as the
protocol lock manager of its regions and region copies. To acquire a protocol
lock, a protocol lock requestmessageis sent to the region's home. If the lock is
available, the manager replies with a grant message.Otherwise, the requester
needsto wait for the lock to be released,and the protocol lock manageraddsthe
requester into the lock's waiting list. To unlock, the current lock owner sends
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% We only present thoseparameters whosevaluesare changed.
proc Locker(pid:ProcessId,faulters:Bool,ushers:Bool,

homequeue:Bool,remotequeue:Bool,wait faulters:Natural,
wait ushers:Natural,wait homequeue:Natural,
wait remotequeue:Natural)=

% Get a request for the fault lock. If this lock can be granted,
% senda no-wait message.
r requirefaultlock(pid).
(s no faultwait(pid).Locker(t/faulters)
� and(faulters,ushers)�
% Otherwise, increasethe number of threads waiting for this lock.
% Later on, the thread waiting on fault lock wil l be signaled.
Locker(S(wait faulters)/wait faulters))
% The fault lock is released, if a thread can be noti�e d,
% senda signal wait message,and decrease the waiting number.
+ r free faultlock(pid).
((s signalhomequeuewait(pid).

Locker(f/faulters,t/homequeue,
sub1(wait homequeue)/wait homequeue)

� and(not(eq(wait homequeue,0)),homequeue)� ...)
� and(not(and(eq(wait homequeue,0),

eq(wait remotequeue,0))),ushers)� ...)
+ ...

Table 7.10: Part of the speci�cation of a protocol lock management

an unlock messageto the protocol lock manager. When the manager gets an
unlock message,it checks whether a thread waiting for this lock can be noti�ed,
under someconstraints. For instance, a fault lock can be granted only if this
fault lock and the ush lock are not held by other threads.

There are �v e protocol locks for each processor: homequeuelock, remote-
queuelock, server lock, fault lock and ush lock. The homequeuelock and re-
motequeuelock are neededto make sure that the handling of a popped message
from a HomeQueueor a RemoteQueueby its processoris completed before
the next messageis popped from the queue. The cache coherenceprotocol
allows writes to a region at home and from remote to happen concurrently .
The server lock, fault lock and ush lock ensureexclusivity betweenthreads at
a processor.The server lock and ush lock must be mutually exclusive for the
homeof a region, to protect the integrit y of regiondata valuesand other region's
information; likewise,the fault lock and ush lock must be mutually exclusive
for non-homenodesof a region. When a thread writes at homeor from remote,
the server lock or the fault lock of the thread's processoris needed,respectively.
When a thread ushes, the ush lock of its processoris needed.

Protocol lock management of a processoris modeled in � CRL as a separate
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component (seeTable7.10). Each protocol lock is modeledasa booleanvariable,
sincea protocol lock can be held by at most one thread at a time. The waiting
list of a lock is modeledasa natural number, representing the number of threads
in the waiting list, to enablechecking for emptiness;waiting lists do not needto
contain thread identities, sincewaiting and noti�cation are speci�ed by means
of a pair of synchronized actions, carrying the identit y of the waiting thread
as a parameter. When a protocol lock is available, the protocol lock manager
randomly selectsa waiting thread to notify.

Assertions from the develop ers

The developers added many assertionsinto the description and required that
the protocol should not violate any of them. The assertionsare modeled as a
part of the � CRL speci�cation. They can be divided into two classes:order
assertions and preconditions.

� Order assertions: This classof assertionsimposesa certain order on the
usageof the system's resources. For example, when a thread performs
an action on a region, the corresponding protocol lock should already be
held by the thread. Order assertionsare modeled in � CRL by imposing a
certain order on the execution of actions. In the aforementioned example,
in the � CRL speci�cation, the behavior of a thread is modeled like this:
only after execution of the action r no serverwait or r signal serverwait,
the thread can accessa region at home.

� Preconditions: This classof assertionsrequires that only when a certain
precondition is satis�ed, the description after it can be executed. For
example,only under certain conditions (seeSection7.4.4) the homeof the
region automatically migrates. Preconditions are modeled in the � CRL
speci�cation as boolean terms in conditional expressions.

7.5.2 Requiremen ts

We formulated three requirements for the cache coherenceprotocol.

1. Deadlock freeness:The protocol never endsup in a state where it cannot
perform any action.

2. Relaxed cache coherence: For each region, at any time there exists one
home node.

3. Liveness:Requestsfor writing to or ushing a region cannot be bounced
around the network forever.

7.5.3 Validation of the requiremen ts

The � CRL toolset was used to check the syntax and the static semantics of
the speci�cation, and also to transform it into a linear form. The linear form
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was usedto generateLTSs for various con�gurations of processorsand threads.
Next, we validated the three requirements with respect to thesecon�gurations.

Requiremen t 1

We usedthe � CRL toolset to check for deadlocks. This deadlock checking exer-
ciseled to the detection of many mistakesboth in the informal description and
in the � CRL speci�cation of the protocol. For the �rst case,when the develop-
ers extracted a C-like description of the protocol from its implementation, they
abstracted away from certain implementation details; someof thesedetails were
actually crucial for the correctnessof the � CRL speci�cation. For the second
case,at somepoints the analyzersunderstood the description di�eren tly from
what the developersreally meant. Whenever a deadlock trace wasfound, it was
simulated to understand the reasonfor the deadlock. This analysis took us a
lot of time, since many of the traces were quite long (t ypically more than 300
transitions) and di�cult to comprehend. Whenever a mistake was found, the
� CRL speci�cation was adapted and checked for deadlocks again.

One deadlock found by the analyzers,on a con�guration of two processors
each containing one thread, was a real problem in the implementation. When
a thread wants to write to a region from remote, it acquires the fault lock of
its home node by sendinga lock message.If the lock is unavailable, the thread
waits for the lock to be released. Whenever it is noti�ed, it continueswith its
accessto the region and holds the fault lock until it sendsan unlock messageto
the home node. In the deadlock trace, we found that while a thread is waiting
for a fault lock, the home of the region may migrate to the thread's processor.
Then in fact the thread writes to the region at home, it needsto acquire the
server lock instead of the fault lock. This error resulted in a deadlock in the
implementation. The chosensolution is that after a thread obtains a fault lock,
it checks whether it still writes from remote. If this is not the case, it sends
an unlock messageto releasethe held fault lock, and then sends a message
to acquire the server lock. After �xing this problem as proposed, no more
deadlocks were found.

Requiremen t 2

Due to automatic homenode migration, it needsto be checked that at any time
there existsat most onehomenode for each region. We divided this requirement
into two parts.

2.1 Each region has at most one home node.

2.2 If the system is stable, each region has no more than n � 1 copies,where
n is the number of processors.

To verify thesetwo parts, actions s home and r home were added to the speci-
�cation of a region, when a region �nds that its location equalsits home node;
s copy and r copy were added, when a region �nds that its location does not
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% Synchronization between actions.
comm s homej r home= c home

s copy j r copy = c copy

proc Region(pid:ProcessId,r:Region)=
% This part remains the sameas before.
... +
% s home, r home indicate pid is the home.
r home.Region(pid,r)� eq(pid,gethome(r))� �
+ s home.Region(pid,r)� eq(pid,gethome(r))� �
% s copy, r copy indicate pid has a copy.
+ � � eq(pid,gethome(r))� r copy.Region(pid,r)
+ � � eq(pid,gethome(r))� s copy.Region(pid,r)

Table 7.11: Modi�ed speci�cation of a region

equal its home node. We synchronized s home and r home into c home, s copy
and r copy into c copy (seeTable 7.11). Furthermore, we encapsulateds home,
r home, s copy and r copy, so that theseactions are forced to synchronize.

We veri�ed requirement 2.1 by checking the absenceof c home in the gen-
erated LTSs. This is formulated in the regular alternation-free � -calculus (see
Section 2.4) as follows:

2.1 [T � �c home] F

It says that if an executionsequencecontains c home, then in the resulting state
falseholds. This formula was checked to be true by Evaluator, a model checker
from the CADP toolset.

For requirement 2.2, a stable state of a system meansthat no protocol lock
is held, and that the messagequeuesare empty. We added actions home-
queueempty and remotequeueempty to the � CRL speci�cation of queuesto
indicate that queuesare empty, and added an action lock empty to the spec-
i�cation of the protocol lock manager to indicate that no lock is held. Then
for a model with two processors,we checked that the generatedLTS does not
contain a state which canperform c copy, lock empty, homequeueempty and re-
motequeueempty. This requirement is presented in the regular alternation-free
� -calculus as follows:

2.2 :h T � i (hc copyi T ^hlock emptyi T ^hhomequeueemptyi T ^
hremotequeueemptyi T)

Note that the above two formulas only work for con�gurations with two proces-
sors,meaning that there are two copiesfor each region.

A seconderror in the implementation of the protocol was found while model
checking this property on a con�guration of two processors,with two threads
running on one processorand a third thread on the other processor.The error
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can happen whena thread is writing to a region from remote. During its waiting
for an up-to-date copy of the region from the region's home, the homenode may
migrate (by a Region Sponmigrate message)to the processorwhere the thread
resides.When the Data Return messagewith an up-to-date copy of the region
arrives, the thread refreshesthe region's home by the sender of the answer
message. In the resulting state of the protocol, neither of the two processors
is the home of the region. So c copy may happen even in a stable state. The
chosensolution is that when a processorgetsa Region Sponmigrate message,it
informs those local threads that are writing to the region at the previous home
node, so that these threads will behave as writing at home. After �xing this
problem as proposed,property 2.2 was successfullymodel checked.

Requiremen t 3

The third requirement, that requestsof writing to or ushing a region cannot be
bounced around the network forever, is a livenessproperty. Actions writeover
and ushover wereaddedto the � CRL speci�cation of a thread to indicate that
a thread completed its pending actions. The following shows the code in the
regular alternation-free � -calculus for this requirement.

3.1 A thread eventually �nishes writing to a region:

[T � �write(?)] �Y :hTi T ^ [: writeover(?)] Y

3.2 A thread eventually �nishes its ush of a region:

[T � �ush(?)] �Y :hTi T ^ [: ushover(?)] Y

We use`?' to indicate any identit y of a thread. Thesetwo formulas expressthat
after a thread initiates its action (writer( ?) or ush( ?)), the end of this action
(writeover(?) or ushover(?)) is inevitable. This requirement was successfully
model checked on two con�gurations.

7.5.4 Veri�cation results

We applied advancedtechniques for generating LTSs on a cluster at CWI, con-
sisting of eight nodes. Each node is a dual AMD Athlon MP 1600+ system,
with 1.4Ghz processors2GB RAM and 40GB disk. The nodes are connected
by a private ethernet network (100baseTswitch) and by a public fast ethernet
network (1000baseTswitch). Our casestudy bene�ted a lot from the � CRL
distributed LTS generation tool [22], and also pushedforward its development.

The sizesof the generatedLTSs and the veri�cation results are summarized
in Table 7.12. Due to the complexity of this protocol, the sizeof the LTS grows
very rapidly with respect to the number of threads and processors.With the
current � CRL toolset, we could generateLTSs for the following three con�gura-
tions: 1) two processors,each with one thread; 2) two processors,one with one
thread, the other with two threads; 3) three processors,each with one thread.
For the third con�guration, we could only check the �rst requirement, because
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Con�guration States Transitions Requirements Checked
1 65,234 460,162 1, 2, 3
2 5,424,848 40,476,069 1, 2, 3
3 82,371,105 893,181,444 1

Table 7.12: Veri�cation results

the generatedLTS was too large to serve as input to the model checker. The
shortest error traces for the two a ws in the original implementation of the pro-
tocol that were detected during the model checking phase (seeSection 7.5.3)
both consistedof more than 100 transitions.

7.6 Conclusions

In this chapter, we usedformal speci�cation and model checking techniques to
analyze a cache coherenceprotocol for a Java DSM implementation. We spec-
i�ed the protocol in � CRL and analyzed it. Somegeneral requirements were
formulated and veri�ed for several con�gurations. Our analysisuncovereda lot
of inconsistenciesbetween the description and the implementation of this pro-
tocol. Two errors were found and �xed in the implementation, which improved
the designand implementation of this protocol.

During the speci�cation and analysis phase, we encountered quite a few
di�culties. First, it took a relatively long time to obtain a � CRL speci�cation
of the protocol. During this period, the developers made important changesto
the protocol, so that the � CRL speci�cation had to be updated a number of
times. Such gaps between an implementation and its formal model could be
avoided if formal methods were used at an earlier design phase. Second,both
the developersand analyzersmademistakesin their work. In our analysis,many
deadlocks were due to the inconsistenciesand misunderstandings. Third, more
advanced techniques for distributed/parallel state spacegeneration, reduction,
and model checking are highly needed. Our future work will mainly focus on
verifying whether the cache coherenceprotocol implements the JMM in [67,
Chapter 17], and checking the requirements on more con�gurations.
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Chapter 8

Simplifying Itai-Ro deh Leader Election
for Anon ymous Rings

8.1 In tro duction

Leader election is the problem of electing a unique leader in a network, in the
sensethat the leader(process)knows that it hasbeenelectedand the other pro-
cessesknow that they have not beenelected. Leaderelection algorithms require
that all processeshave the same local algorithm and that each computation
terminates, with one processelectedas leader. This is a fundamental problem
in distributed computing and has numerousapplications. For example, it is an
important tool for breaking symmetry in a distributed system. By choosing a
processas the leader it is possibleto executecentralized protocols in a decen-
tralized environment. Leader election can also be used to recover from token
loss for token-basedprotocols, by making the leader responsible for generating
a new token when the current one is lost.

There existsa broad rangeof leaderelectionalgorithms; seee.g.the summary
in the text books [167, 116]. Thesealgorithms have di�eren t messagecomplex-
it y in worst and/or averagecase. Furthermore, they vary in communication
mechanism (asynchronous vs. synchronous), processnames (unique identities
vs. anonymous), and network topology (e.g. ring, tree, complete graph).

A �rst leaderelectionalgorithm for unidirectional rings wasgivenby Le Lann
[113]. It requires that each processhas a unique identit y, with a total ordering
on identities; the processwith the largest identit y becomesthe leader. The
basic idea of Le Lann's algorithm is that each processsendsa messagearound
the ring bearing its identit y. Thus it requires a total of n2 messages,where n
is the number of processesin the ring. Chang and Roberts [32] improved Le
Lann's algorithm by letting only the messagewith the largest identit y complete
the round trip; their algorithm still requires in the order of n2 messagesin the
worst case,but only n logn on average. Franklin [58] developed an leader elec-
tion algorithm for bidirectional rings with a worst-casemessagecomplexity of
O(n logn). Peterson [138] and Dolev, Klawe, and Rodeh [44] independently
adapted Franklin's algorithm so that it also works for unidirectional rings. All

169
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the above algorithms work both for asynchronous and for synchronous commu-
nication, and do not require a priori knowledgeabout the number of processes.

Sometimesthe processesin a network cannot be distinguished by meansof
unique identities. First, asthe number of processesin a network increases,it may
becomedi�cult to keepthe identities of all processesdistinct; or a network may
accidentally assign the sameidentit y to di�eren t processes.Second,identities
cannot always be sent around the network, for instance for reasonsof e�ciency .
An example of the latter is FireWire, the IEEE 1394 high performance serial
bus (seeSection8.2 for a more detailed description). A leaderelectionalgorithm
that works in the absenceof unique processidentities is also desirablefrom the
standpoint of fault tolerance. In an anonymousnetwork, processesdo not carry
an identit y. Angluin [5] showedthat there doesnot exist a terminating algorithm
for electing a leader in an asynchronous anonymous network. According to this
result, a Las Vegasalgorithm (meaning that the probabilit y that the algorithm
terminates is greater than zero, and all terminal con�gurations are correct) is
the best possibleoption.

Itai and Rodeh [95, 96] proposeda probabilistic leaderelection algorithm for
anonymous unidirectional rings, basedon the Chang-Roberts algorithm. Each
processselectsa random identit y from a �nite domain, and processeswith the
largest identit y start a new election round if they detect a name clash. It is
assumedthat the sizeof the ring is known to all processes,so that each process
can recognizeits own message(by meansof a hop counter that is part of the
message).The Itai-Ro deh algorithm is a Las Vegasalgorithm that terminates
with probabilit y one; it takesn logn messageson average.

The Itai-Ro deh algorithm makes no assumptions about channel behavior,
except fair scheduling. An old message,that has beenovertaken by other mes-
sagesin the ring, could in principle result in a situation whereno leaderis elected
(seeFigure 8.1 in Section 8.3.2). In order to avoid this problem, the algorithm
proceedsin successive rounds, and each processand messageis supplied with
a round number. Thus an old messagecan be recognizedand ignored. Due to
the useof round numbers, the Itai-Ro deh algorithm has an in�nite state space.

In this chapter, we make the assumption that channelsare FIFO. We show
that in this caseround numbers can be omitted from the Itai-Ro deh algorithm.
We present two adaptations of the Itai-Ro deh algorithm, that are correct in the
presenceof FIFO channels. In the �rst algorithm, a processmay only choose
a new identit y when its messagehas completed the round trip, as is the case
in the Itai-Ro deh algorithm. In the secondalgorithm, a processselectsa new
identit y as soon as it detects that another processin the ring carries the same
identit y (even though this identit y may not be the largest onein the ring). Since
both algorithms do not use round numbers, they are �nite-state. This means
that we can apply model checking [35] to automatically verify properties of an
algorithm, speci�ed in sometemporal logic. These properties can be checked
against the explicit (�nite) state spaceof the algorithm, for speci�c ring sizes.
We usedPRISM [107], a model checker that can be usedto model and analyze
systemscontaining probabilistic aspects. We speci�ed both algorithms in the
PRISM language,and for rings up to size four we veri�ed the property: \with
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probabilit y one, eventually exactly one leader is elected". Furthermore, we
present a manual correctnessproof for both algorithms, for arbitrary ring size.

PRISM o�ers the possibility to calculate the probabilit y that our algorithms
have terminated after somenumber of messages.Thesestatistics show that the
�rst algorithm on averagerequiresmore messagesto terminate than the second
algorithm.

Finally, we show that if processescan selectidentities from a set of only two
elements, then our algorithms also work correctly for non-FIFO channels.

Outline of the chapter. Related work is summarized in Section 8.2. Sec-
tion 8.3 contains the original Itai-Ro deh algorithm. In Sections8.4 and 8.5, we
present two probabilistic leader election algorithms for anonymous rings with
FIFO channels. We explain our veri�cation results with PRISM, and give a
manual correctnessproof for each algorithm. Section 8.6 reveals someexperi-
mental results using PRISM on the number of messagesneededto terminate.
In Section 8.7, we prove that if the domain of identities contains only two ele-
ments, the requirement that channels are FIFO can be dropped. We conclude
this chapter in Section 8.8.

8.2 Related Work

On the web page of PRISM (http://www.cs.bh am.ac.u k/~ dxp/p ri sm/ ), the
Itai-Ro deh algorithm for asynchronousrings wasadapted for synchronousrings.
In PRISM, processessynchronize on action labels, so a synchronous ring can
simply be modeled by excluding channels from the speci�cation. Processesare
synchronized in the sameround, thus round numbers are not needed(similar to
our Algorithm A). The state spacetherefore becomes�nite, and PRISM could
be usedto verify the property \with probabilit y one,eventually a unique leader
is elected", for rings up to size eight. Also the probabilit y of electing a leader
in one round was calculated.

Garavel and Mounier [62] described both the Chang-Roberts algorithm and
Le Lann's algorithm using the processalgebraic languageLOTOS. They stud-
ied these two algorithms in the presenceof unreliable communication network
and/or unreliable processesand suggestedsomeimprovements. Their veri�ca-
tion was performed using the model checker CADP. Fredlund et al. [60] gave
a manual correctnessproof of the Dolev-Klawe-Rodeh algorithm in the process
algebraic language� CRL, for arbitrary ring size. Brunekreef et al. [26] designed
a number of leaderelection algorithms for a broadcastnetwork, whereprocesses
may participate and crash spontaneously. They usedlinear-time temporal logic
to manually prove that the algorithms satisfy their requirements.

The IEEE 1394 high performanceserial bus (called \FireWire") is used to
transport video and audio signals within a network of multimedia devices. In
the tree identify phase of IEEE 1394, which takes place after a bus reset in
the network, a leader is elected. For the sake of performance, identities of
nodescannot be sent around the network, so that it is basically an anonymous
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network. The leader election algorithm in the IEEE 1394 standard works for
acyclic, connectednetworks. If a cycle is present, it producesa timeout. The
algorithm has been speci�ed and veri�ed with a number of di�eren t formal
techniques. We give an overview of thesecasestudies.

Shankland and van der Zwaag [157] manually veri�ed the leader election
algorithm in � CRL, at three di�eren t levels of detail. Shankland and Verdejo
[156] usedE-LOTOS to manually verify the algorithm. Abrial et al. [1] usedan
event-driv en approach with the B Method to develop mathematical models of
the algorithm; the internal consistencyof each model as well as its correctness
with regard to its previous abstraction were proved mechanically. Verdejo et
al. [175] described the algorithm at di�eren t abstract levels, using the language
Maude basedon rewriting logic; they veri�ed the algorithm by an exhaustiveex-
ploration of the state spacethat always exactly one leader is chosen. Moreover,
they gave a manual correctnessproof for general acyclic networks. Devillers
et al. [39] veri�ed the algorithm using an I/O automata model; the main part
of their proof has been checked with the theorem prover PVS. Romijn [150]
extended their I/O automata model with timing parameters from the IEEE
1394standard, and manually proved that under certain timing restrictions the
algorithm behavescorrectly. Calder and Miller [28] veri�ed someproperties of
the algorithm using the model checker Spin, for networks with up to six nodes.
Schuppan and Biere [155] usedthe model checker SMV to check the correctness
of the algorithm for networks with up to ten nodes.

8.3 Itai-Ro deh Leader Election

We consideran asynchronous, anonymous, unidir ectional ring consisting of n �
2 processesp0; : : : ; pn � 1. Processescommunicate asynchronouslyby sendingand
receivingmessagesover channels,which areassumedto bereliable. Channelsare
unidirectional: a messagesent by pi is addedto the messagequeueof p( i +1) mo d n .
The messagequeuesare guided by a fair scheduler, meaningthat in each in�nite
execution sequence,every sent messageeventually arrives at its destination.
Processesare anonymous, so they do not have unique identities. The challenge
is to present a uniform local algorithm for each process,such that one leader is
electedamong the processes.

8.3.1 The Itai-Ro deh algorithm

Itai and Rodeh [95, 96] studied how to break the symmetry in anonymous net-
works using probabilistic algorithms. They presented a probabilistic algorithm
to elect a leader in the above network model, under the assumption that pro-
cessesknow that the size of the ring is n. It is a Las Vegasalgorithm that
terminates with probabilit y one. The Itai-Ro deh algorithm is based on the
Chang-Roberts algorithm [32], where processesare assumedto have unique
identities, and each processsendsout a messagecarrying its identit y. Only the
messagewith the largest identit y completes the round trip and returns to its
originator, which becomesthe leader.
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In the Itai-Ro deh algorithm, each processselectsa random identity from
a �nite set. So di�eren t processesmay carry the same identit y. Again each
processsendsout a messagecarrying its identit y. Messagesare supplied with
a hop counter, so that a processcan recognizeits own message(by checking
whether the hop counter equals the ring size n). Moreover, a processwith the
largest identit y present in the ring must beable to detect whether there areother
processesin the ring with the sameidentit y. Therefore each messageis supplied
with a bit, which is dirtied when it passesa processthat is not its originator
but sharesthe sameidentit y. When a processreceives its own message,either
it becomesthe leader (if the bit is clean), or it selects a new identit y and
starts the next election round (if the bit is dirt y). In this next election round,
only processesthat shared the largest identit y in the ring are active. All other
processeshave beenmade passiveby the receipt of a messagewith an identit y
larger than their own. The active processesmaintain a round number, which
initially starts at zero and is augmented at each new election round. Thus
messagesfrom earlier election rounds can be recognizedand ignored.

We proceedto present a detailed description of the Itai-Ro deh algorithm.

The Itai-Ro deh algorithm.

� Initially , all processesare active, and each processpi randomly selects
its identit y id i 2 f 1; : : : ; kg and sendsthe message(id i ; 1; 1; true).

� Upon receipt of a message(id ; round; hop; bit ), a passive process pi

(statei = passive) passeson the message,increasing the counter hop
by one; an active processpi (statei = active) behavesaccording to one
of the following steps:

{ if hop = n and bit = true, then pi becomesthe leader (state0
i =

leader);

{ if hop = n and bit = false, then pi selectsa new random identit y
id 0

i 2 f 1; : : : ; kg, moves to the next round (round0
i = roundi + 1),

and sendsthe message(id 0
i ; round0

i ; 1; true);

{ if (round; id ) = (roundi ; id i ) and hop < n, then pi passeson the
message(id ; round; hop + 1; false);

{ if (round; id ) > (roundi ; id i ),a then pi becomespassive (state0
i =

passive) and passeson the message(id ; round; hop + 1; bit );

{ if (round; id ) < (roundi ; id i ), then pi purgesthe message.

aWe compare (round ; id ) and (round i ; id i ) lexicographically .

Each processpi maintains three parameters:

- id i 2 f 1; : : : ; kg, for somek � 2, is its identit y;

- statei rangesover f active; passive; leaderg;
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- roundi 2 N+ represents the number of the current election round.

Only active processesmay becomethe leader; passive processessimply passon
messages.At the start of a new election round, each active processsendsa
messageof the form (id ; round; hop; bit ), where:

- the values of id and round are taken from the processthat sends the
message;

- hop is a counter that initially has the value one,and which is increasedby
one every time it is passedon by a process;

- bit is a bit that initially is true, and which is set to false when it visits a
processthat has the sameidentit y but that is not its originator.

We say that an execution sequenceof the Itai-Ro deh algorithm has termi-
nated if each processis either passive or elected as leader, and there are no
remaining messagesin the channels.

Theorem 8.3.1 [95] The Itai-Ro deh algorithm terminates with probabilit y
one, and upon termination a unique leader has beenelected.

8.3.2 Round num bers are needed

v

u > v

v

v > w; x

(u; 1; true ) (v; 3; true )

v

v > w; x

(x; 1; true )

(v; 1; true )

u u w x w x
(u; 1; true ) (w; 1; true )

(v; 1; true )

Figure 8.1: Round numbers are essential if channelsare not FIFO

Figure 8.1 presents a scenarioto show that if round numbers were omitted,
the Itai-Ro deh algorithm could produce an execution sequencein which all
processesbecomepassive, so that no leader is elected. This example usesthe
fact that channels are not FIFO. Let k � 3. Figure 8.1 depicts a ring of size
three; black processesare active and white processesare passive. Initially , all
processesare active, and the two processesabove select the same identit y u,
while the one below selectsan identit y v < u. (Seethe left side of Figure 8.1.)
The three processessend a messagewith their identit y, and at the receipt of
a messagewith identit y u, processv becomespassive. Since channels are not
FIFO, the message(v; 1; true) can be overtaken by the other two messageswith
identit y u. The latter two messagesreturn to their originators with a dirt y bit.
Sothe processeswith identit y u detect a nameclash,selectnew identities w < v
and x < v, and send messagescarrying these identities. (Seethe middle part
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of Figure 8.1.) Finally, the messagewith identit y v makes the processeswith
identities w and x passive. The three messagesin the ring are passedon forever
by the three passive processes.(Seethe right side of Figure 8.1.)

8.4 Leader Election without Round Num bers

We observe that if channelsare FIFO, round numbers are redundant. Thus we
obtain a simpli�cation of the Itai-Ro deh algorithm. Algorithm A is obtained
by considering only those casesin the Itai-Ro deh algorithm where the active
processpi and the incoming messagehave the sameround number. Correctness
of Algorithm A follows from the proposition below.

Algorithm A.

� Initially , all processesare active, and each processpi randomly selects
its identit y id i 2 f 1; : : : ; kg and sendsthe message(id i ; 1; true).

� Upon receipt of a message(id ; hop; bit ), a passive processpi (statei =
passive) passeson the message,increasingthe counter hopby one;an ac-
tiv e processpi (statei = active) behavesaccordingto oneof the following
steps:

{ if hop = n and bit = true, then pi becomesthe leader (state0
i =

leader);

{ if hop = n and bit = false, then pi selectsa new random identit y
id 0

i 2 f 1; : : : ; kg and sendsthe message(id 0
i ; 1; true);

{ if id = id i and hop < n, then pi passeson the message(id ; hop +
1; false);

{ if id > id i , then pi becomespassive (state0
i = passive) and passes

on the message(id ; hop + 1; bit );

{ if id < id i , then pi purges the message.

Prop osition 8.4.1 Consider the Itai-Ro deh algorithm where all channels are
FIFO. When an active processreceives a message,then the round number of
the processand of the messageare always the same.

Pro of. Let messagem = (idj ; roundj ; hop; bit ), which originates from process
pj , arrive at active processpi . Suppose that up to this moment, messages
never arrived at active processeswith a di�eren t round number. We prove that
roundi = roundj . We derive the desiredequality in two steps.

� roundi � roundj .

Let roundi > 1, for else we are done. Then a messagem0 with round
number roundi � 1 originated at pi and completed the round trip, where
all the active processesthat it visited had round number roundi � 1. FIFO
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behavior guarantees that after m0 returned to pi , no other messagewith
round number � roundi � 1 can have arrived at pi . So roundi � roundj .

� roundi � roundj .

Let roundj > 1, for else we are done. Then a messagem00 with round
number roundj � 1 originated at pj and completed the round trip, where
all the active processesthat it visited (so in particular pi ) had round
number roundj � 1. Since m00 completed the round trip and passedpi

while this processremained active, it follows that both pi and pj had the
maximal identit y in round roundj � 1. So the messagem000that originated
at pi with round number roundj � 1 also completed the round trip. FIFO
behavior guaranteesthat m000arrived at pj beforem00, so that m000passed
pj beforem wascreatedat pj . FIFO behavior guaranteesthat m000arrived
at pi before m. So roundi � roundj .

Hence,roundi = roundj . �

Theorem 8.4.2 Let channels be FIFO. Then Algorithm A terminates with
probabilit y one, and upon termination exactly one leader is elected.

Pro of. By Theorem 8.3.1 together with Proposition 8.4.1, upon termination
exactly one leader is elected. Namely, the execution traces are a subset of the
execution traces of the Itai-Ro deh algorithm.

We have to redo the probabilit y analysis, since a probabilistic result for a
set of execution traces is not always inherited by subsetsof execution traces.

When there are ` � 2 active processesin the ring, theseprocessesall remain
active if and only if they all the time choosethe sameidentit y. Otherwise, at
least one active processwill becomepassive. The probabilit y that all active
processesselect the same identit y in one \round" is ( 1

k )` � 1. So the probabil-
it y for all ` active processesto choose the same identit y m times in a row is
( 1

k )m (` � 1) . Since k � 2, the probabilit y that the number of active processes
eventually decreasesis one.

Clearly, when there is only one active processin the ring, it will be elected
as the leader. After the round trip of its �nal messagethere are no remaining
messages,becausechannelsare FIFO. �

8.4.1 Automated veri�cation with PRISM

Owing to the elimination of round numbers,Algorithm A is �nite-state, contrary
to the Itai-Ro deh algorithm. Hencewe can apply explicit state spacegeneration
and model checking to establish the correctnessof Algorithm A for �xed ring
sizes.This analysisof Algorithm A wasactually performed beforeconstructing
the manual correctnessproof of Algorithm A from the previous section, as a
means to con�rm our intuition that Algorithm A works correctly in caseof
FIFO channels. Moreover, this model checking exercisehas some additional
value comparedto Theorem 8.4.2. Namely, sincethe manual proofs of Theorem
8.3.1,Proposition 8.4.1and Theorem8.4.2werenot formalized and checkedwith
a theorem prover, there is no absolute guarantee that they are free of a ws.
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A short in tro duction to PRISM

PRISM [107] is a probabilistic model checker. It allows one to model and ana-
lyze systemsand algorithms containing probabilistic aspects. PRISM supports
three kinds of probabilistic models: continuous-time Markov chains (CTMCs),
discrete-time Markov chains (DTMCs) and Markov decisionprocesses(MDPs).
Analysis is performed through model checking such systemsagainst speci�ca-
tions written in the probabilistic temporal logic PCTL [83, 11] if the model is a
DTMC or an MDP, or CSL [10] in the caseof a CTMC.

In order to model check probabilistic properties of Algorithm A, we �rst
encoded the algorithm as a DTMC model using the PRISM language, which
is a simple, state-basedlanguage,basedon the Reactive Modules formalism of
Alur and Henzinger [4]. A system is composed of a number of modules that
contain local variables, and that can interact with each other. The behavior of
a DTMC is described by a set of commandsof the form:

[a] g ! � 1 : u1 + : : : + � ` : u`

a is an action label in the style of processalgebras,which intro ducessynchro-
nization into the model. It can only be performedsimultaneously by all modules
that have an occurrenceof action label a in their speci�cation. If a transition
doesnot have to synchronize with other transitions, then no action label needs
to be provided for this transition. The symbol g is a predicate over all the vari-
ablesin the system. Each ui describesa transition which the module can make
if g is true. A transition updates the value of the variables by giving their new
primed value with respect to their unprimed value. The � i are used to assign
probabilistic information to the transition. It is required that � 1 + � � � + � ` = 1.
This probabilistic information can be omitted if ` = 1 (and so � 1 = 1). PRISM
considersstates without outgoing transitions as error states; terminating states
can be modeled by adding a self-loop. A more detailed description of PRISM
can be found in [107].

Verifying Algorithm A with PRISM

We usedPRISM to verify that Algorithm A satis�es the probabilistic property
\with probabilit y 1, eventually exactly one leader is elected". We modeledeach
FIFO channel and each processas a separatemodule in PRISM. The following
code in the PRISM languagegives the speci�cation for a channel of size two.
The channel channel1receivesa message(mes1 id,mes1counter,mes1bit) from
processp1 (synchronized on action label rec from p1) and sendsit to process
p2 (synchronized on action label send to p2). Each position i 2 f 1; 2g in the
channel is represented by a triple of natural numbers: onefor the processidentit y
contained in a message(b 1 2 i1), one for the hop counter (b 1 2 i2), and one
for the bit (b 1 2 i3). If the natural numbers for a position in a channel are
greater than zero, it meansthis position is occupied by a message.Otherwise,
the position is empty.

We present the channel between processesp1 and p2. Both the number of
processesand the sizeof the identit y set are two (N = 2; K = 2).
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module channel1
b 1 2 11: [0..K]; b 1 2 12:[0..N]; b 1 2 13:[0..1];
b 1 2 21: [0..K]; b 1 2 22:[0..N]; b 1 2 13:[0..1];
[rec from p1] b 1 2 11=0

! (b 1 2 11'=mes1 id) & (b 1 2 12'=mes1 counter) &
(b 1 2 13'=mes1 bit);

[rec from p1] (b 1 2 11> 0) & (b 1 2 21=0)
! (b 1 2 21'=mes1 id) & (b 1 2 22'=mes1 counter) &

(b 1 2 23'=mes1 bit);
[sendto p2] b 1 2 11> 0

! (b 1 2 11'=b 1 2 21) & (b 1 2 12'=b 1 2 22) &
(b 1 2 13'=b 1 2 23) & (b 1 2 21'=0) &
(b 1 2 22'=0) & (b 1 2 23'=0);

endmodule

mes1 id, mes1counter and mes1bit are shared variables. They are used in
the module process1below for receiving and sending messages.Only in that
module values can be assignedto these variables. mes1 id carries the identit y
of a message,mes1counter its hop counter, and mes1bit the clean (1) or dirt y
(0) bit. If no messageis present, all three variables have the value zero. (So
mes1 bit = 0 can have two meanings: either there is no message,or the bit is
dirt y.)

Each processpi is speci�ed by meansof a variable processi id :[0::K ] for its
identit y (where 0 meansthat the processis passive or selectinga new identit y),
a variable si :[0::5] for its local state (this is explained below), and a variable
leaderi:[0::1] (where in state 0 meansthat the processis passive, and 1 that it
is the leader). The following PRISM code is the speci�cation for processp1.

module process1
process1id:[0..K]; s1:[0..5];leader1:[0..1];
mes1id:[0..K]; mes1counter:[0..N];mes1bit:[0..1];

When a processis in state 0, it is active and can randomly (modeled by the
probabilit y rate R = 1=K ) select its identit y, build a new messagewith this
identit y, and set its state to 1.

[ ] s1=0
! R: (s1'=1) & (process1id'=1) & (mes1id'=1) &

(mes1counter'=1) & (mes1bit'=1)
+ R: (s1'=1) & (process1id'=2) & (mes1id'=2) &

(mes1counter'=1) & (mes1bit'=1);

When s1 = 1, the processsendsthe new messageinto channel 1 (modeled by
a synchronization with module channel1on action rec from p1), and moves to
state 2.

[rec from p1] s1=1
! (s1'=2) & (mes1id'=0) & (mes1counter'=0) &

(mes1bit'=0);
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In state 2 the processcan receive a messagefrom channel 2 (modeled by a
synchronization with module channel2 on action send to p1), and go to state
3. Note that b 2 1 11, b 2 1 12 and b 2 1 31 are sharedvariables, representing
the �rst position in the module channel2.

[sendto p1] s1=2
! (s1'=3) & (mes1id'=b 2 1 11) &

(mes1counter'=b 2 1 12) & (mes1bit'=b 2 1 13);

When a processis in state 3, it has received a messageand takesa decision. If
the processgot its own messageback (mes1 counter = N ) and the bit of the
messageis clean(mes1 bit = 1), the processis electedas the leader (leader10 =
1), and movesto state 4.

[ ] (s1=3) & (mes1counter=N) & (mes1bit=1)
! (s1'=4) & (process1id'=0) & (mes1id'=0) &

(mes1counter'=0) & (mes1bit'=0) & (leader1'=1);

If mes1 counter = N and mes1 bit = 0, the processchangesits state to 0 and
will selecta new random identit y.

[ ] (s1=3) & (mes1counter=N) & (mes1bit=0)
! (s1'=0) & (process1id'=0) & (mes1id'=0) &

(mes1counter'=0) & (mes1bit'=0);

If mes1 id = process1 id and mes1 counter < N , the processhas received a
messagewith the sameidentit y, but the messagedoesnot originate from itself.
It increasesthe hop counter in the messageby one, makes the bit dirt y, and
movesto state 5 to passon the message.

[ ] (s1=3) & (mes1id=process1id) & (mes1counter< N)
! (s1'=5) & (mes1counter'=mes1counter+1) &

(mes1bit'=0);

If mes1 id < process1 id , the processpurges the message,and moves back to
state 2 to receive another message.

[ ] (s1=3) & (mes1id< process1id)
! (s1'=2) & (mes1id'=0) & (mes1counter'=0) &

(mes1bit'=0);

If mes1 id > process1 id , the processincreasesthe hop counter in the message
by one, and goes to state 4 where it becomespassive (i.e., the value of leader1
remains zero).

[ ] (s1=3) & (mes1id> process1id)
! (s1'=4) & (process1id'=0) &

(mes1counter'=mes1counter+1);

In state 5, a processpasseson a message,and movesto state 2.
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[rec from p1] (s1=5)
! (s1'=2) & (mes1id'=0) & (mes1counter'=0) &

(mes1bit'=0);

In state 4, a passive process(leader1 = 0) can only passon messageswith their
hop counter increasedby one.

[sendto p1] (s1=4) & (leader1=0) & (mes1id=0)
! (mes1id'=b 2 1 11) & (mes1counter'=b 2 1 12+1) &

(mes1bit'=b 2 1 13);
[rec from p1] (s1=4) & (leader1=0) & (mes1id> 0)

! (mes1id'=0) & (mes1counter'=0) & (mes1bit'=0);

We added the conjunct leader1 = 0 to the predicate in order to emphasize
that the leader doesnot have to deal with incoming messages.Namely, when a
processis elected as the leader there are no remaining messages,owing to the
fact that channelsare FIFO.

A self-loop with synchronization on an action label doneis addedto processes
in state 4, to avoid deadlock states.

[done](s1=4) ! (s1'=s1);
endmodule

Other channelsand processescan be constructed by carefully module renaming
moduleschannel1and process1. The initial value of each variable is the minimal
value in its range.

Below we specify the property \with probabilit y 1, eventually exactly one
leader is elected" for a ring with two processesas a PCTL formula:

Property: P> =1 [ true U (s1=4 & s2=4 & leader1+leader2=1&
b 1 2 11+b 2 1 11=0) ]

It states that the probabilit y that eventually both p1 and p2 get into state 4
(s1 = 4 ^ s2 = 4), with exactly one processelected as the leader (leader1 +
leader2 = 1), is at leastone. In addition, wecheck that the algorithm terminates
with no messagein the ring (b 1 2 11 + b 2 1 11 = 0).

To model check this property, the algorithmic description (in the module-
based language) was parsed and converted into an MTBDD [61]. In PRISM,
reachabilit y is performed to identify non-reachable states and the MTBDD is
�ltered accordingly. Table 8.1 shows statistics for each model we have built.
The �rst part gives the parameters for each model: the ring size n, the size
of the identit y set, and the size of the channel. It is not hard to seethat at
any time there are at most n messagesin the ring, so channel size n su�ces;
and having n di�eren t possibleidentities meansthat in each \round", all active
processescan select a di�eren t identit y. The secondpart gives the number of
states and transitions in the MTBDD representing the model.

Property was successfullychecked on all the ring networks in Table 8.1 (we
used the model checker PRISM 2.0 with its default options). Note that for
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Processes Identities Channel size FIFO States Transitions
Ex.1 2 2 2 yes 127 216
Ex.2 3 3 3 yes 5,467 12,360
Ex.3 4 3 4 yes 99,329 283,872

Table 8.1: Model checking result for Algorithm A with FIFO channels

n = 4, we could only check the property for an identit y set of size three. For
n = 4 and an identit y set of sizefour, and in general for n � 5, PRISM fails to
build a model due to the lack of memory.

8.5 Leader Election without Bits

In this section,we present another leaderelectionalgorithm, which is a variation
of Algorithm A. Again channelsare assumedto be FIFO. We observethat when
an active processpi detects a name clash, meaning that it receives a message
with its own identit y and hop counter smaller than n, it is not necessaryfor pi

to wait for its own messageto return. Instead pi can immediately selecta new
random identit y and senda new message.Algorithm B is obtained by adapting
Algorithm A according to this observation. In particular all occurrencesof bits
are omitted.

Algorithm B.

� Initially , all processesare active, and each processpi randomly selects
its identit y id i 2 f 1; : : : ; kg and sendsthe message(id i ; 1).

� Upon receipt of a message(id; hop), a passive process pi (statei =
passive) passeson the message,increasingthe counter hop by one;an ac-
tiv e processpi (statei = active) behavesaccordingto oneof the following
steps:

{ if hop = n, then pi becomesthe leader (state0
i = leader);

{ if id = id i and hop < n, then pi selectsa new random identit y
id 0

i 2 f 1; : : : ; kg and sendsthe message(id 0
i ; 1);

{ if id > id i , then pi becomespassive (state0
i = passive) and passes

on the message(id ; hop + 1);

{ if id < id i , then pi purgesthe message.

We �rst discussthe automatic veri�cation of Algorithm B with PRISM in
Section 8.5.1. Then we give a manual correctnessproof for Algorithm B, for
arbitrary ring size, in Section 8.5.2.
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8.5.1 Automated veri�cation with PRISM

Channelsaremodeledin the sameway asin Section8.4. Wepresent each process
pi with a variable processi id :[0::K ] for its identit y, a variable s i :[0::4] for its
local state, and a variable leader i :[0::1]. We present only part of the PRISM
speci�cation for processp1. The parts when a processis in state 0; 1; 2 or 4
are omitted, as this behavior is very similar to Algorithm A (seeSection8.4.1).
State 5 is redundant here, becausea processselectsa new identit y as soon as it
detects a name clash.

module process1
process1id:[0..K]; s1:[0..4];leader1:[0..1];mes1id:[0..K];
mes1counter:[0..N];

When a processin state 3, it has received a messagefrom the channel and
takes a decision. If mes1 counter = N , the processis elected as the leader
(leader10 = 1), and movesto state 4.

[ ] (s1=3) & (mes1counter=N)
! (s1'=4) & (process1id'=0) & (mes1id'=0) &

(mes1counter'=0) & (leader1'=1);

If mes1 id = process1 id and mes1 counter < N , the processgoesback to state
0 and will selecta new identit y.

[ ] (s1=3) & (mes1id=process1id) & (mes1counter< N)
! (s1'=0) & (mes1id'=0) & (mes1counter'=0) &

(process1id'=0);

If mes1 id < process1 id , the processpurges the message,and moves back to
state 2 to receive another message.

[ ] (s1=3) & (mes1id< process1id)
! (s1'=2) & (mes1id'=0) & (mes1counter'=0);

If mes1 id > process1 id , the processbecomespassive, increasesthe hop counter
of the messageby one, and goesto state 4.

[ ] (s1=3) & (mes1id> process1id)
! (s1'=4) & (process1id'=0) &

(mes1counter'=mes1counter+1);
...

endmodule

Other channelsand processescan be constructed by module renaming.
Property was successfullymodel checked with respect to Algorithm B, in a

setting with FIFO channels, for rings up to size �v e. For any larger ring size,
and in caseof ring size �v e and an identit y domain containing three elements,
PRISM fails to produce an MTBDD. Table 8.2 summarizes the veri�cation
results for Algorithm B with PRISM.
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Processes Identities Channel size FIFO States Transitions
Ex.1 2 2 2 yes 97 168
Ex.2 3 3 3 yes 6,019 14,115
Ex.3 4 3 4 yes 176,068 521,452
Ex.4 4 4 4 yes 537,467 1,615,408
Ex.5 5 2 5 yes 752,047 2,626,405

Table 8.2: Model checking result for Algorithm B with FIFO channels

8.5.2 The correctness pro of

In this section we give a correctnessproof for Algorithm B, in caseof FIFO
channels,with respect to ring networks of arbitrary size.

De�nition 8.5.1 The processesand messagesbetween a processp and a mes-
sagem are the onesthat are encountered when traveling in the ring from p to
m.

Lemma 8.5.2 Let active processp have identit y id p and messagem have iden-
tit y id m . If id p 6= id m , then there is an active processor messagebetween p
and m with an identit y � minf id p; id m g.

Pro of. We apply induction on execution sequences.
Basis: Prior to the �rst arrival of a message,every processis active and has
generateda messagewith its own identit y; thus the lemma trivially holds.
Induction step: When a messagearrives at a passive process,it is simply for-
warded. Assumea messagem = (id ; hop) arrivesat an active processpi with
identit y id i . If hop = n, then pi is elected as the leader. Since channels are
FIFO, in this casethe round trip of the �nal messageof pi guaranteesthat there
are no remaining messages;thus the lemma trivially holds. Now supposethat
hop < n. We consider three cases. In each casewe only consider each pair of
an active processand a messagethat could violate the condition of the lemma
due to the arrival of m at pi .

� id i > id . Then m is purged by pi .

Let pj be an active processwith identit y id j and m0 a messagewith iden-
tit y id 0, such that pi and m arebetweenpj and m0, and id � minf id j ; id 0g.
The active processpi betweenpj and m0 has identit y id i > minf id j ; id 0g.

� id i < id . Then pi becomespassive and sendsthe message(id ; hop + 1).

Let pj be an active processwith identit y id j and m0 a messagewith
identit y id 0, such that pi and m are between pj and m0, and id i �
minf id j ; id 0g. The message(id ; hop + 1) between pj and m0 has iden-
tit y id > minf id j ; id 0g.
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� id i = id . Then pi selectsa new identit y id 0
i and sendsthe message(id 0

i ; 1).

We consider three cases,covering each pair of an active processand a
messagewith di�eren t identities that is either newly created(the �rst two
cases)or that could violate the condition of the lemma due to the new
identit y of pi (the third case).

Case 1: For any messagem0 with identit y id 0 6= id 0
i , (id 0

i ; 1) is a message
betweenpi and m0 with identit y id 0

i � min f id 0
i ; id 0g.

Case 2: For any active processpj with identit y id j 6= id 0
i , pi is an active

processbetweenpj and (id 0
i ; 1) with identit y id 0

i � min f id j ; id 0
i g.

Case 3: Let pj be an active processwith identit y id j and m0 a message
with identit y id 0 6= id j , such that pi and m are between pj and m0, and
id i � minf id j ; id 0g. Since id 0 6= id j , either id j 6= id i or id i 6= id 0. So by
induction there is an active processor messageeither betweenpj and m
with an identit y � minf id j ; id i g, or between pi and m0 with an identit y
� minf id i ; id 0g. Sinceid i � minf id j ; id 0g, in either casethere is an active
processor messagebetweenpj and m0 with an identit y � minf id j ; id 0g.

�

De�nition 8.5.3 An active processp is related to a messagem if they have the
sameidentit y id , and all active processesand messagesbetweenp and m have
an identit y smaller than id .

Lemma 8.5.4 Let active processp be related to messagem. Let � be the
maximum of all identities of active processesand messagesbetween p and m
(� = 0 if there are none).

1. Between p and m, there is an equal number of active processesand of
messageswith identit y � ; and

2. if p is not the originator of m, then there is an active processor message
betweenp and m.

Pro of. We apply induction on execution sequences.
Basis: Prior to the �rst arrival of a message,every processis active and has
generateda messagewith its own identit y; thus the lemma trivially holds.
Induction step: When a messagearrives at a passive process,it is simply for-
warded. Assumea messagem = (id ; hop) arrivesat an active processpi with
identit y id i . If hop = n, then pi is elected as the leader. Since channels are
FIFO, in this casethe round trip of the �nal messageof pi guarantees that
there are no remaining messages;thus the lemma trivially holds. Now suppose
that hop < n. We consider three cases.In each of thesecaseswe only consider
related pairs that were either created or a�ected by the arrival of m at pi .

� id i > id . Then m is purged by pi .
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Let pi be between an active processpj and a messagem0. Clearly, id
is not the maximal identit y of active processesand messagesbetween pj

and m0. So if pj and m0 are related after the purging of m, they were
also related before this moment. Hence,by induction, the pair pj and m0

satis�es condition 1 of the lemma. Furthermore, pi is an active process
betweenpj and m0, so the pair also satis�es condition 2.

� id i < id . Then p becomespassive and sendsthe message(id ; hop + 1).

If an active processp0 is related to (id ; hop+ 1), then clearly it wasalsore-
lated to m. Soby induction the pair p0 and (id ; hop+ 1) satis�es conditions
1 and 2.

Let pi and (id ; hop+ 1) be betweenan active processpj and a messagem0.
Clearly, id i is not the maximal identit y of active processesand messages
betweenpj and m0. Soif pj and m0 are related after pi hasbecomepassive,
they were also related before this moment. Hence,by induction, the pair
pj and m0 satis�es condition 1 of the lemma. Furthermore, (id ; hop + 1)
is a messagebetweenpj and m0, so the pair also satis�es condition 2.

� id i = id . Then pi selectsa new identit y id 0
i and sendsthe message(id 0

i ; 1).

Note that pi is the only active processrelated to (id 0
i ; 1), and vice versa.

Clearly, conditions 1 and 2 of the lemma are satis�ed by this pair.

Let an active processpj with identit y id j be related to a messagem0, such
that pi and (id 0

i ; 1) are betweenpj and m0. Sincepi is betweenpj and m0,
condition 2 is satis�ed by this pair. We proceedto prove condition 1 for
this pair. We consider three cases.

Case 1: id i > id j . Then by Lemma 8.5.2 there is an active processor
messagebetween pi and m0 with identit y � id j . This active processor
messageis also between pj and m0, which contradicts the fact that pj is
related to m0.

Case 2: id i < id j . Then pj and m0 werealready related beforem reached
pi , soby induction this pair satis�ed condition 1 beforem reachedpi . Let �
denotethe maximum of all identities of active processes(and of messages)
between pj and m0 before m reached pi ; and let # denote the number
of active processes(and of messages)between pj and m0 with identit y �
before m reached pi . Moreover, let � 0

� and � 0
� denote the maximum of all

identities of active processesand messages,respectively, between pj and
m0 after m reached pi ; and let # 0

� and # 0
� denote the number of active

processesand messages,respectively, betweenpj and m0 with identit y � 0
�

and � 0
� , respectively, after m reached pi . Clearly id i � � . We consider�v e

cases.

If id 0
i > � , then � 0

� = id 0
i = � 0

� and # 0
� = 1 = # 0

� .

If id 0
i = � and id i = � , then � 0

� = � = � 0
� and # 0

� = # = # 0
� .

If id 0
i = � and id i < � , then � 0

� = � = � 0
� and # 0

� = # + 1 = # 0
� .
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If id 0
i < � and id i = � , then � 0

� = � = � 0
� and # 0

� = # � 1 = # 0
� .

Namely, sinceid i < id j , by Lemma 8.5.2 there must be an active process
or messagebetween pi and m0 with identit y � id i . Since id i = � , this
identit y must be equal to id i .

If id 0
i < � and id i < � , then � 0

� = � = � 0
� and # 0

� = # = # 0
� .

Case 3: id i = id j . Then before m reached pi , pj was related to m and
pi was related to m0. So by induction, before m reached pi , these pairs
satis�ed condition 1. Let � 1 and � 2 denote the maximum of all identities
of active processes(and of messages)between pj and m and between pi

and m0, respectively, before m reached pi ; and let # 1 and # 2 denote
the number of active processes(and of messages)betweenpj and m and
betweenpi and m0, respectively, beforem reachedpi . Moreover, let � 0

� , � 0
� ,

# 0
� and # 0

� have the samemeaning as in the previous case. We consider
seven cases.

If id 0
i > maxf � 1; � 2g, then � 0

� = id 0
i = � 0

� and # 0
� = 1 = # 0

� .

If � 1 > maxf id 0
i ; � 2g, then � 0

� = � 1 = � 0
� and # 0

� = # 1 = # 0
� .

If � 2 > maxf id 0
i ; � 1g, then � 0

� = � 2 = � 0
� and # 0

� = # 2 = # 0
� .

If id 0
i = � 1 > � 2, then � 0

� = id 0
i = � 0

� and # 0
� = # 1 + 1 = # 0

� .

If id 0
i = � 2 > � 1, then � 0

� = id 0
i = � 0

� and # 0
� = # 2 + 1 = # 0

� .

If � 1 = � 2 > id 0
i , then � 0

� = � 1 = � 0
� and # 0

� = # 1 + # 2 = # 0
� .

If id 0
i = � 1 = � 2, then � 0

� = id 0
i = � 0

� and # 0
� = # 1 + # 2 + 1 = # 0

� .

�

We say that an activeprocessor messageis maximal if its identit y is maximal
amongthe activeprocessesor messagesin the ring, respectively. In the following
proposition we write � � and � � for the identit y of maximal active processesand
messages,respectively. The number of active processesand messageswith the
sameidentit y id is denotedby # id

� and # id
� , respectively. We write # � and # �

for the number of maximal active processesand messages,respectively.

Prop osition 8.5.5 Until a leader is elected, there exist active processesand
messagesin the ring, and � � = � � and # � = # � .

Pro of. We apply induction on execution sequences.
Basis: Prior to the �rst arrival of a message,every processis active and has
generateda messagewith its own identit y; thus the proposition trivially holds.
Induction step: By induction, � � = � � and # � = # � ; we write � for � � and
� � , and # for # � and # � . When a messagearrivesat a passive process,it is
simply forwarded. Assumea messagem = (id ; hop) arrivesat an active process
pi with identit y id i . If hop = n, then pi is electedas the leader. Now suppose
that hop < n. We consider four cases.
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� id i > id . Since � � = � � , m is not a maximal message.It is purged by pi .
The valuesof � � and � � remain unchanged.

� id i < id . Since� � = � � , pi is not a maximal process.It becomespassive.
The valuesof � � and � � remain unchanged.

� id i = id < � . Then pi selectsa new identit y id 0
i , and sendsthe message

(id 0
i ; 1). If id 0

i > � , then � 0
� = id 0

i = � 0
� and # 0

� = 1 = # 0
� . If id 0

i = � , then
� 0

� = � = � 0
� and # 0

� = (# + 1) = # 0
� . If id 0

i < � , then � 0
� = � = � 0

� and
# 0

� = # = # 0
� .

� id i = id = � . Then pi selectsa new identit y id 0
i , and sendsthe message

(id 0
i ; 1). We distinguish two cases.

Case 1: # > 1. If id 0
i > � , then � 0

� = id 0
i = � 0

� and # 0
� = 1 = # 0

� . If
id 0

i = � , then � 0
� = � = � 0

� and # 0
� = # = # 0

� . If id 0
i < � , then � 0

� = � = � 0
�

and # 0
� = (# � 1) = # 0

� .

Case 2: # = 1. Then clearly pi is related to m, and all other active
processesand messagesare between them. Since hop < n, pi is not the
originator of m, so by Lemma 8.5.4.2there is someactive processor mes-
sagebetweenthem. Let � 0 > 0 be the maximum of all identities of active
processes6= pi and messages6= m. By Lemma 8.5.4.1, # � 0

� = # � 0
� . If

id 0
i > � 0, then � 0

� = id 0
i = � 0

� and # 0
� = 1 = # 0

� . If id 0
i = � 0, then

� 0
� = � 0 = � 0

� and # 0
� = (# � 0

� + 1) = # 0
� . If id 0

i < � 0, then � 0
� = � 0 = � 0

�

and # 0
� = # � 0

� = # 0
� .

�

Theorem 8.5.6 Let channels be FIFO. Then Algorithm B terminates with
probabilit y one, and upon termination exactly one leader is elected.

Pro of. By Proposition 8.5.5, some processesremain active until a leader is
elected. A processcan be electedas the leaderonly if it receivesa messagewith
a hop counter equal to n, which meansthe messagehaspassedthrough all other
processesand made them passive. Hence,we have uniquenessof the leader.

It remainsto show that the algorithm terminates with probabilit y one. When
there are ` � 2 active processesin the ring, these processesall remain active
if and only if they all the time choosethe same identit y. Otherwise, at least
oneactive processwill becomepassive. The probabilit y that all active processes
select the sameidentit y in one \round" is ( 1

k )` � 1. So the probabilit y for all `
active processesto choosethe sameidentit y m times in a row is ( 1

k )m (` � 1) . Since
k � 2, the probabilit y that the number of active processeseventually decreases
is one.

Clearly, when there is only one active processin the ring, it will be elected
as the leader. After the round trip of its �nal messagethere are no remaining
messages,becausechannelsare FIFO. �
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8.6 Performance Analysis

A probabilistic analysis in [95] reveals that if k = n, the expected number of
rounds required for the Itai-Ro deh algorithm to elect a leader in a ring with
sizen is bounded by e� n

n � 1 . The expected number of messagesfor each round
is O(n logn). Hence, the averagemessagecomplexity of the Itai-Ro deh algo-
rithm is O(n logn). Likewise, Algorithms A and B have an averagemessage
complexity of O(n logn).

The probabilistic temporal logic PCTL [83, 11] can be used to expresssoft
deadlines, such as \the probabilit y of electing a leader within t discrete time
stepsis at most 0.5".1 A PCTL formula to calculate the probabilit y of electing
a leader within t discrete time stepsfor a ring with two processesis

P=? [ true U< =t (s1=4 & s2=4 & leader1+leader2=1)]

We used PRISM to calculate the probabilit y that Algorithms A and B termi-
nate within a given number of transitions, for rings of size two and three. The
experimental results presented in Figure 8.2 and Figure 8.3 indicate that Al-
gorithm B seemsto have a better performance than Algorithm A. Note that
when t movesto in�nit y, both algorithms elect a leader with probabilit y one.
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Figure 8.2: The probabilit y of electing a leader with deadlines.

8.7 Leader Election with Tw o Iden tities

In this section we show that when k = 2, both Algorithm A and Algorithm B
(with somesmall adaptations) are correct even if channelsare not FIFO. Note

1Each discrete time step corresponds to one transition in the algorithm.
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Figure 8.3: The probabilit y of electing a leader with deadlines.

that if k = 2, then in Figure 8.1 we cannot �nd identities u; v; w; x such that
u > v > w; x.

We �rst explain the changesthat need to be made to Algorithms A and
B. If channels are not FIFO, then when a leader is elected, there may still be
messagesin the ring. So to guarantee that the algorithms terminate with no
messagein the ring, the leader must be able to purge incoming messages.

v

u

v

v

v

u

(v; 1; true )

(v; 1; true )

v

u

(u; 2; true )

(v; 2; false) (v; 2; false)

(u; 1; true )

(v; 3; false)

(u; 2; true )

Figure 8.4: Algorithm A: if channelsare not FIFO, hop counters can be greater
than n.

We needto make one more minor adaptation to the PRISM model of Algo-
rithm A. Namely, the domain of hop counters has to be enlargedfrom [0::N ] to
[0::2N � 1]. Figure 8.4 presents a scenarioto show that a messagecan continue
after completing a round trip. It depicts a ring of size two; black processesare
active and white processesare passive. Initially , both processesare active, select
the smaller of the two identities v, and senda messagewith their identit y. (See
the left side of Figure 8.4.) The messagefrom the top node arrivesback at its
originator, which selectsas new identit y u > v and sendsa messagewith its
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Processes Channel size FIFO States Transitions
Ex.1 2 2 no 533 898

Table 8.3: Model checking result for Algorithm A with k = 2

Processes Channel size FIFO States Transitions
Ex.1 2 2 no 391 666
Ex.2 3 3 no 63,433 147,660

Table 8.4: Model checking result for Algorithm B with k = 2

identit y. (Seethe secondpart of Figure 8.4.) Sincechannelsare not FIFO, the
messagewith identit y v can be overtaken by the messagewith identit y u, and
the latter messagemakes the bottom node passive. (Seethe third part of Fig-
ure 8.4.) Finally, the message(v; 2; false) is passedon by its passive originator
to become(v; 3; false). (Seethe right side of Figure 8.4.)

Weveri�ed Algorithms A and B (with the aforementioned adaptations) using
PRISM in the setting that k = 2 and channels are not FIFO. Here, we omit
the PRISM speci�cation, and only present the veri�cation results in Table 8.3
and Table 8.4. We successfullyanalyzedAlgorithm A for a ring of sizetwo, and
Algorithm B for rings up to sizethree. For any larger ring size,PRISM fails to
build a model.

Theorem 8.7.1 Let k = 2. Algorithm A terminates with probabilit y one,and
upon termination exactly one leader has beenelected.

Pro of. Sincek = 2, the identit y set contains only two elements. Let u denote
the largest element. First, we present a proposition.

Prop osition 8.7.2 Until a leader is elected, there exist active processesand
messagesin the ring.

We apply induction on execution sequences.
Basis: Prior to the �rst arrival of a message,every processis active and has
generateda messagewith its own identit y; thus the proposition trivially holds.
Induction step: When a messagearrives at a passive process,it is simply for-
warded. Assume that messagem = (id ; hop; bit ) arrives at active processpi

with identit y id i . We distinguish two cases.

� id i = id .

If hop = n and bit = true, then pi is electedas the leader.

If hop = n and bit = false, then pi remains active, selectsa new identit y
id 0

i and sendsthe message(id 0
i ; 1; true).
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If hop < n, then pi remains active and sends the message(id ; hop +
1; false).

� id i 6= id .

If id i = u, then pi is the originator of a messagewith identit y u. This
messagewill complete the round trip, since no processhas an identit y
larger than u; so this messageis still in the ring. pi remains active and
purgesm.

If id = u, then m originates from a processpj with identit y u. pj remains
active until m has completed the round trip, since no messagecan have
an identit y larger than u. pi becomespassive and sends the message
(id ; hop + 1; bit ).

It follows from Proposition 8.7.2 that someprocessesremain active until a
leaderis elected. An active processcan be electedasthe leaderonly if it receives
a messagewith hop counter n and bit true, which meansthe messagehaspassed
through all other processesand made them passive. Hence,we have uniqueness
of the leader.

The proof that the algorithm terminates with probabilit y one is similar to
the probabilit y analysisin the proof of Theorem 8.4.2. When a leader is elected,
it purges the remaining messagesin the ring. �

Theorem 8.7.3 Let k = 2. Algorithm B terminates with probabilit y one, and
upon termination exactly one leader has beenelected.

Pro of. Sincek = 2, the identit y set contains only two elements. Let u denote
the larger element. First, we present a proposition. We write # � and # � for
the number of active processesand messageswith identit y u, respectively.

Prop osition 8.7.4 Until a leader is elected, there exist active processesand
messagesin the ring, and # � = # � .

We apply induction on execution sequences.
Basis: Prior to the �rst arrival of a message,every processis active and has
generateda messagewith its own identit y; thus the proposition trivially holds.
Induction step: By induction, # � = # � ; we write # for # � and # � . When
a messagearrives at a passive process,it is simply forwarded. Assume that
messagem = (id ; hop) arrivesat active processpi with identit y id i . If hop = n,
then pi is electedas the leader. Let hop < n. We distinguish two cases.

� id i = id .

Then pi remains active, selectsa new identit y id 0
i , and sendsthe message

(id 0
i ; 1). If id i = id 0

i , then # 0
� = # = # 0

� . If id i = u and id 0
i 6= u, then

# 0
� = # � 1 = # 0

� . If id i 6= u and id 0
i = u, then # 0

� = # + 1 = # 0
� .



192 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

� id i 6= id .

Then clearly # > 0.

If id = u, then pi becomespassive and sendsthe message(id ; hop + 1).
# 0

� = # = # 0
� .

If id i = u, then pi remains active and purgesm. # 0
� = # = # 0

� .

By Proposition 8.7.4, someprocessesremain active until a leader is elected.
An active processcan be electedas the leaderonly if it receivesa messagewith
a hop counter equal to n, which meansthe messagehaspassedthrough all other
processesand made them passive. Hence,we have uniquenessof the leader.

The proof that the algorithm terminates with probabilit y one is similar to
the probabilit y analysisin the proof of Theorem 8.5.6. When a leaderis elected,
it purgesthe remaining messagesin the ring. �

8.8 Conclusions

In this chapter, we presented two probabilistic leader election algorithms for
anonymous unidirectional rings with FIFO channels. Both algorithms were
speci�ed and successfullymodel checked with PRISM. They satisfy the prop-
erty \with probabilit y 1, eventually exactly one leader is elected". The com-
plete speci�cations in PRISM can be found at http://www.cwi.nl /~ pangj un/
leader/ . The generation of state spacesand the veri�cations were performed
on a 1.4 GHz AMD AthlonTM Processorwith 512 Mb memory. We also gave
a manual correctnessproof for each algorithm. Future work is to formalize and
check theseproofs by meansof a theorem prover such as PVS.

Itai and Rodeh [95] stated:

\W e could have usedany of the improved algorithms [27], [44], [88],
[138]."

Following this direction, we developed two more probabilistic leader election
algorithms, basedon the Dolev-Klawe-Rodeh algorithm [44, 58]. Both of them
are �nite-state, and we model checked them successfullyin � CRL [21] up to ring
size six. The adaptations of the Dolev-Klawe-Rodeh algorithm are very simi-
lar to our adaptations (Algorithms A and B) of the Chang-Roberts algorithm;
i.e., processesagain select random identities, and name clashesare resolved in
exactly the sameway. Therefore our adaptations of the Dolev-Klawe-Rodeh al-
gorithm are not presented here. The interestedreadercan �nd the speci�cations
of all our algorithms at http://www.cwi. nl/ ~pangju n/ lea der/ . Thesespeci�-
cationsare in the language� CRL, which wasusedfor an initial non-probabilistic
model checking exercise.
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Conclusions

Conclusionshave beendrawn for Chapters 3 to 8 separately. In this chapter, I
will give someconcluding remarks, from the perspective of the entire project.

Recall that the generalgoal of the project is:

\to establishwhether it is possibleto achieve reliable quality of soft-
ware for medium size embedded systems,and to better utilize the
formal methods in industry."

and that the major question to be answered is:

\whether the current technology developed in the past by the for-
mal methods research communit y can indeed becomean e�ectiv e
practical tool within a development environment."

The research proposal argued that most of the published casestudies of
formal veri�cation in the literature were quite remote from the actual product
designprocessand generally only dealt with fractions of a system, as the total
system tends to be too complex. The situation at Weidm•uller/Add-Con trols is
quite di�eren t. The products they design,embedded controllers, are relatively
not very complex. Moreover, direct communication with the development de-
partment is possible,which provides an ideal platform for experiments on the
tra jectory from formal design towards real products.

However, the project progressedin an unexpected way. This project was
initially proposedby Jan Friso Groote and Jos van Wamel at CWI. Not long
after the project started in August of 2000, both Jan Friso and Jos left CWI,
and Wan Fokkink succeededas the project leader at CWI. In 2001, the divi-
sion of Weidm•uller supporting this project decided to set up a new company
{ Add-Controls. During the initial phaseof Add-Controls, there was no new
development of embeddedsystems. The distributed lift system (seeChapter 6)
becameits main commercial product.

Nevertheless,we have tried to stick to the spirit of the project. The dis-
tributed lift systemwas�rst analyzedin 2000and 2001,and then wasredesigned
at Add-Controls. The analysis of the redesigntook place in 2002and 2003. In

193
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order to perform another real-life casestudy during the design phase, in 2001
and 2002, we analyzed the cache coherenceprotocol for Jackal system, which
is a distributed shared memory implementation of the Java language. In 2003
and the beginning of 2004,we usedformal veri�cation techniquesto designnew
distributed algorithms and show their correctness.In the meantime, somethe-
oretical research has been carried out for the project. A protocol veri�cation
method was developed and supplied with mechanical support (seeChapter 3).
The usefulnessof this method was illustrated by a challenging casestudy (see
Chapter 4).

To summarize, in this project:

� Di�eren t formal veri�cation techniquessuch asmanual proof, model check-
ing and theorem proving have beenapplied for the analysisof distributed
system. Theorem proving was applied in Chapter 5. The combination
of manual proof and theorem proving was applied in Chapters 3 and 4.
Model checking was applied in Chapters 6 and 7. The combination of
manual proof and model checking was applied in Chapter 8.

� We have tried di�eren t tools for the veri�cation of di�eren t aspectsof dis-
tributed systems. The theorem prover PVS [131] was usedin Chapters 3,
4 and 5. The � CRL tool set [21] and the model checker CADP [49, 63]
were used in Chapters 6 and 7. The real-time model checker UPPAAL
[111] was used in Chapter 6. The probabilistic model checker PRISM
[107] was used in Chapter 8. The tool for conformancetesting TorX [14]
and the model checker for hybrid systemsHyTech [86] were used in two
abandonedcasestudies.

� Formal veri�cation hasbeenapplied in di�eren t phasesof systemdevelop-
ment. The implementation of original designof the distributed lift system
wasanalyzedin Chapters 6, while the redesignof the systemwasanalyzed
before implementing. During its formal veri�cation, the cache coherence
protocol in Chapters 7 wasstill under implementation, and someevolution
of its design took place. In Chapters 8, formal veri�cation was used to
develop new distributed algorithms for leader election.

� The casestudiescover a wide rangeof distributed systems;namely an em-
beddedcontroller (Chapters 6), a communication protocol (Chapter 4), a
cache coherenceprotocol (Chapter 7), and distributed algorithms (Chap-
ters 5 and 8).

Within this project, we have achieved certain positive results. Formal veri-
�cation can �nd problems in real-life distributed systems,and suggestpossible
solutions. Formal veri�cation can also be used to prove protocols and algo-
rithms correct. Therefore, the proper useof formal methods does lead to more
reliable, dependable systems. Using formal methods in the industrial system
development can be e�ectiv e, at least for embeddedcontrollers.

On the other hand, the situation of using formal methods in the industrial
systemdevelopment described in the thesis of Judi Romijn [149, Chapter 8] has
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not improved dramatically in the last �v e years. Thus, to make formal methods
an e�ectiv e practical tool within an industrial development environment, signif-
icant developments in formal methods still have to be made. For example, the
conesand foci method developed in this thesis is still far from a practical tool,
which can be used directly in industry. How to integrate formal methods into
the whole development processof industrial systems partly remains an open
question.

I draw someconclusionson what I have learned from the project:

� Model checking is useful for detecting errors in real-life systemsand for
gaining more con�dence about the designof a system. Theorem proving
is useful for giving correctnessproofs.

� Both researchers of formal methods and their industrial partners needto
speak each other's language. Researchers needto understand the system
designed and implemented by the industry in order to perform better
formal analysis. On the other hand, developers from industry needsome
knowledge of formal speci�cation languagesand veri�cation methods in
order to give feedback and appreciate the result of the formal analysis.

� Researchers must take the input from developers seriously. Analyzing a
formal model that deviatestoo much from the actual systemor hasa very
high level of abstraction is not useful in practice (seee.g.,Chapter 6). De-
velopersof industrial systemsmust take the input from the formal analysis
of researchersseriously. As shown in Chapter 6, the formal analysisof the
original designof the lift systemin � CRL would have saved the developers
considerablee�ort in the redesign.

� The developers of the lift system stress that formal methods should be
applied in the early designphasesto save testing e�ort and cost.

� It is important that experiments within the formal analysisprocesscan be
reproducedeasily. When a systemis under formal analysis, its designand
implementation can still be modi�ed by the developers (see e.g., Chap-
ter 7). After some changestook place, the experiments that had been
done before neededto be repeated in order to check whether the changes
have e�ect on the correctnessof the system.

� It is necessaryfor researchers to have the abilit y of using di�eren t for-
malisms and tools in order to verify di�eren t aspects of systems. In my
experience,the translation of a formal model of a systeminto another for-
malism is in generalnot very di�cult (seee.g.,Chapter 6 and Chapter 8).

� Not all system errors can be detected with formal methods, which is a
lessonI learned from an abandonedcasestudy.

From my personal viewpoint, I give someremarks on improving the e�ec-
tiv enessof using formal methods in industry.
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First, for researchers to improve formal methods, we must: 1) reduce the
learning curve of formal methods such that they are easy to learn, and quick
to use; 2) increasethe expressivenessof formal methods such that they can
be used to specify and verify more systems; 3) develop new e�cien t and ef-
fective veri�cation techniques such that they can deal with large and complex
systems;4) integrate di�eren t formal veri�cation techniquesin a uniform frame-
work such that within a veri�cation task wecanbene�t from di�eren t techniques
and switch among di�eren t methods smoothly; 5) transfer formal methods to
potential users by educating under-graduate students in formal methods and
performing more casestudies for industry; 6) invest more time and manpower
in project, like the one in this thesis.

Second,to apply formal methods in a industrial system development, it is
important for industry: 1) to know in which projects using formal methods can
be bene�cial; 2) to recognizewhen and where to apply formal methods in such
projects; 3) to educate their designersin formal methods; 4) to support more
research project, like the one in this thesis.



App endix A

� CRL Code of the Cache Coherence
Proto col

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% For data types, equality function defintions are all omitted.
% Sort: Bool
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort Bool
func T,F:->Bool
map if:Bool#Bool#Bool->Bool

not:Bool->Bool
and,or,eq:Bool#Bool->Bool

var b,b':Bool
rew if(T,b,b')=b if(F,b,b')=b'

not(T)=F not(F)=T not(not(b))=b
and(T,b)=b and(F,b)=F and(b,T)=b and(b,F)=F
or(T,b)=T or(F,b)=b or(b,T)=T or(b,F)=b

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sort: Natural.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort Natural
func 0:->Natural

S:Natural->Natural
map sub1: Natural->Natural

eq,gt: Natural#Natural->Bool
var n,m:Natural
rew sub1(0)=0 sub1(S(n))=n

gt(0, n)=F gt(S(n),0)=T gt(S(n),S(m))=gt(n,m)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sort: ThreadId
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort ThreadId
func tid1,tid2,tid3:->ThreadId
map eq,le:ThreadId#ThreadId->Bool
var t:ThreadId

197
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rew le(t,t)=T le(tid1,t)=T le(tid2,tid1)=F le(tid2,tid3)=T
le(tid3,tid1)=F le(tid3,tid2)=F

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sort: ProcessorId
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort ProcessorId
func pid1,pid2 :->ProcessorId
map eq,le:ProcessorId#ProcessorId ->Bool
var p:ProcessorId
rew le(pid1,p)=T le(pid2,pid1)=F le(pid2,pid2)=T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sort: RegionId, only one region with identity rid1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort RegionId
func rid1 :->RegionId
map eq:RegionId#RegionId->Bool
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This sort is used for a region, which maintains a list of processors
% which have written to the region recently.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort ProcessorIdSet
func ema:->ProcessorIdSet

in:ProcessorId#ProcessorIdSet ->Pr ocessorId Set
map remove:ProcessorId#ProcessorI dSet->Pro cessorIdS et

test:ProcessorId#ProcessorIdS et-> Bool
empty:ProcessorIdSet->Bool
if:Bool#ProcessorIdSet#Proces sorI dSet- >ProcessorIdS et
eq:ProcessorIdSet#ProcessorId Set- >Bool
count:ProcessorIdSet->Natural
% Get the identity when there is only one processor.
getIden:ProcessorIdSet->Proce ssor Id
insert:ProcessorId#ProcessorI dSet->Pro cessorIdS et

var a,a':ProcessorId A,A':ProcessorIdSet
rew remove(a,ema)=ema

remove(a,in(a',A))=if(eq(a,a' ),re move(a,A) ,in(a ',re move(a,A) ))
test(a,ema)=F test(a,in(a',A))=if(eq(a,a') ,T,te st(a ,A))
empty(ema)=T empty(in(a,A))=F
if(T,A,A')=A if(F,A,A')=A'
count(ema)=0 count(in(a,A))=S(count(remove (a,in (a,A ))))
getIden(in(a,A))=a
insert(a,ema)=in(a,ema)
insert(a,in(a',A'))=if(eq(a,a '),i n(a', A'),

if(le(a,a'),in(a,in(a',A')) ,in( a',in sert (a,A' ))))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%This sort is used for a thread, which maintians a list of regions
% where the thread has written recently.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort RegionIdSet
func ridema:->RegionIdSet

in:RegionId#RegionIdSet->Regi onId Set
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% These functions are defined similarly as in ProcessorIdSet. Omitted.
map remove:RegionId#RegionIdSet->Re gion IdSet

test:RegionId#RegionIdSet->Bool
empty:RegionIdSet->Bool
if:Bool#RegionIdSet#RegionIdSet ->RegionI dSet
eq:RegionIdSet#RegionIdSet->Boo l
count:RegionIdSet->Natural
getIden:RegionIdSet->RegionId
insert:RegionId#RegionIdSet->Re gion IdSet

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% State of regions, initially, the region is UNUSED.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort State
func UNUSED,USED:->State
map eq: State#State->Bool

if:Bool#State#State->State
var s1,s2:State
rew if(T,s1,s2)=s1 if(F,s1,s2)=s2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sort: Region
% Id, Home, State, accessorlist, Data, Twin, the number of local threads
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sort Region
func reg:RegionId#ProcessorId#State# Processor IdSet#Natural ->Region
map getid:Region->RegionId

gethome:Region->ProcessorId
getstate:Region->State
getaccessorlist:Region->Process orId Set
getlocalt:Region->Natural
sethome:Region#ProcessorId->Reg ion
setstate:Region#State->Region
setaccessorlist:Region#Processo rIdS et->R egio n
setlocalt:Region#Natural->Regio n
eq:Region#Region->Bool

var id,id': RegionId h,h':ProcessorId w,w':ProcessorIdSet
s,s':State lt,lt':Natural region:Region

rew getid(reg(id,h,s,w,lt))=id
gethome(reg(id,h,s,w,lt))=h
getstate(reg(id,h,s,w,lt))=s
getaccessorlist(reg(id,h,s,w,lt ))=w
getlocalt(reg(id,h,s,w,lt))=lt
sethome(reg(id,h,s,w,lt),h')=re g(id ,h',s ,w,l t)
setstate(reg(id,h,s,w,lt),s')=r eg(i d,h,s ',w, lt)
setaccessorlist(reg(id,h,s,w,lt ),w' )=reg (id, h,s, w',lt )
setlocalt(reg(id,h,s,w,lt),lt') =reg(id,h ,s,w ,lt' )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Actions: Wesynchronize s_* and r_* into an action c_*.
% The communication functions will be omitted.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
act
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s_require_faultlock,r_require_ faul tloc k,c_r equi re_fa ultl ock: ProcessorId
s_require_flushlock,r_require_ flus hloc k,c_r equi re_fl ushl ock: ProcessorId
s_require_serverlock,r_require _ser verl ock,

c_require_serverlock: ProcessorId
s_require_homequeuelock,r_requ ire_ homequeuelock ,

c_require_homequeuelock: ProcessorId
s_require_remotequeuelock,r_re quir e_remotequeuelock,

c_require_remotequeuelock: ProcessorId
s_free_faultlock,r_free_faultl ock, c_fr ee_faultl ock: ProcessorId
s_free_flushlock,r_free_flushl ock, c_fr ee_fl ushl ock: ProcessorId
s_free_serverlock,r_free_serve rloc k,c_ free_ serv erloc k: ProcessorId
s_free_homequeuelock,r_free_ho mequeuel ock,

c_free_homequeuelock: ProcessorId
s_free_remotequeuelock,r_free_ remotequ euelo ck,

c_free_remotequeuelock: ProcessorId
s_no_faultwait,r_no_faultwait, c_no_fau ltwai t: ProcessorId
s_no_flushwait,r_no_flushwait, c_no_flu shwait: ProcessorId
s_no_serverwait,r_no_serverwai t,c_ no_server wait : ProcessorId
s_no_homequeuewait,r_no_homequeuewait,

c_no_homequeuewait: ProcessorId
s_no_remotequeuewait,r_no_remo tequ euewait,

c_no_remotequeuewait: ProcessorId
s_signal_faultwait,r_signal_fa ultw ait, c_sig nal_ fault wait : ProcessorId
s_signal_flushwait,r_signal_fl ushwait, c_sig nal_ flush wait : ProcessorId
s_signal_serverwait,r_signal_s erve rwai t,c_s igna l_ser verwait: ProcessorId
s_signal_homequeuewait,r_signa l_ho mequeuewait,

c_signal_homequeuewait: ProcessorId
s_signal_remotequeuewait,r_sig nal_ remotequeuewait,

c_signal_remotequeuewait: ProcessorId
s_data_require,r_i_data_requir e,c_ i_da ta_re quir e,
s_i_data_require,r_data_requir e,c_ o_data_re quir e:

ThreadId#ProcessorId#Processo rId
s_data_return,r_o_data_return, c_i_ data _retu rn,
s_o_data_return,r_data_return, c_o_data _retu rn:

ThreadId#ProcessorId#Processo rId# Region#Bool
s_flush,r_i_flush,c_i_flush, s_i_flush,r_flush,c_o_flush :

ThreadId#ProcessorId#Processo rId# Region#Bool
s_region_sponmigrate,r_i_regio n_sponmigrate ,c_i _regi on_sponmigrat e,
s_i_region_sponmigrate,r_regio n_sponmigrate ,c_o _regi on_sponmigrat e:

ThreadId#ProcessorId#Processo rId# Region
s_sendback,r_sendback,c_sendba ck:T hreadId#Proce ssorI d#Region
s_refresh,r_refresh,c_refresh: ThreadId #ProcessorId#R egio n
s_norefresh,r_norefresh,c_nore fres h:ThreadI d#ProcessorId
s_sendback,r_sendback,c_sendba ck: ProcessorId#Region
s_refresh,r_refresh,c_refresh: ProcessorId#Region
s_norefresh,r_norefresh,c_nore fres h: ProcessorId
s_signal,r_signal,c_signal: ThreadId#ProcessorId
write,writeover,flush,flushove r:Th readId
r_home s_homec_homer_copy s_copy c_copy
lockempty,homequeueempty,remotequeueempty:P roce ssorI d
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: Thread
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc Thread(tid:ThreadId,pid:Process orId ,Flus hLis t:Re gionI dSet)=

write(tid).ThreadWrite(tid,pid, Flus hList ) +
flush(tid).ThreadInvalidate(tid ,pid ,Flus hLis t)
<| not(eq(FlushList, ridema)) |>delta

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: ThreadWrite
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc ThreadWrite(tid:ThreadId,pid:Pr ocessorId ,Flu shLi st:Re gion IdSet )=

Thread(tid,pid,FlushList)
<| test(rid1, FlushList) |>
sum(r:Region,r_sendback(tid,pid ,r).

(s_norefresh(tid,pid).
WriteHome(tid,pid,insert(rid1,F lushL ist) )
<| eq(gethome(r), pid) |>
s_norefresh(tid,pid).
WriteRemote(tid,pid,insert(rid1 ,Flus hLis t))

) )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: WriteHome, thread writes at home.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc WriteHome(tid:ThreadId,pid:Proc essorId,F lush List :Regi onId Set)=

s_require_serverlock(pid).
(r_no_serverwait(pid)+r_signal_ serv erwai t(pi d)).
sum(r:Region,r_sendback(tid,pid ,r).

( (s_refresh(tid,pid,setlocalt( setst ate( seta ccessorli st(
r,insert(pid,getaccessorlist(r) )),U SED),S(ge tloc alt(r )))) .

s_free_serverlock(pid).
writeover(tid).Thread(tid,pi d,Flu shLi st)
<| eq(getstate(r), UNUSED)|>
s_refresh(tid,pid,setlocalt( setac cessorli st(

r,insert(pid,getaccessorlist(r ))), S(getloca lt(r )))).
s_free_serverlock(pid).
writeover(tid).Thread(tid,pi d,Flu shLi st)
)

<| eq(gethome(r), pid) |>
s_norefresh(tid,pid).
s_free_serverlock(pid).
WriteRemote(tid,pid,FlushList)

) )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: WriteRemote, thread writes from remote.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc WriteRemote(tid:ThreadId,pid:Pr ocessorId ,Flu shLi st:Re gion IdSet )=

s_require_faultlock(pid).
(r_no_faultwait(pid)+r_signal_f ault wait( pid) ).
sum(r:Region,r_sendback(tid,pid ,r).

(s_data_require(tid,pid,geth ome(r)).
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s_norefresh(tid,pid).
sum(pid':ProcessorId,r_signal (tid, pid' ).

sum(newr:Region,r_sendback(tid, pid, newr) .
s_refresh(tid,pid,setlocalt(new r,S(g etlo calt (newr)))) .
s_free_faultlock(pid).
writeover(tid).Thread(tid,pid,F lushL ist)

) )
<| not(eq(gethome(r),pid)) |>
s_norefresh(tid,pid).
s_free_faultlock(pid).
WriteHome(tid,pid,FlushList)

) )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: ThreadInvalidate
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc ThreadInvalidate(tid:ThreadId ,pid :Proc essorId,

FlushList:RegionIdSet)=
Thread(tid,pid,FlushList)
<| eq(FlushList, ridema) |>
s_require_flushlock(pid).
(r_no_flushwait(pid)+r_signal _flu shwait(pi d)).
sum(r:Region,r_sendback(tid,p id,r ).

(FlushHome(tid,pid,remove(rid1 ,Flus hLis t),r)
<| eq(gethome(r),pid) |>
FlushRemote(tid,pid,remove(ri d1,Fl ushList), r)

) )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: FlushHome, thread invalidates at home.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc FlushHome(tid:ThreadId,pid:Pr ocessorId ,Flu shLis t:Re gion IdSet ,

r:Region)=
( s_refresh(tid,pid,setlocalt(se tstat e(se tacce ssor list (

r,remove(pid,getaccessorlist (r))) ,UNUSED),sub1(get local t(r) ))).
s_free_flushlock(pid).
flushover(tid).Thread(tid,pid, Flush List )
<| empty(remove(pid,getaccesso rlist (r)) ) |>
( (s_region_sponmigrate(tid,p id,

getIden(remove(pid,getaccesso rlis t(r)) ),
setaccessorlist(r,remove(pid, geta ccessorli st(r )))).

s_refresh(tid,pid,sethome(setlo calt (sets tate (
setaccessorlist(r,ema),UNUSED ),su b1(getloc alt( r))),
getIden(remove(pid,getaccesso rlis t(r)) ))).

s_free_flushlock(pid).
flushover(tid).Thread(tid,pid,F lush List)
<| not(eq(getIden(remove(pid,ge tacc essor list (r)) ), pid))|>
s_refresh(tid,pid,setlocalt(set accessorl ist(

r,remove(pid,getaccessorlist( r))) ,sub1 (get loca lt(r) ))).
s_free_flushlock(pid).
flushover(tid).Thread(tid,pid,F lush List)

)
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<| eq(count(remove(pid,getaccessor list (r)) ),S(0 )) |>
s_refresh(tid,pid,setlocalt(set accessor list(

r,remove(pid,getaccessorlist( r))) ,sub 1(get loca lt(r) ))).
s_free_flushlock(pid).
flushover(tid).Thread(tid,pid,F lush List )

) )
<| eq(sub1(getlocalt(r)),0) |>
s_refresh(tid,pid,setlocalt(r,s ub1(getlo calt (r)) )).
s_free_flushlock(pid).
flushover(tid).Thread(tid,pid,F lush List)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: FlushRemote, threads invalidates from remote.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc FlushRemote(tid:ThreadId,pid:Pr ocessorId ,Flu shLi st:Re gion IdSet ,

r:Region)=
s_flush(tid,pid,gethome(r),r,T) .
s_refresh(tid,pid,setlocalt(set accessorl ist( sets tate(

r,UNUSED),ema),sub1(getlocalt (r)) )).
s_free_flushlock(pid).
sum(pid':ProcessorId,r_signal(t id,p id').

flushover(tid).Thread(tid,pi d,Fl ushLi st)
)
<| eq(sub1(getlocalt(r)),0) |>
s_flush(tid,pid,gethome(r),r,F) .
s_refresh(tid,pid,setlocalt(set accessorl ist(

r,ema),sub1(getlocalt(r)))).s _fre e_flu shlo ck(p id).
sum(pid':ProcessorId,r_signal(t id,p id').

flushover(tid).Thread(tid,pi d,Fl ushLi st)
)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: Region, both thread and processor can access the information.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc Region(pid:ProcessorId,r:Region )=

sum(tid:ThreadId, s_sendback(tid,pid,r).
( r_norefresh(tid,pid).Region(p id,r) +

sum(r':Region, r_refresh(tid,pid,r').Regio n(pid ,r') )
) )
+ s_sendback(pid,r).
( r_norefresh(pid).Region(pid, r)+

sum(r':Region,r_refresh(pid, r'). Region(pi d,r' ))
)
+ r_home.Region(pid,r)<| eq(pid,gethome(r)) |>delta
+ s_home.Region(pid,r)<| eq(pid,gethome(r)) |>delta
+ r_copy.Region(pid,r)<| not(eq(pid,gethome(r))) |>delta
+ s_copy.Region(pid,r)<| not(eq(pid,gethome(r))) |>delta

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: Processor, dealing with four messages.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc Processor(pid:ProcessorId)=

sum(tid:ThreadId,sum(pid':Proce ssor Id,su m(r' :Region,s um(b:Bool ,
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r_data_return(tid,pid,pid',r' ,b).
( sum(r:Region,r_sendback(pid,r).

(s_signal(tid,pid).
s_refresh(pid,sethome(setstat e(

r,getstate(r')),gethome(r'))).
s_free_remotequeuelock(pid).
Processor(pid)
<| not(eq(gethome(r),pid)) |>
s_signal(tid,pid).
s_refresh(pid,sethome(setstat e(

r,USED),pid)).s_free_remotequeu elock (pid ).
Processor(pid)

))
<| not(b) |>

sum(r:Region,r_sendback(pid,r) .
s_signal(tid,pid).
s_refresh(pid,sethome(setstate (seta ccessorl ist(

r,getaccessorlist(r')),USED) ,pid) ).
s_free_remotequeuelock(pid).
Processor(pid)

) )
))))
+ sum(tid:ThreadId,sum(pid':P roce ssorI d,

r_data_require(tid,pid',pid).
sum(r:Region,

r_sendback(pid,r).
( s_data_require(tid,pid',gethome (r)).

s_norefresh(pid).
s_free_homequeuelock(pid).
Processor(pid)
<| not(eq(gethome(r),pid)) |>
( ( s_data_return(tid,pid',pid,set home(set state (

setaccessorlist(r,insert(pid ',
getaccessorlist(r))),UNUSED) ,pid '),T ).

s_refresh(pid,sethome(setstate (set accessorl ist(
r,ema),UNUSED),pid')).

s_free_homequeuelock(pid).
Processor(pid)
<| eq(getstate(r),UNUSED) |>
s_data_return(tid,pid',pid,

setstate(setaccessorlist(r,
insert(pid',getaccessorlist( r))) ,USED),F) .

s_refresh(pid,setstate(setacce ssor list (
r,insert(pid',getaccessorlis t(r) )),U SED)).
s_free_homequeuelock(pid).
Processor(pid)

)
<| not(eq(pid,pid')) |>
s_signal(tid,pid).
s_refresh(pid,setstate(setac cessorlis t(
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r, insert(pid',getaccessorlist(r ))),U SED)).
s_free_homequeuelock(pid).
Processor(pid)

) ) )
))
+ sum(tid:ThreadId,sum(pid':Pro cessorId, sum(r':R egion ,sum(b:Bo ol,

r_flush(tid,pid',pid,r',b).
sum(r:Region,

r_sendback(pid,r).
( s_flush(tid,pid',gethome(r),r ',b) .

s_norefresh(pid).
s_free_homequeuelock(pid).
Processor(pid)
<| not(eq(gethome(r), pid)) |>
( s_signal(tid,pid).

s_refresh(pid,r).
s_free_homequeuelock(pid).
Processor(pid)
<| not(b) |>
(s_signal(tid,pid).
s_refresh(pid,setstate(setacc essorlist (

r,remove(pid',getaccessorli st(r ))),U NUSED)).
s_free_homequeuelock(pid).
Processor(pid)
<| empty(remove(pid',getaccessorl ist(r ))) |>
((s_region_sponmigrate(tid,pi d,

getIden(remove(pid',getacces sorli st(r ))),
setaccessorlist(r,
remove(pid',getaccessorlist( r)))) .

s_signal(tid,pid).
s_refresh(pid,sethome(setst ate(

setaccessorlist(r,ema),UNUSE D),
getIden(remove(pid',getacces sorli st(r ))))) .

s_free_homequeuelock(pid).
Processor(pid)
<| not(eq(getIden(remove(pid',

getaccessorlist(r))),gethom e(r)) ) |>
s_signal(tid,pid).
s_refresh(pid,setstate(seta ccessorli st(

r,remove(pid',getaccessorlis t(r)) ),USED)).
s_free_homequeuelock(pid).
Processor(pid)
)
<|eq(count(remove(pid',geta ccessorli st(r ))),S (0)) |>
s_signal(tid,pid).
s_refresh(pid,setaccessorli st(

r,remove(pid',getaccessorlis t(r)) )).
s_free_homequeuelock(pid).
Processor(pid)

) ) ) ))
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)))))
+ sum(tid:ThreadId,sum(pid':P roce ssorI d,su m(r': Region,

r_region_sponmigrate(tid,pid' ,pid, r').
sum(r:Region,

r_sendback(pid,r).
s_refresh(pid,sethome(setstate (set accessorl ist(

r,getaccessorlist(r')),USED) ,pid )).
s_free_homequeuelock(pid).
Processor(pid)

))))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: HomeQueue,size one.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc HomeQueue(pid: ProcessorId)=

sum(tid:ThreadId,sum(pid':Pro cessorId,
r_i_data_require(tid,pid',pid ).
s_require_homequeuelock(pid).
(r_no_homequeuewait(pid)+r_si gnal_ homequeuewait (pid )).
s_i_data_require(tid,pid',pi d).Ho meQueue(pid)

))
+ sum(tid:ThreadId,sum(pid':P roce ssorI d,su m(r:Regio n,su m(b:Bool,

r_i_flush(tid,pid',pid,r,b).
s_require_homequeuelock(pid).
(r_no_homequeuewait(pid)+r_si gnal_ homequeuewait (pid )).
s_i_flush(tid,pid',pid,r,b). HomeQueue(pid)

))))
+ sum(tid:ThreadId,sum(pid':P roce ssorI d,su m(r:Regio n,

r_i_region_sponmigrate(tid,pi d',pi d,r) .
s_require_homequeuelock(pid).
(r_no_homequeuewait(pid)+r_si gnal_ homequeuewait (pid )).
s_i_region_sponmigrate(tid,p id',p id,r ).HomeQueue(pid)

)))
+ homequeueempty(pid).HomeQueue(pid)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: RemoteQueue,size one.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc RemoteQueue(pid: ProcessorId)=

sum(tid:ThreadId,sum(pid':Pro cessorId, sum(r:Reg ion, sum(b:Bool,
r_o_data_return(tid,pid,pid', r,b).
s_require_remotequeuelock(pid ).
(r_no_remotequeuewait(pid)+r_ signa l_re motequeuewait (pid) ).
s_o_data_return(tid,pid,pid', r,b). RemoteQueue(pid)

))))
+ remotequeueempty(pid).Remot eQueue(pi d)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Process: Locker
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
proc Locker(pid:ProcessorId,faulte rs:N atura l,fl ushers:Natura l,

homequeue:Natural,remotequeue:N atur al,
wait_faulters:Natural,wait_flus hers :Natu ral,
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wait_homequeue:Natural,wait_ remotequeue:Natura l)=
lockempty(pid).
Locker(pid,faulters,flushers,ho mequeue,r emotequeue,

wait_faulters,wait_flushers,wa it_ho mequeue, wait_ remotequeue)
<| and(and(and(and(and(and(and(

eq(faulters,0),eq(flushers,0)), eq(homequeue, 0)),
eq(remotequeue,0)),eq(wait_faul ters, 0)), eq(wait_f lush ers,0 )),
eq(wait_homequeue,0)),eq(wait_r emotequeue,0) ) |>delta

+
r_require_faultlock(pid).s_no_f ault wait( pid) .
Locker(pid,S(faulters),flushers ,homequeue,re motequeue,

wait_faulters,wait_flushers,wa it_ho mequeue, wait_ remotequeue)
<| and(eq(faulters,0), eq(flushers,0)) |>
r_require_faultlock(pid).
Locker(pid,faulters,flushers,ho mequeue,r emotequeue,

S(wait_faulters),wait_flushers ,wait _homequeue,wait_r emotequeue)
+
r_require_flushlock(pid).s_no_f lush wait( pid) .
Locker(pid,faulters,S(flushers) ,homequeue,re motequeue,

wait_faulters,wait_flushers,wa it_ho mequeue, wait_ remotequeue)
<| and(and(and(eq(faulters,0),e q(fl ushers,0) ),

eq(homequeue,0)),eq(remotequeue ,0)) |>
r_require_flushlock(pid).
Locker(pid,faulters,flushers,ho mequeue,r emotequeue,

wait_faulters,S(wait_flushers) ,wait _homequeue,wait_r emotequeue)
+
r_require_serverlock(pid).s_no_ serv erwai t(pi d).
Locker(pid,faulters,flushers,S( homequeue),re motequeue,

wait_faulters,wait_flushers,wa it_ho mequeue, wait_ remotequeue)
<| and(eq(homequeue,0),eq(flush ers, 0)) |>
r_require_serverlock(pid).
Locker(pid,faulters,flushers,ho mequeue,r emotequeue,

wait_faulters,wait_flushers,S( wait_ homequeue),wa it_r emotequeue)
+
r_require_homequeuelock(pid).s_ no_homequeuewait( pid).
Locker(pid,faulters,flushers,S( homequeue),re motequeue,

wait_faulters,wait_flushers,wa it_ho mequeue, wait_ remotequeue)
<| and(eq(homequeue,0),eq(flush ers, 0)) |>
r_require_homequeuelock(pid).
Locker(pid,faulters,flushers,ho mequeue,r emotequeue,

wait_faulters,wait_flushers,S( wait_ homequeue),wa it_r emotequeue)
+
r_require_remotequeuelock(pid). s_no_remotequ euewait(p id).
Locker(pid,faulters,flushers,ho mequeue,S(remoteq ueue),

wait_faulters,wait_flushers,wa it_ho mequeue, wait_ remotequeue)
<| and(eq(remotequeue,0),eq(flu sher s,0)) |>
r_require_remotequeuelock(pid).
Locker(pid,faulters,flushers,ho mequeue,r emotequeue,

wait_faulters,wait_flushers,wa it_ho mequeue, S(wai t_re motequeue))
+
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r_free_faultlock(pid).
( ( ( s_signal_serverwait(pid).

Locker(pid,sub1(faulters),fl ushers,S( homequeue),
remotequeue,wait_faulters,wait _flu sher s,
sub1(wait_homequeue),wait_remo tequ eue)

+
s_signal_homequeuewait(pid).
Locker(pid,sub1(faulters),fl ushers,S( homequeue),

remotequeue,wait_faulters,wait _flu sher s,
sub1(wait_homequeue),wait_remo tequ eue)

)
<| and(not(eq(wait_homequeue,0)) ,eq( homequeue,0)) |>
( ( s_signal_remotequeuewait(pid).

Locker(pid,sub1(faulters),flus hers, homequeue,
S(remotequeue),wait_faulters ,wai t_fl ushers,
wait_homequeue,sub1(wait_rem oteq ueue))

<| not(eq(wait_remotequeue,0)) |>
Locker(pid,sub1(faulters),flus hers, homequeue,

remotequeue,wait_faulters,wa it_f lush ers,
wait_homequeue,wait_remotequ eue)

)
<| eq(remotequeue,0) |>
Locker(pid,sub1(faulters),flu sher s,homequeue,

remotequeue,wait_faulters,wait_ flus hers ,
wait_homequeue,wait_remotequeue)

) )
<| and(not(and(eq(wait_homeque ue,0) ,

eq(wait_remotequeue,0))),eq(flu sher s,0)) |>
( s_signal_flushwait(pid).

Locker(pid,sub1(faulters),S (flus hers ),homequeue,
remotequeue,wait_faulters,sub 1(wai t_fl ushers),
wait_homequeue,wait_remotequeue)

<| and(and(and(and(not(eq(wait_f lush ers,0 )),e q(fl ushers,0) ),
eq(homequeue,0)),eq(remotequeu e,0) ),eq( sub1(fau lters ),0) ) |>

( s_signal_faultwait(pid).
Locker(pid,faulters,flushers, homequeue,

remotequeue,sub1(wait_faulters) ,wai t_fl ushers,
wait_homequeue,wait_remotequeue)

<| and(and(and(not(eq(wait_faulte rs,0) ),eq (homequeue,0) ),
eq(flushers,0)),eq(sub1(fault ers), 0)) |>

Locker(pid,sub1(faulters),flu sher s,homequeue,
remotequeue,wait_faulters,wait_ flus hers ,
wait_homequeue,wait_remotequeue)

) ) )
+
r_free_flushlock(pid).
( ( ( s_signal_serverwait(pid).

Locker(pid,faulters,sub1(flus hers ),S(h omequeue),
remotequeue,wait_faulters,wait_ flus hers ,
sub1(wait_homequeue),wait_remot equeue)
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+
s_signal_homequeuewait(pid).
Locker(pid,faulters,sub1(flushe rs), S(homequeue),

remotequeue,wait_faulters,wa it_f lushe rs,
sub1(wait_homequeue),wait_re motequeue)

)
<| and(not(eq(wait_homequeue,0)),e q(homequeue,0)) |>
( ( s_signal_remotequeuewait(pid ).

Locker(pid,faulters,sub1(flu sher s),h omequeue,
S(remotequeue),wait_faulters, wait_ flus hers,
wait_homequeue,sub1(wait_remotequeue))

<| not(eq(wait_remotequeue,0)) |>
Locker(pid,faulters,sub1(flu sher s),h omequeue,

remotequeue,wait_faulters,wai t_flu sher s,
wait_homequeue,wait_remotequeue)

)
<| eq(remotequeue,0) |>
Locker(pid,faulters,sub1(flushe rs), homequeue,

remotequeue,wait_faulters,wa it_f lushe rs,
wait_homequeue,wait_remotequ eue)

) )
<| and(not(and( eq(wait_homequeue,0),

eq(wait_remotequeue,0))),eq( sub1( flus hers ),0)) |>
( s_signal_flushwait(pid).

Locker(pid,faulters,flushers, homequeue,
remotequeue,wait_faulters,sub1( wait _flus hers ),
wait_homequeue,wait_remotequeue)

<| and(and(and(and(not(eq(wait_ flush ers, 0)), eq(re motequeue,0)) ,
eq(homequeue,0)),eq(sub1(flu shers ),0) ),eq (faul ters ,0)) |>

( s_signal_faultwait(pid).
Locker(pid,S(faulters),sub1( flus hers ),homequeue,

remotequeue,sub1(wait_faulter s),wa it_f lushe rs,
wait_homequeue,wait_remotequeue)

<| and(and(and(not(eq(wait_faulter s,0) ),eq( homequeue,0)) ,
eq(sub1(flushers),0)),eq(fault ers, 0)) |>

Locker(pid,faulters,sub1(flu sher s),h omequeue,
remotequeue,wait_faulters,wai t_flu sher s,
wait_homequeue,wait_remotequeue)

) ) )
+
r_free_serverlock(pid).
( ( ( s_signal_serverwait(pid).

Locker(pid,faulters,flusher s,homequeue,
remotequeue,wait_faulters,wai t_fl ushers,
sub1(wait_homequeue),wait_rem oteq ueue)

+
s_signal_homequeuewait(pid) .
Locker(pid,faulters,flusher s,homequeue,

remotequeue,wait_faulters,wai t_fl ushers,
sub1(wait_homequeue),wait_rem oteq ueue)
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)
<| and(not(eq(wait_homequeue,0)),e q(sub1(homequeue), 0)) |>
( ( s_signal_remotequeuewait(pid ).

Locker(pid,faulters,flushers ,sub1 (homequeue),
S(remotequeue),wait_faulters,w ait_ flush ers,
wait_homequeue,sub1(wait_remot equeue))

<| not(eq(wait_remotequeue,0)) |>
Locker(pid,faulters,flushers ,sub1 (homequeue),

remotequeue,wait_faulters,wait _flu shers ,
wait_homequeue,wait_remotequeue)

)
<| eq(remotequeue,0) |>
Locker(pid,faulters,flushers,su b1(homequeue),

remotequeue,wait_faulters,wai t_fl ushers,
wait_homequeue,wait_remotequeue)

) )
<| and(not(and(eq(wait_homequeue, 0),

eq(wait_remotequeue,0))),eq( flus hers, 0)) |>
( s_signal_flushwait(pid).

Locker(pid,faulters,S(flushers ),su b1(homequeue),
remotequeue,wait_faulters,s ub1(wait_ flus hers) ,
wait_homequeue,wait_remoteq ueue)

<| and(and(and(and(not(eq(wait_fl ushers,0) ),eq (remotequeue, 0)),
eq(sub1(homequeue),0)),eq(flus hers ,0)), eq(f ault ers,0 )) |>
( s_signal_faultwait(pid).

Locker(pid,S(faulters),flushers ,sub1 (homequeue),
remotequeue,sub1(wait_faulter s),w ait_ flush ers,
wait_homequeue,wait_remotequeue)

<| and(and(and(not(eq(wait_faul ters, 0)), eq(f lushe rs,0 )),
eq(sub1(homequeue),0)),eq(f aulte rs,0 )) |>

Locker(pid,faulters,flushers,su b1(homequeue),
remotequeue,wait_faulters,wai t_fl ushers,
wait_homequeue,wait_remotequeue)

) ) )
+
r_free_homequeuelock(pid).
( ( ( s_signal_serverwait(pid).

Locker(pid,faulters,flushers, homequeue,
remotequeue,wait_faulters,wait_ flus hers ,
sub1(wait_homequeue),wait_remot equeue)

+
s_signal_homequeuewait(pid).
Locker(pid,faulters,flushers, homequeue,

remotequeue,wait_faulters,wait_ flus hers ,
sub1(wait_homequeue),wait_remot equeue)

)
<| and(eq(sub1(homequeue),0),no t(eq (wait _homequeue,0) )) |>
( ( s_signal_remotequeuewait(pid) .

Locker(pid,faulters,flushers, sub1(homequeue),
S(remotequeue),wait_faulters,wa it_f lushe rs,
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wait_homequeue,sub1(wait_rem otequeue))
<| not(eq(wait_remotequeue,0)) |>
Locker(pid,faulters,flushers,su b1(homequeue),

remotequeue,wait_faulters,wa it_fl ushers,
wait_homequeue,wait_remotequ eue)

)
<| eq(remotequeue,0) |>
Locker(pid,faulters,flushers,s ub1(homequeue),

remotequeue,wait_faulters,w ait_ flush ers,
wait_homequeue,wait_remoteq ueue)

) )
<| and(not(and(eq(wait_homequeue,0 ),

eq(wait_remotequeue,0))),eq(flu sher s,0) ) |>
( s_signal_flushwait(pid).

Locker(pid,faulters,S(flushers) ,sub 1(homequeue),
remotequeue,wait_faulters,su b1(wait_f lush ers),
wait_homequeue,wait_remotequ eue)

<| and(and(and(and(not(eq(wait_ flush ers, 0)), eq(re motequeue,0)) ,
eq(sub1(homequeue),0)),eq(f lushe rs,0 )),e q(fau lter s,0)) |>
( s_signal_faultwait(pid).

Locker(pid,S(faulters),flushe rs,s ub1(homequeue),
remotequeue,sub1(wait_faulters ),wai t_fl ushers,
wait_homequeue,wait_remotequeue)

<| and(and(and(not(eq(wait_faulte rs,0 )),
eq(sub1(homequeue),0)),eq(flu sher s,0) ),eq( faul ters, 0)) |>
Locker(pid,faulters,flushers, sub1(homequeue),

remotequeue,wait_faulters,wait _flus hers ,
wait_homequeue,wait_remotequeue)

) ) )
+
r_free_remotequeuelock(pid).
( ( ( s_signal_serverwait(pid).

Locker(pid,faulters,flushers,S( homequeue),
sub1(remotequeue),wait_fault ers, wait_ flus hers,
sub1(wait_homequeue),wait_re motequeue)

+
s_signal_homequeuewait(pid).
Locker(pid,faulters,flushers,S( homequeue),

sub1(remotequeue),wait_fault ers, wait_ flus hers,
sub1(wait_homequeue),wait_re motequeue)

)
<| and( eq(homequeue,0),not(eq(wait_h omequeue,0))) |>
( ( s_signal_remotequeuewait(pid).

Locker(pid,faulters,flushers,ho mequeue,
remotequeue,wait_faulters,wa it_fl ushers,
wait_homequeue,sub1(wait_rem otequeue))

<| not(eq(wait_remotequeue,0)) |>
Locker(pid,faulters,flushers,ho mequeue,

sub1(remotequeue),wait_fault ers,w ait_ flush ers,
wait_homequeue,wait_remotequ eue)
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)
<| eq(sub1(remotequeue),0) |>
Locker(pid,faulters,flushers ,homequeue,

sub1(remotequeue),wait_faulter s,wait_f lushe rs,
wait_homequeue,wait_remotequeue)

) )
<| and(not( and(eq(wait_homequeue,0),

eq(wait_remotequeue,0))),eq(fl ushers,0) ) |>
( s_signal_flushwait(pid).

Locker(pid,faulters,S(flushers) ,homequeue,
sub1(remotequeue),wait_fault ers,s ub1(wait _flus hers ),
wait_homequeue,wait_remotequ eue)

<| and(and(and(and(not(eq(wait_ flus hers, 0)),
eq(sub1(remotequeue),0)),eq( faul ters, 0)),
eq(homequeue,0)),eq(flushers ,0)) |>

( s_signal_faultwait(pid).
Locker(pid,S(faulters),flush ers, homequeue,

sub1(remotequeue),sub1(wait_fa ulte rs),
wait_flushers,wait_homequeue,w ait_ remotequeue)

<| and(and(and(not(eq(wait_fault ers,0 )),
eq(homequeue,0)),eq(flushers ,0)), eq(f ault ers,0 )) |>

Locker(pid,faulters,flushers ,homequeue,
sub1(remotequeue),wait_faulter s,wait_f lushe rs,
wait_homequeue,wait_remotequeue)

) ) )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The protocol with 2 processors, 3 threads and 1 region.
% Each processor has a copy of the region.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
init hide ( f ... g, % Omitted. Hide all communication actions here.

encap(f ... g, % Omitted. Enfore all r_* s_* into c_*.
Processor(pid1) || Processor(pid2) ||
Thread(tid1,pid1,ridema) || Thread(tid2,pid2,ridema) ||
Thread(tid3,pid1,ridema) ||
Locker(pid1,0,0,0,0,0,0,0,0) || Locker(pid2,0,0,0,0,0,0,0,0) ||
HomeQueue(pid1) || HomeQueue(pid2) ||
RemoteQueue(pid1) || RemoteQueue(pid2) ||
Region(pid1,reg(rid1,pid1,UNU SED,ema,0)) ||
Region(pid2,reg(rid1,pid1,UNU SED,ema,0))

) )
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Summary

The designand implementation of distributed systemsare error-prone and be-
coming extremely complex. Formal methods can be used to specify systems
in a precise,consistent and non-ambiguous way. Moreover, formal veri�cation
techniques, such as model checking and theorem proving, can be usedto verify
whether a systemhasdesiredproperties. The proper useof formal methods will
lead to more reliable, dependable,and securesystemsin the future.

Chapter 3 presents a conesand foci proof method, which rephrasesthe ques-
tion whether two systemspeci�cations are branching bisimilar in terms of proof
obligations on relations betweendata objects. Compared to the original cones
and foci method from Groote and Springintveld [79], this method is more gener-
ally applicable, and doesnot require a preprocessingstep to eliminate internal
loops. The method has been formalized and proved correct using the theorem
prover PVS [131]. Thus a framework for mechanical protocol veri�cation has
beenestablished.

Chapter 4 presents the veri�cation of oneof the most complexsliding window
protocols presented in Tanenbaum's Computer Networks textb ook [165] using
the conesand foci method and its mechanical framework in PVS. We proved the
correctnessof this sliding window protocol with an arbitrary �nite window size
n and sequencenumbers modulo 2n. We showed that the external behavior of
this protocol is equivalent to a FIFO queueof capacity 2n. This proof is entirely
basedon the axiomatic theory underlying � CRL and the axioms characterizing
the data types,and was checked with the help of PVS.

Chapter 5 presents that, contrary to common belief, Dijkstra's K -state mu-
tual exclusion algorithm on a ring [40, 41] also stabilizes when the number K
of states per processis one lessthan the number N + 1 of processesin the ring.
The algorithm and the proof has been formalized and checked in PVS, based
on Qadeerand Shankar's work [144].

Chapter 6 presents the analysis of a distributed system for lifting trucks.
When testing the implementation of the system, the developers found prob-
lems. They solved theseproblems by trial and error, partly becausethe causes
of problems were unclear. The analysis of the original design of the system in
� CRL [75, 21] in combination with the CADP toolset [49, 63] revealedthe rea-
sonsfor the problems. Another new problem wasfound in the model, which was
indeed present in the implementation of the system. Solutions were proposed
and included in the � CRL speci�cation, and we showed by model checking that
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the problems were solved indeed. The developers tried to solve the problems
independently . They made a redesign of the lift system based on their own
solutions, The redesignwas analyzedby using the real-time model checker UP-
PAAL [111]. We showed that the solutions of the developers do not solve the
problems completely, while a re�ned version of our solutions contained in the
� CRL speci�cation does. Currently , the lift system is under revision, and our
solutions to the problems are being implemented.

Chapter 7 presents the analysis of a self-invalidation based,multiple-writer
cache coherenceprotocol for Jackal, which is a �ne-grained, distributed shared
memory implementation of Java. The veri�cation allowed to discover two errors
in the designof the cache coherenceprotocol. Also, a large number of inconsis-
tencies and misunderstandingswere found, mostly causedby the evolution of
the implementation simultaneously with the formal analysis process.This case
study bene�ted a lot from the � CRL distributed state spacegeneration tool,
and also pushedforward its development.

Chapter 8 presents two probabilistic leader election algorithms for anony-
mous unidirectional rings with FIFO channels,basedon an algorithm from Itai
and Rodeh [95]. In contrast to the Itai-Ro deh algorithm, our algorithms are
�nite-state. So they can be analyzedusing explicit state spaceexploration; we
usedthe probabilistic model checker PRISM [107] to verify, for rings up to size
four, that eventually a unique leader is electedwith probabilit y one.



Nederlandse Samenvatting

FormeleVeri�catie van GedistribueerdeSystemen

Het ontwerp en implementeren van gedistribueerde systemen is zeer gecom-
pliceerd geworden, en daarmeegevoelig voor fouten. Formelemethoden kunnen
worden gebruikt voor preciezeen consistente speci�catie van systemen. Boven-
dien kunnen formele veri�catie gereedschappen, zoals model checkers en au-
tomatische stellingbewijzers, worden gebruikt om na te gaan of eensysteemde
gewenste eigenschappen heeft. Goed gebruik van formele methoden zal in de
toekomst leiden tot betrouwbaarder en veiliger gedistribueerdesystemen.

Hoofdstuk 3 presenteert een conesen foci bewijsmethode, die de vraag of
tweesysteem-speci�caties equivalent zijn herformuleert in termen van bewijsver-
plichtingen en relaties tussendata-objecten. Dezemethode is algemenertoepas-
baar dan de originele conesen foci methode van Groote en Springintveld [79],
en is geformaliseerd en correct bewezen met behulp van de stellingbewijzer
PVS [131]. Aldus wordt een raamwerk voor mechanische protocol-veri�catie
verkregen.

Hoofdstuk 4 bevat de veri�catie van �e�en van de meest ingewikkelde sliding
window protocollen uit Tanenbaum's Computer Networks tekstboek [165], op
basisvan het raamwerk uit het vorige hoofdstuk. De correctheid van dit sliding
window protocol wordt aangetoond voor een willekeurige omvang van de win-
dows, en voor volgnummers modulo 2n. Het externe gedrag van het protocol
is equivalent met een FIFO queue van capaciteit 2n. Het bewijs is volledig
gebaseerdop de axiomatische theorie die ten grondslag ligt aan � CRL, en de
axioma's voor de data-types.

Hoofdstuk 5 laat zien dat (in tegenstelling tot wat somswordt beweerd) Di-
jkstra's K -state mutual exclusionalgoritme voor eenring [40, 41] ook stabiliseert
wanneerhet aantal K van toestandenper proces�e�en minder is dan het aantal
N + 1 van processenin de ring. Het algoritme en het bewijs zijn geformaliseerd
in PVS, op basisvan eerderwerk van Qadeerand Shankar [144].

Hoofdstuk 6 presenteert de analyse van een gedistribueerd systeem voor
het optillen van voertuigen zoals vrachtwagensen treinen. Tijdens het testen
van een implementatie liepen de ontwerpers van het systeemtegen problemen
aan. Deze problemen werden ad hoc opgelost, zonder dat de oorzaken van de
problemen echt duidelijk waren geworden. Door middel van een analyse van

229



230 NederlandseSamenvatting

het oorspronkelijke systeem-ontwerp met � CRL [75, 21], in combinatie met de
CADP toolset [49, 63], konden we de oorzaken voor de problemen aantonen.
Bovendienwerd eennieuw probleemgedetecteerd,dat inderdaadaanwezigbleek
te zijn in de implementatie. We stelden oplossingenvoor en namen die op
in de � CRL speci�catie. Door middel van model checken met CADP werd
aannemelijk gemaakt dat de problemen aldus werkelijk waren opgelost. De
ontwerpers echter maakten in de tussentijd onafhankelijk een herontwerp van
het liftsysteem, en namen daarin andere oplossingenop voor bovengenoemde
problemen. We analyseerdendit herontwerp met behulp van de tijdsgebaseerde
model checker UPPAAL [111]. Dezeanalysetoondeaan dat de oplossingenvan
de ontwerpers de problemen niet volledig oplossen,terwijl een ver�jnde versie
van onzeoplossingendat wel doet. Momenteel is het liftsysteem opnieuw onder
revisie, en worden onzeoplossingenge•�mplementeerd.

Hoofdstuk 7 bevat de analysevan eenmultiple-writer cachecoherence proto-
col voor eengedistribueerdeshared memory implementatie van Java, genaamd
Jackal. Tijdens de veri�catie, door middel van model checken, werden twee
fouten ontdekt in het ontwerp van dit cache coherenceprotocol. Ook werden
eengroot aantal tegenstrijdighedenen misverstandenaan het licht gebracht, in
de meestegevallen veroorzaakt door de ontwikkeling van de implementatie in
parallel met onze veri�catie. Doordat bij dezeveri�catie zeer grote toestand-
sruimten gegenereerdwerden,washet gebruik van eengedistribueerdegenerator
essentieel. Anderzijds bleekdezecase-studieeenbelangrijkedrijfv eertot verdere
verbetering van dezegedistribueerdegenerator.

Hoofdstuk 8 presenteert tweeprobabilistische leader election algoritmes voor
anonieme,unidirectionele ringen met FIFO kanalen,gebaseerdop eenalgoritme
van Itai en Rodeh [95]. In tegenstelling tot het Itai-Ro deh algoritme hebben
onzealgoritmes eeneindigetoestandsruimte. Aldus kunnen zij worden geanaly-
seerddoor middel van expliciete exploratie van de toestandsruimte; wij hebben
de probabilistische model checker PRISM [107] gebruikt om te veri� •eren, voor
ringen ter grootte Vier, dat met kans �e�en uiteindelijk een unieke leider wordt
gekozen.
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