VRIJE UNIVERSITEIT

Formal Verication
of Distributed Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,
op gezagvan de rector magni cus
prof.dr. T. Sminia,
in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenshappen
op dinsdag 26 oktober 2004om 10.45uur
in de aula van de universiteit,
De Boelelaan1105

door
Jun Pang

geboren te Jiangsu, China

promotor: prof.dr. W.J. Fokkink

FormalVeri cation
of Distributed Systems

Jun Pang

August, 2004

¢ Jun Pang, Amsterdam 2004
Printed by Ponsen& Looijen B.V.
ISBN 90-6464-865-4

INSTITy,
%
P

This researt has been supported by PROGRESS, the embedded systemsre-
seard program of the Dutch organisation for Sciertic Researth (NWO), the
Dutch Ministry of Economic A airs and the Tednology Foundation (STW),
within the scope of the project CES.5008\Impro ving the Quality of Embedded
Systemsusing Formal Design and Systematic Testing". It hasbeencarried out
under the auspicesof the Institute for Programming Researt and Algorithmics
(IPA), at the Centrum voor Wiskunde en Informatica (CWI) in Amsterdam.

Contents

Preface

1 Intro duction
1.1 TheTitle e
1.2 TheProject
1.3 TheResults e
1.4 The Structure e

2 Preliminaries
21 CRL . .. e
2.2 Labeled Transition Systemsand Behavioral Equivalences.
2.3 Linear ProcessEquations
2.4 Regular Alternation-free -calculus
2.5 Construction and Analysis of Distributed ProcessesToolbox . . .

| Theorem Proving

3 Cones and Foci: A Mechanical Pro of Framew ork
3.1 Introduction
3.2 ConesandFoci
3.2.1 The generaltheorem
3.2.2 Proofrulesfor reachability
3.3 A Mechanical Proof Framework
3.3.1 LTSsand branching bisimulation
3.3.2 Represelting LPEs and invariants
3.3.3 Formalizing the conesand foci method
3.3.4 The symbolic reachability criterion
3.4 Application tothe CABP
3.4.1 Informal description
342 CRLspecication
3.4.3 Verication usingconesandfoci
3.4.4 lllustration of the proof framework
35 Conclusions

11
11
13
14
15
17

ii Contents
4 Verifying a Sliding Windo w Proto col in CRL 51
4.1 Introduction 51
42 RelatedWork 53
4.3 Proof Tedhniques 54
44 Data Types o i 55
441 Booleans 55

4.4.2 If-then-elseandequality 55

443 Natural numbers 56

4.4.4 Modulo arithmetic 56

445 BUEIS e 56

446 Mediums 58

447 Lists . . . o 59

4.5 Sliding Window Protocol 59
4.5.1 Specication of a sliding window protocol 59

45.2 External behavior 0. 62

4.6 Transformations of the Specication 62
4.6.1 Linearization oL 62

4.6.2 Eliminating argumerts of communication actions 64

4.6.3 Getting rid of modulo arithmetic 64

4.7 Propertiesof Data 65
4.7.1 Basicproperties 65

472 Invariants 79

4.8 Correctnessof Nmod -+« v v v v v o e e e e e 92
4.8.1 Equality of Nmog and Nnonmod « « « « v v v v v v v v v v 92

4.8.2 Correctnessof Nponmod « « « « ¢ = v v v v v e e 96

4.8.3 Correctnessof the sliding window protocol. 102

49 Conclusions 102

5 A Note on K-state Self-Stabilization in a Ring with K = N 103
5.1 Introduction. 103
5.2 Proof of Self-Stabilization 105
5.3 Mechanical Verication inPVS 107
54 K=NisSharp., 109
5,5 Conclusions 110

Il Mo del Checking 111
6 Analysis of a Distributed System for Lifting Trucks 113
6.1 Introduction. 113
6.2 Description of the Lift System. 114
6.2.1 Layout of the lift system. 114

6.2.2 Control of lift movemert 116

6.3 Requiremens 119
6.4 CRL Model of the Original Design 119

6.4.1 Datatypes e 120

Contents iii

6.4.2 Processes. 122

6.5 Analysis the Original Design 126
6.5.1 Problem1. 126
6.5.2 Problem2. 127
6.53 Problem3. 128
6.54 Problem4 129

6.6 Verication with CADP 130
6.6.1 Expressingthe requiremerts. 130
6.6.2 Verifying the modied specication 132

6.7 UPPAAL Model of the Redesign 132
6.7.1 Transformingthe CRL model 133
6.7.2 Adding the solutions 135
6.7.3 Adding timing information 139

6.8 Analysis of the Redesign. 141
6.8.1 Expressingthe requiremerts. 141
6.8.2 Problems 143

6.9 ANewsSolution. 144
6.10 Conclusions 145
7 Mo del Checking a Cache Coherence Proto col for Jackal 147
7.1 Introduction 147
7.2 RelatedWork 148
7.3 JavaMemory Model 149
7.4 Jackal DSM System 150
7.4.1 Addressspacemanagemen 151
742 Accesschedk 151
7.4.3 Synchronization, 151
7.4.4 Automatic home node migration 152
7.4.5 Otherfeatures 152

7.5 Specication and Analysisin CRL 153
7.5.1 Specication of the protocol 153
7.5.2 Requiremens 163
7.5.3 Validation of the requiremerts 163
7.5.4 Verication results L. 166

7.6 Conclusions. 167
8 Simplifying Itai-Ro deh Leader Election for Anon ymous Rings 169
8.1 Introduction. e 169
8.2 RelatedWork 171
8.3 Itai-Rodeh LeaderElection 172
8.3.1 The ltai-Rodehalgorithm 172
8.3.2 Round numbersareneeded 174

8.4 LeaderElection without Round Numbers 175
8.4.1 Automated veri cation with PRISM 176

8.5 LeaderElection without Bits 181

8.5.1 Automated veri cation with PRISM 182

8.5.2 The correctnessproof
8.6 PerformanceAnalysis
8.7 Leader Election with Two Identities
88 Conclusions.

9 Conclusions
A CRL Code of the Cache Coherence Proto col
Summary

Nederlandse Samenvatting

Contents

197

227

229

Preface

This is the ending point of my journey of being an onderzaker in opleiding at
CWI. | am indebted to everybody who made it possiblefor me to write this
thesis!

First of all, | would like to thank my supervisor and promotor Wan Fokkink,
who directed my researt in the last four years. Wan gave me many inspiring
and valuable ideas. The door of his o ce at CWI was always open to me. No
matter how busy he was, he would discussany problem | encourtered, and read
all my drafts very carefully. | really owe much to him!

| am very grateful to all my co-authorsfor their pleasart cooperation. Apart
from Wan, they are Bahareh Badban, Jan Friso Groote, Rutger Hofman, Jaap-
Henk Hoepman, Bart Karstens, Jacovan de Pol, Miguel Valero Espada, Ronald
Veldemaand Arno Wouters.

| alsothank my CWI roommate Simona Orzan for many pleasart corversa-
tions. Many thanks to all my former colleaguesat CWI, in particular Bahareh
Badban, Stefan Blom, Wan Fokkink, Izak van Langewelde, Bert Lisser, Natalia
loustinova, Vincent van Oostrom, Jaco van de Pol, Yaroslav Usenko, Miguel
Valero Espada, Anton Wijs and Yinwei Zhan. | am grateful to Wan Fokkink,
Judi Romijn and Anton Wijs, who prepared the Dutch summary for me. Jos
van der Werf designedthe cover of this thesis, which | appreciateda lot. | also
wish to extend my gratitude to the PAM speakers and participants during the
last four yearsfor their nice talks, discussionsand commerts.

I am grateful to the members of the reading committee, Maarten Boasson,
Hubert Garavel, Jan Friso Groote, Jan Willem Klop and Jaco van de Pol for
reviewing the manuscript and for their constructive criticism. | want to thank
Gerard Tel for his insightful commens on the leader election algorithms in
Chaper 8.

| thank the members of the user committee of my researt project, Maarten
Boasson,Frank Karelse, Ernst Kesseler,Anton Klip, Wim Pelt, Jan Tretmans
and Berto Wansdersfor their commerts on my work and providing many ideas
on how to organizethis thesis.

| am grateful to Catuscia Palamidessifor helping meto nd a new job at
INRIA Futurs, which meansa lot to me.

Many thanks to all my friends who always cheerme up and sharemany sides
of life with me.

My family in China, especially my mother ZhenshanGe, desene my endless

2 Contents

thanks for their unconditional love and support.
| resene my greatest thanks to Qin for her love, encouragemety support,
patience, and many other things.

Jun Pang
Paris, August 2004

Chapter 1

In tro duction

The last sewral decadeshave seena rapid growth of information technology.
Computer based systems, e.g., trac control system for airlines, transaction
systemsfor international banks, are usedworld-wide in our daily life. Clearly,
the correctnessof such systemsis of crucial importance. Failures of those sys-
tems can be potentially disastrousand causethe loss of human life and a huge
amount of money. However, the designand implementation of computer based
systems, including both hardware and software systems, are error-prone and
becoming extremely complex.

Mathematics can provide solid foundations for methods to describe and an-
alyze systems. Formal methods are of this kind. Their mathematical underpin-
ning allows formal methods to specify systemsmore precisely more consisterly
and in a non-ambiguousway. Moreover, formal analysistechniquescan be used
to verify whether a systemhas desiredproperties. The researd in this thesisis
motivated by the corviction that the proper useof formal methods will lead to
more reliable, dependable, and securesystemsin the future.

This thesisconcernsthe application of formal veri cation to distributed sys-
tems, including industrial products, communication protocols, and distributed
algorithms. The aim of this chapter is to give a broad view of the main topics
studied (without being exhaustive) and results obtained in the embedded sys-
tems researt program (PROGRESS) of the Dutch organization for Scieni c
Researtr (NWO), the Dutch Ministry of Economic A airs and the Tecnol-
ogy Foundation (STW) supported project CES.5008{ Improving the Quality
of Embedded Systemsby Formal Design and Systematic Testing.

1.1 The Title

First things rst. According to the textb ook [36] of Coulouris, Dollimore and
Kindb erg, distributed systemsare de ned as systemsconsisting of a collection
of autonomouscomputerslinked by a computer network and equipped with dis-
tributed system software. Computer networks provide the necessarymeansfor
communication betweenthe componerts of a distributed systems. Distributed

4 Chapter 1 Introduction

systems have to combine desirable characteristics, such as resource sharing,
openness concurrency, salability, fault tolerance, and transparency. This the-
sis focuseson the assuranceof the correctnessof distributed systems,with an
emphasison concurrency and fault tolerance.

Formal methals refer to a collection of notations and techniquesfor describ-
ing and analyzing systems. They can be usedto improve the quality of (dis-
tributed) systems. A formal method generally consistsof a formalism to model a
system, a speci cation languageto expressthe desiredproperties of the system,
a formal semartics to interpret both the systemand the properties, and veri -
cation techniquesto ched whether the properties are satis ed by the system.
This thesis concertrates on the processof applying suc veri cation techniques,

which is called formal veri c ation. The URL http://vl.fmnet .in fo/ collects
information on formal methods, available around the world on the World Wide
Web (WWW).

There is a wide range of veri cation techniquesto establish the correctness
of a system, i.e. assertingthat a system has desired properties and only those.
Process algebr, such as ACP, CCS, CSP, and LOTOS, is de ned as an alge-
braic approach to model the behavior of distributed systems. Their axiomatic
theories provide an elegart way for the study of elemenary behavioral proper-
ties of such systems. Both a system and its desired external behavior can be
expressedin a processalgebraic speci cation. Correctnessof the system can
be veri ed by proving that thesetwo speci cations are equivalert in terms of a
chosenbisimulation relation, which respectsthe branching structure of systems
and is a standard equivalencerelation for a setting with concurrency Veri ca-
tion techniques basedon the axiomatic theories, such as methods for proving
bisimulation, have beendeweloped for processalgebras.

A manual proof is only feasible for formal models of small systems, as the
complexity of a system can make manual mathematical proofs infeasible. Com-
puter support is necessaryfor the veri cation of most real-life systems. An
alternativ eto manual proof is automatic or mechanical veri c ation. Proof check-
ing assumeshe presenceof a proof checker implemented on a computer. Both
the manual proof and a set of proof rules are fed to the proof cheder, which
then automatically decideswhether the proof contains aws. A theorem prover
provides automated support to aid the creation of proofs. Proofs are generated
along strict lines, but this processrequires human-computer interactions. The
aim of proof chedkersand theorem proversis obviously to increasethe reliabilit y
of the correctnessof the proofs. The problem with this approad is that it is
highly time consumingand can be rather non-trivial.

Unlik e theorem proving, model cheding is usually restricted to nite-state
systems. It rst builds a nite state spaceof a formal model of a system, and
then veries a property, written in sometemporal logic, through an explicit
state spaceseard. Due to the niteness of the state space,the seard always
terminates. Model cheding is largely automatic. It can produce an answer
in a few minutes or even secondsfor many models. A courter-example can be
generatedwhenthe cheded property fails to hold. This information canbe used
for debuggingthe model. Techniquessuc aspartial order reduction, symmetry

1.2 The Project 5

reduction, abstract interpretation, have beendeweloped to deal with the state
explosion problem and enhancethe scalability of model cheking. Recerly,
attention in this areahasbeendewoted to model cheding in nite-state systems.
Other challengesare probabilistic systems,timed systems,and so on.

The combination of manual proof, theorem proving and model cheding is
widely used nowadays in veri cation tasks. Note that both theorem proving
and model cheding require a formal model of the veri ed system. The model
is achieved by abstracting away irrelevant information or ignoring someimple-
mentation details. This meansthat we verify distributed systemsat a rather
abstract level. Systemswhich have passedthe veri cation can thus still con-
tain errors in their real implementation. Thus, other techniquesto ched the
correctnessof systems,e.g. testing, remain necessary

The strengths of formal methods are that they 1) force to reasonat the
conceptually clear level of a formal model, 2) can detect errors in the design, 3)
are able to prove correctnessof a system, and 4) are supported by automated
techniques.

1.2 The Pro ject

The researt in this thesis is carried out within the PROGRESS supported
project CES.5008{ Improving the Quality of Embedded Systemsusing Formal
Design and Systematic Testing. It was co-proposedby the Embedded Systems
Group at the Centrum voor Wiskunde en Informatica (CWI) and the Dutch
compary Weidmelller, later Add-Controls. Add-Controls builds embedded con-
trollers for a large range of applications, such as a distributed systemfor lifting
trucks and a steam unit used for steam baths and saunas. Add-Controls of
coursewants to deliver fault-free products, but experiencedthat this is almost
unattainable with software. It happenstoo often that nalized software still
contains bugs. Therefore, Add-Controls setup a project to automatically ana-
lyze the software in a rigorous manner, and to make this analysisreproducible.

The proposal of the project is intended to go beyond the ambitions of the
compary by making formal veri cation techniquesapplicable in the designpro-
cessof embedded systems. The generalgoal of the project is:

\to establishwhether it is possibleto achieve reliable quality of soft-
ware for medium sizeembeddedsystems,and to better utilize formal
methods in industry."

Formal methods have already proved their usefulnessfor seweral years, although
mainly from an academicperspective. The project also proposeda major ques-
tion:

\whether the current technology deweloped in the past by the for-
mal methods researdy community can indeed becomean e ective
practical tool within a developmert environment.”

6 Chapter 1 Introduction

There have been numerous case studies which suggestthat this is the case.
However, most of these casestudies were quite remote from the actual product
designprocessand generally only dealt with fractions of a total system.

| wasrecruited asa PhD student to work on this project for the duration of
four years. According to the proposal, the rst year was planned on describing
and analyzing an existing systemto get acquairted with formal techniquesand
the software developmert method usedin Add-Controls. The secondand the
third year were usedto completely and formally designa number of embedded
systems,beforeimplementation took place. In parallel with the designof these
embedded systems,| was supposedto develop tools to facilitate the connection
betweenthe formal descriptionsand the developmert environment usedat Add-
Controls. The fourth year was dewvoted to writing a thesis.

1.3 The Results

In this section, | give the list of casestudies and the results that were achieved
within the project.

A mechanical framew ork for proto col verication

Togetherwith Wan Fokkink and Jacovan de Pol, | de ned a conesand foci proof
method [54], which rephrasesthe question whether two system speci cations
are branching bisimilar in terms of proof obligations on relations betweendata
objects. Compared to the original conesand foci method from Groote and
Springintveld [79], this method is more generallyapplicable, and doesnot require
a preprocessingstep to eliminate internal loops. We proved soundnessof our
approach. Furthermore, we designeda set of rules to support the reachability
analysis of so-called focus points. We formalized the method and proved its
correctnessusing the theorem prover PVS, and thus established a framework
for mechanical protocol veri cation.

More recently, together with Wan Fokkink, | extended this conesand foci
method for timed systemsveri cation [55). This work is not included in the
current thesis.

A sliding windo w proto col

Togetherwith Bahareh Badban, Wan Fokkink, Jan Friso Groote, and Jaco van
de Pol, | applied the conesand foci method and the medanical framework in
PVS to the veri cation of one of the most complex sliding window protocols
preseried in Tanerbaum's Computer Networks textb ook [165. We proved the
correctnessof this sliding window protocol with an arbitrary nite window size
n and sequencenumbers modulo 2n. We showed that the external behavior
of this protocol is equivalent to a FIFO queue of capacity 2n. This proof is
ertirely basedon the axiomatic theory underlying CRL and the axioms char-
acterizing the data types. It implies both safety and livenessof the protocol.

1.3 The Results 7

Sliding window protocols have attracted much attention from the processalge-
bra community, which hasled to signi cant developmerts in the realm of process
algebraic proof techniques for protocol veri cation. We therefore consider this

work as a true milestone in processalgebraic veri cation.

A distributed system for lifting truc ks

A main product of Add-Controls is a distributed systemfor lifting heavy vehicles
(e.g. trucks, railway carriagesand buses). The system consistsof a number of
lifts; ead lift supports one wheel of the truck that is being lifted and has its
own micro cortroller. The cortrols of the di erent lifts are connectedby means
of a network. A special purpose protocol has been developed to let the lifts
operate synchronously.

When testing the implementation the dewelopers found problems. They
solved these problems by trial and error, partly becausethe causesof problems
were unclear. Together with Jan Friso Groote and Arno Wouters, | applied
the processalgebraic language CRL in combination with the model cheder
CADP to the veri cation of this lift system[73]. The analysisin CRL revealed
the reasonsfor the problems. Another new problem was found in the model,
which was indeed presen in the implementation of the system. Solutions were
proposed and included in the CRL specication, and we showved by model
cheding that the problems were solved indeed.

The dewelopers tried to solve the problems independertly. They made a
redesignof the lift system basedon their own solutions, which Bart Karstens,
Wan Fokkink and | cheded using the real-time model chedker UPPAAL [135].
We shawed that the solutions of the developers do not solve the problems com-
pletely, while a re ned version of our solutions corntained in the CRL speci -
cation does. Currently, the lift systemis under revision, and our solutions to
the problems are being implemented.

Together with Jaco van de Pol and Miguel Valero Espada, | developed a
general framework for abstracting uniform parallel processeswith data, and
applied it to the veri cation of a simplied lift system[136. This work is not
included in the current thesis.

A cache coherence proto col for a Java DSM implemen tation

Jackal (developed at the Vrije Universiteit Amsterdam) is a ne-grained, dis-
tributed shared memory implementation of Java. Its goalis to run unmodi ed

concurrert Java programs e cien tly on a cluster of workstations. It is based
upon a self-invalidation based, multiple-writer cace coherenceprotocol. To-
gether with Wan Fokkink, Rutger Hofman, and Ronald Veldema, | deweloped
a formal speci cation of this protocolin CRL [134]. Three requiremerts were
formulated for the protocol: deadlock freedom, relaxed cache coherency and
livenessof writing and ushing regions. The veri cation allowed the discovery
of two errors in the design of the cadte coherenceprotocol. Also, a large num-
ber of inconsistenciesand misunderstandingswere found, mostly causedby the

8 Chapter 1 Introduction

ewolution of the implementation simultaneously with the formal analysis pro-
cess. This casestudy beneted a lot from the CRL distributed state space
generationtool, and also pushedforward its developmert.

Distributed algorithms: self-stabilization and leader election

Togetherwith Wan Fokkink and Jaap-Henk Hoepman, | showved that, contrary
to common belief, Dijkstra's K -state mutual exclusionalgorithm on a ring also
stabilizes when the number K of states per processis one lessthan the number
N + 1 of processesdn the ring [52]. We formalized the algorithm and veri ed the
proof in the theorem prover PVS, basedon Qadeerand Shanlkar's work [144].
Furthermore, together with Wan Fokkink, | designedtwo probabilistic leader
election algorithms for anonymous unidirectional rings with FIF O channels[56],
basedon an algorithm from Itai and Rodeh. In contrast to the Itai-Ro deh al-
gorithm, our algorithms are nite-state, sothey can be analyzed using explicit
state spaceexploration. We usedthe probabilistic model cheder PRISM to ver-
ify that evertually a unique leaderis electedwith probability one. Furthermore,
we gave a manual correctnessproof for ead algorithm, for arbitrary ring size.

Needham-Sc hro eder public key authen tication proto col

| described the Needham-Sbroederpublic key authentication protocolin CRL
as a con guration cortaining an initiator, a responder, and an intruder [133.
It showved that the capabilities of the language (especially the data types) are
well-adapted for describing this kind of protocols. This work is not included in
the current thesis.

Tw o abandoned case studies

A small control system of Add-Controls, being a converter which measuresthe
displacemen of a hydraulic cylinder, wasalso studied. Somecustomer reported
an error of the system. We made a start to analyzethe systemusing the TorX
tool. Due to the fact that only one of the 150 systemsthat had beensold so far
exhibited an error, and the error could not even be reproducedwith a simulator,
the dewvelopers of TorX pointed out that it was very unlikely that this formal
analysiswould producea usefulresult. It wastherefore decidedto abandonthis
casestudy.

Another challenging embedded system was proposed by Add-Controls. It
concernsan embedded cortroller for a lift system for a staircase, including
a SmartCard with minimal information on the topology of the staircase for
which it is used. Adapting the speed and keeping the chair horizontal is the
responsibility of the SmartCard, using information on the actual speed and
position of the lift. Interestingly, the topology of the staircaselying ahead of
the lift is taken into accourt when keepingthe chair horizontal. Thus it is a
truly hybrid system. But later on, Add-Controls lost the bidding to develop the
system, and no more detailed design information could be given. We stopped
this casestudy after building an experimental model using hybrid automata.

1.4 The Structure 9

1.4 The Structure

The thesisis organizedasfollows. This chapter cortains a short intro duction to
formal veri cation, the project and its scope, and the achievedresults. Chapter 2
preseris somepreliminaries for this thesis.

Part | of this thesisis concernedwith theorem proving. Chapter 3 preserts
the generalizedconesand foci method for protocol veri cation. It isan extension
of [54] with a formalization of the conesand foci method in the theorem prover
PVS (mainly done by Jacovan de Pol). The veri cation of the sliding window
protocol is preseried in Chapter 4. It extends [51] by allowing the mediums
of the sliding window protocol to have unbounded capacity. Chapter 5 reports
the formal veri cation of a distributed algorithm for self-stabilization. It was
previously published as a CWI technical report [52].

Part |l presents applications of model cheking. Chapter 6 preseris the
analysis of the distributed lift system of Add-Controls. It is a revised version
of [73] and [135. The cade coherenceprotocol for concurrert Java programs
on a distributed sharedmemory implementation is analyzedin Chapter 7. It is
a revised version of [134]. Chapter 8 preserts two probabilistic leader election
algorithms for anonymous rings and their veri cation results. It was previously
published as a CWI technical report [56]. Chapter 9 cortains the conclusions,
from the perspective of the ertire project.

10

Chapter 1 Introduction

Chapter 2

Preliminaries

2.1 CRL

Processalgebr, sudh as ACP [16, 9, 50, CCS [126, 12§ and CSP [89, 9Q|, is
de ned as an algebraic approach to model the behavior of distributed systems.
The axiomatic theories of processalgebraprovide an elegan way for the study
of elemenary behavioral properties of such systems. However, whenit comesto
the study of more realistic systems,theselanguagesturn out to lack the ability
to handle data adequately In order to solve this problem, formalisms such as
LOTOS [46] and CRL [75] were deweloped by enhancingprocessalgebraswith
data types. They are suitable to describe realistic, interacting systems. CRL
is the main formalism used in this thesis. We briey give an introduction to
this language. The syntax and semartics of CRL are givenin [75)].

CRL is a languagefor specifying distributed systemsand protocolsin an
algebraic style. This language combines the processalgebra ACP with equa-
tional abstract data types [119. In a CRL speci cation, one part speci es the
data types,while a secondpart speci es the processbehavior. Each data typeis
declaredusing the keyword sort . Elemerts of a data type are declaredby using
the keywords func and map . Using func one can declare constructors with as
target sort the data type in question; these constructors de ne the structure of
the data type. E.g. by

sot Bool
func T, F:! Bool

one declaresthat T (true) and F (false) are the only elemerns of sort Bool.
We say that T and F are the constructors of sort Bool. The keyword map is
usedto declare additional functions for a data type that are not constructors.
Their meaningsare de ned by meansof equations, which consist of a variable
declaration (starting with the keyword var) followed by an equation section
(starting with the keyword rew). For instance, conjunction () and negation
(:) on booleansare de ned asfollows:

map and: Bool Bool! Bool

11

12 Chapter 2 Preliminaries

not: Bool! Bool
var b: Bool
rew and(T,b)=b
and(F,b)=F
not(T)=F
not(F)=T

Sincebooleansare usedin the conditional construct of processdescriptions (see
below), the sort Bool must be included in every CRL specication. Besides
the declaration of the sort Bool, it is also obligatory that T and F are declared
in every speci cation and that T 6 F. To re ect equality betweenterms, one
needsto specify an equality function eq: D D ! Bool, suc that eq(s;t) = T
if and only if s = t. Actually, such an equality function is only neededfor data
typesthat are usedas parametersof actionsthat occurin a communication (see
below). For data typesin this thesis, the speci cation of the equality function
eg is mostly omitted, for the sake of presenation.

The speci cation of a processs constructed from actions, recursionvariables
and processalgebraic operators (processesare declaredby the keyword pro c).
Actions and recursion variables carry zero or more data parameters (actions
are declared by meansof the keyword act). Intuitiv ely, an action can execute
itself, after which it terminates successfully There are two prede ned processes
in CRL: represerns deadlock, and a hidden action. Thesetwo processes
never carry data parameters. p q denotes sequetial composition @nd p+ q
non-deterministic choice, where p and g are processes.Summation ;. p(d)
provides the possibly in nite choice over a data type D, and the conditional
construct p b g with b a data term of sort Bool behavesaspif b= T
and asq if b= F. Parallel composition p k g interleavesthe actions of p and g;
moreover, actions from p and g may alsosyndironizeto a communication action,
when this is explicitly allowed by a prede ned communication function using
the keyword comm . Two actions can only synchronize if their data parameters
are semartically the same, which meansthat communication can be used to
represen data transfer from one system componert to another. Encapsulation
@ (p), which renamesall occurrencesin p of actions from the setH into , can
be usedto force actions into communication. Finally, hiding | (p) renamesall
occurrencesin p of actions from the set| into . The initial behavior of the
system can be speci ed with the keyword init .

Example 2.1.1 A data bu er with sizen can be modeledin CRL asfollows:

Buer(:List) = P 4:pata F€CEIVEd):Bu er (appendd;)) length()<n
+ sendtop()):Buer (tail()) length()>0

This says wheneer the list is not full (length()<n), the buer can receiwe
any datum d (modeled by action receive(d)) and append it to the end of the
list (append(d;)); the buer can also take the datum at the top of the list
and sendit outside (modeled by action send(top())) if the list is not empty

2.2 Labeled Transition Systemsand Behavioral Equivalences 13

(length()>0). In this caseonly the tail of the list (tail ()) remains. Initially ,
the list contains no data (= hi), which can be expressedas follows:

init Bu er(hi)

2.2 Labeled Transition Systems and Behavioral Equiv a-
lences

Labeled transition systems (LTSs) [10Z can capture the state space of dis-
tributed systems. An LTS consists of transitions s I* s° denoting that the
state s can ewlve into the state s® by the execution of action a.

Denition 2.2.1 (Lab eled transition system) A lakelad transition system
isatuple (S;Lab;! ;sp), whereS is a setof states, Lab a set of transition labels,
! S Lab S atransition relation, and sy the initial state. A transition

(s:": 89 is denotedby s!

Toeah CRL specication there belongsan LTS, de ned by the structural
operational semartics for CRL in [75], in which the states S consist of process
terms and the edgesLab consist of actions from Act [f g parametrized by
data. We de ne strong bisimilarity [12, 127, 137] and branching bisimilarity
[64] between states in LTSs. Both are an equivalencerelation (for branching
bisimulation, see[13)).

De nition 2.2.2 (Strong bisim ulation) Assumean LTS. A strong bisimu-
lation relation B is a symmetric binary relation on states such that if sBt and
s! s° then for somet® t! t°with s°Bt°

Two states s and t are strongly bisimilar, denoted by s $ t, if there is a
strong bisimulation relation B suc that sBt.

De nition 2.2.3 (Branc hing bisim ulation) Assumean LTS. A branching
bisimulation relation B is a symmetric binary relation on states suc that if

sBtands! s then
- either * = and s°Bt;
- or there is a sequenceof (zero or more) -transitions t ! I tp sudh

that sBtp andtg! t°with s°Bt°for somet®

Two states s and t are branching bisimilar, denoted by s $, t, if there is a
branching bisimulation relation B such that sBt.

We de ned bisimilarit y of statesin the samelLTS. States of di erent LTSs
are said to be strong/branching bisimilar, if they are strong/branching bisimilar
in the disjoint union of the LTSs, which can be de ned straightforwardly.

14 Chapter 2 Preliminaries

If the LTS belongingto a CRL speci cation consistsof nitely many states,
then the CRL tool set[21] canbe usedto support the generation of this LTS,*
together with reduction modulo strong and branching bisimulation equivalence.
More information on the CRL tool set can be obtained at http://www.cwi.
nl/~mcrl/

2.3 Linear Pro cess Equations

A linear processequation (LPE) [20]isa CRL speci cation consistingof onere-
cursion variable, actions, summations, sequettial compositions and conditional
constructs. In particular, an LPE doesnot contain any parallel operators, encap-
sulations or hidings. In essencen LPE is a vector of data parameterstogether
with a list of condition, action and e ect triples, describingwhen an action may
happen and what is its e ect on the vector of data parameters. Each CRL
speci cation that does not include successfultermination can be transformed
into an LPE [170.2

Denition 2.3.1 (Linear pro cess equation) A linear processequation is a
CRL speci cation of the form

X X
X(d:D) = a(fa(d;e€)) X (da(d;€)) ha(d;e)

a2Act[f gekEa

wheref, :D Ez! Di,ga:D Eaz! D,hy:D Eg! Bool for eath
a2 Act[f g, and ais an action label with data parametersof type D;.

The LPE in De nition 2.3.1hasexactly oneLTS asits solution (modulo strong
bisimulation). 2 In this LTS, the statesare data elemens d:D (whereD may bea
Cartesian product of n data types,meaningthat dis atuple (ds;:::;dy)) and the
transition labels are actions parametrized with data. The LPE expresseshat
state d can perform a(f 5(d;€)) to end up in state g,(d;e), under the condition
that h,(d;e) is true. The data typesE, give LPEs a more generalform, as not
only the data parameter d:D but also the data parameter elE, can in uence
the parameter of action a, the condition h, and the resulting state g,.

De nition 2.3.2 (Invariant) A mapping! : D ! Bool is an invariant for an
LPE, written asin De nition 2.3.1,if for all a2 Act[f g, d:D and elE,

I (d) ™ ha(d;e)) 1(ga(d;e)):

Intuitiv ely, an invariant approximates the set of reachable states of an LPE.
That is, if 1 (d), and if one can evolve from state d to state d°in zero or more

1Sometimes the nite LTS cannot be generated by the CRL tool set, asit is too large.

zTg, cover CRlp speci cations with successful termination, LPEs should include a sum-
mand o act g e, &fa(di€)) ha(d;e)

3LPEs exclude \unguarded" recursive speci cations such as X = X, which have multiple
solutions.

2.4 Regular Alternation-free -calculus 15

transitions, then | (d%. Namely, if | holdsin state d and it is possibleto execute
a(f 1(d; e)) in this state (meaning that h,(d;e)), then it is ensuredthat | holds
in the resulting state g,(d;e). Invariants tend to play a crucial role in algebraic
veri cations of system correctnessthat involve data.

2.4 Regular Alternation-free -calculus

Model cheding [35] is an automatic technique to determine which statesin an
LTS satisfy certain requiremerts. In order to chedk whether a certain require-
ment holds, it should be expressedas a temporal logic formula rst.

A variety of so-calledmodal logics [94] have beendeveloped to expressprop-
erties of LTSs, sudh as Hennessy-Milner logic (HML) [85], linear temporal logic
(LTL) [139, computation tree logic (CTL) [47] and -calculus[104. We proceed
to presert a brief description of the -calculus, and then the regular alternation-
free -calculus [122, which is the input languagefor the model cheder Eval-
uator in the Construction and Analysis of Distributed Processedoolbox (see
Section 2.5).

The -calculusis basedon xp oint computations [166]. Let D bea nite set
with a partial ordering with aleastand a greatestelemen. Givena mapping
'":D! D,anelemendofD isa xpoint of' if' (d) = d. Moreover, dis a least
Xp oint or greatest xpoint if d eore d, respectively, for all xp oints e of ' .
The least and the greatest xp oint of ' (if they exist) are denotedby Y ' (Y)
and Y:' (Y), respectively. The mapping' : D ! D is called monotonic if
d eimplies' (d) ' (e). If' is monotonic, and D hasa least elemen dy and
a greatestelemen ¢ (i.e.,dp dandd e forall d2 D), then' hasa least
and a greatest xp oint.

The formulas of -calculus, which expressproperties of states, are de ned
by the following BNF grammar:

CEEEITI a2 aN o jla jYiY v
where a rangesover Act [f g and Y rangesover somecollection of recursion
variables. We restrict to closel -calculus formulas, meaning that ead occur-
rence of a recursion variable Y is within the scope of a minimal xp oint Y or
a maximal xp oint Y.

The intuitiv e meaning of the formula hai' is \it is possible to make a-
transition to a state where' holds." Likewise,[a] meansthat \' holds in
all statesreachable by making a a-transition." The boolean operators have the
usual meaning: a state of an LTS always satis es T; it never satis es F; it sat-
ises : ' if and only if it does not satisfy ' ; it satises ' ;1 _ ', if and only
if it satises' ; orit satises' ; it satises' ;' , if and only if it satis es
both ' ; and' ;. The formulas Y :' and Y:' represern minimal and maximal
Xp oints, respectively. Here,' represerts a mapping from setsof statesto sets
of states: a set S of statesis mapped to those stateswhere' holds, under the
assumption that the recursionvariable Y evaluatesto T for statesin S and to
F for statesoutside S. As partial ordering on setsof stateswe take setinclusion

16 Chapter 2 Preliminaries

(sothe leastand the greatestelemen are the empty setand the setof all states,
respectively.). The mapping' is monotonic,so Y :' and Y:' arewell-de ned.
The alternation-free -calculus [48] consistsof -calculus formulas with no
alternation betweenleast and greatest xp oint operators, which makes a good
compromisebetween expressivenessand e ciency of model cheding.

The regular -calculus [127 is an extension of the -calculus with action
predicatesand regular expressionsover action sequencesOne is allowed to use
expressionsh i and []' where is a so-calledregular expression which is
de ned by the following BNF grammar:

=Tiaj:r j N 2
=1 20 4 2]
Action formulas represen a setof actions: T denotesthe set of all actions, a
the setfag,: the complemen of ,and 1" 5 theintersectionof ; and ».
Regular expressions represen a set of traces: ; » denotesthe traces that
can be obtained by concatenatinga trace from ; and atrace from 5, ij 2 the
union of 5 and », and the tracesthat can be obtained by concatenating
nitely many tracesfrom
hi meansthat holds after sometrace from , and[] meansthat
holds after all traces from
The regular alternation-free -calculus allows a simple, compact speci ca-
tion of safety and livenessproperties [108], where safety properties require that
\nothing bad ever happens" and livenessproperties require that \something
good will evertually happen".

Example 2.4.1 A safety property describingthe absenceof someerror action
is de ned as follows:

[T erralF

Example 2.4.2 A safely property detecting the absenceof -cyclesis de ned
as follows:

MIY:LlY

Example 2.4.3 A livenessproperty stating that there exists a path leading to
somemoveaction after performing zeroor more transitions is de ned asfollows:

hT mova T

Fairness properties are similar to livenessproperties, except that they ex-
pressreadability of actions by consideringonly fair execution sequencesThe
notion of fairnessencaled in the regular alternation-free -calculusis the \fair
reachability of predicates" [145: a sequencss fair if and only if it doesnot in-
nitely often enablesthe reachability of a certain state without in nitely often
reading it.

2.5 Construction and Analysis of Distributed Processesloolbox 17

Example 2.4.4 A fairness property expressingthat after sending a message
(action send all fair executionsequencesvill leadto the reception of the message
(action receive) is de ned as follows:

[T send(: receive] h(: receive receivé T

2.5 Construction and Analysis of Distributed Pro cesses
Toolb ox

The CRL tool set, in combination with the Construction and Analysis of Dis-
tributed Processesoolbox (CADP) [49, 63], formerly known asC sar Ald ebaran
Developmert Package,which acts asa badk-end for the CRL tool set, features
visualization, simulation, state spacegeneration, model chedking, theorem prov-
ing and state bit hashing capabilities. This approach has beenusedto analyze
a wide range of protocols and distributed systems(e.g., [6, 53, 93, 147).

CADP is a tool set to support protocol engineering. CADP was jointly
deweloped by the VASY team at INRIA Rhone-Alpesand the Verimag labora-
tory in France. It has a set of tools for compiling high-level protocol descrip-
tions written in LOTOS [46], simulation, state spacegeneration, minimization,
comparison and model chedking properties on LTSs, and testing. Csar is a
compiler that translates a LOTOS speci cation into an LTS. Ald ebaran allows
the minimization of an LTS modulo for instance strong and branching bisimu-
lation and comparesLTSs. It has diagnosis capabilities that provide the user
with explanations when two LTSs are found to be not equivalent. In the pack-
age, Evaluator [127] is an on-the-y model cheder for regular alternation-free

-calculus formulas on LTSs. It is equipped with diagnostic generation algo-
rithms, which construct both examplesand counter-examples, i.e., portions of
an LTS explaining why a formula is true or false. More information on CADP
can be obtained at http://www.inrial pes.f riv asy/ cadp/ .

18

Chapter 2 Preliminaries

Part |

Theorem Proving

19

Chapter 3

Cones and Foci: A Mechanical Pro of
Framew ork

3.1 Intro duction

Protocol veri cation with the help of a theorem prover is often rather ad hoc,
in the sensethat one has to dewelop the ertire proof structure from scratch.
Inventing such a structure takesa lot of e ort, and makesthat in generalsuc
a proof cannot be readily adapted to other protocols. Groote and Springintveld
[79] proposed a general proof framework for protocol veri cation, which they
namedthe conesand foci method. In this chapter we intro duce somesigni cant
improvemerts for this framework. Furthermore, we have cast the framework in
the interactive theorem prover PVS [131].

For nite labeledtransition systems,cheding whether two statesare branch-
ing bisimilar can be performede cien tly [80]. The CRL tool set[21] supports
the generation of labeled transition systems, together with reduction modulo
branching bisimulation equivalence,and allows model cheding of temporal logic
formulas [35] via a badk-end to the CADP tool set[49]. This approach to verify
systemcorrectnesshasthree important drawbacks. First, the labeledtransition
systemsof the CRL speci cations involved must be generated; often the la-
beledtransition systemof the implementation of a systemcannot be generated,
asit istoo large, or evenin nite. Second,this generationusually requiresa spe-
ci ¢ choicefor onenetwork or data domain; in other words, only the correctness
of an instantiation of the systemis proved. Third, support from and rigorous
formalization by theorem provers and proof chedersis not readily available.

In this chapter we focus on analyzing protocols and distributed systemson
the level of their symbolic speci cations. Linear process equations [20] (also
seeDe nition 2.3.1) constitute a restricted classof CRL speci cations in a
so-calledlinear format. Algorithms have been deweloped to transform CRL
speci cations into this linear format [76, 81, 17(. In a linear processequation,
the states of the assaiated labeled transition systemare data objects.

The conesand foci method from [79] rephrasesthe question whether two
linear processequationsare branching bisimilar in terms of proof obligations on

21

22 Chapter 3 Conesand Foci: A Mechanical Proof Framework

relations betweendata objects. Theseproof obligations canbe derived by means
of algebraic calculations, in generalwith the help of invariants (i.e., properties
of the reachable states) that are proved separately This method wasusedin the
veri cation of a considerablenumber of real-life protocols (e.g., [60, 72, 157),
often with the support of a theorem prover or proof cheder.

The main idea of the conesand foci method is that quite often in the imple-
mentation of a system, -transitions progressinertly towards a state in which
no canbe executed;suc a state is declaredto be a focus point. The cone of
a focus point consistsof the states that can reac this focus point by a string
of -transitions. In the absenceof in nite sequence®f -transitions, ead state
belongsto somecone. This coreidea is depicted below. Note that the external
actions at the edgeof the depicted cone can also be executedin the ultimate
focus point F; this is essetial for soundnessof the conesand foci method, as
otherwise -transitions in the conewould not be inert.

———= External actions

--->= |Internal actions

The starting point of the conesand foci method are two linear processequa-
tions, expressingthe implemertation and the desiredexternal behavior of a sys-
tem. A state mapping relatesead state of the implementation to a state of the
desired external behavior. Groote and Springintveld [79] formulated matching
criteria, consisting of relations between data objects, which ensurethat states
sand (s) are branching bisimilar.

If an implementation, with all internal activity hidden, givesrise to in nite
sequence®f -actions, then Groote and Springintveld [79] distinguish between
progressingand non-progressing 's, wherethe latter aretreated in the sameway
asexternal actions. They require that there is noin nite sequencef progressing

's, and de ne focus points as the statesthat cannot perform progressing 's.
A pre-abstmaction function divides occurrencesof in the implementation into
progressingand non-progressingones;in many casesit is far from trivial to

3.1 Introduction 23

de ne the proper pre-abstraction. Finally, a special fair abstraction rule [8] can
be usedto try and eliminate the remaining (non-progressing) 's.

In this chapter, we propose an adaptation of the conesand foci method,
in which the cumbersometreatment of in nite sequencef -transitions is no
longer necessary This improvemert of the conesand foci method was conceived
during the veri cation of a sliding window protocol [51] (also seeChapter 4),
where the adaptation simplied matters considerably As before, the method
dealswith linear processequations, requires the de nition of a state mapping,
and generatesthe samematching criteria. However, we allow the userto freely
assignwhich states are focus points (instead of prescribing that they are the
states in which no progressing -actions can be performed), as long as eath
state is in the cone of some focus point. We do allow in nite sequencesof

-transitions. No distinction between progressingand non-progressing 's is
needed, and -loops are eliminated without having to resort explicitly to a
fair abstraction rule. We prove that our method is sound modulo branching
bisimulation equivalence.

Compared to the original conesand foci method [79], our method is more
generally applicable. As expected, someextra price may have to be paid for
this generalization. Groote and Springintveld must prove strong termination of
progressing -transitions. They usea standard approach to prove strong termi-
nation: provide a well-founded ordering on statessuc that for ead progressing

-transition s! s®onehass>s® Herewe must prove that ead state can reach
a focus point by a seriesof -transitions. This meansthat in principle we have
a weaker proof obligation, but for a larger classof -transitions. We dewelop
a set of rules to prove the readability of focus points. These rules have been
formalized and provedin PVS.

We formalize the conesand foci method in PVS. The intent is to provide a
common framework for medcanical veri cation of protocolsusing our approach.
PVS theories are developed to represen basic notions like labeled transition
systems, branching bisimulation, linear processequations, and then the cones
and foci method itself. The proof of soundnesdor the method hasbeenmedan-
ically chedked by PVS within this framework. Once we had the linear process
equations, the state mapping and the focus condition encaded in PVS, the PVS
theorem prover and its type-chedking condition systemwerethen usedto gener-
ate and verify all correctnessconditions to ensurethat the implementation and
the external behavior of a system are branching bisimilar.

We apply our mechanical proof framework to the Concurrent Alternating
Bit Protocol [105, which served as the main examplein [79]. Our aims are to
compare our method with the one from [79], and to illustrate our mechanical
proof framework and our approach to the reachability analysis of focus points.
While the old conesand foci method required a typical cumbersometreatment of

-loops, herewe can take these -loopsin our stride. Thanks to the medanical
proof framework we detecteda bug in oneof the invariants of our original manual
proof. The reachability analysis of focus points is quite crisp.

24 Chapter 3 Conesand Foci: A Mechanical Proof Framework

Related Work. In compiler correctness,advanceshave beenmadeto validate
programs at a symbolic level with respect to an underlying simulation notion
(e.g., [34, 66, 129). The methodology surrounding conesand foci incorporates
well-known and useful concepts such as the precondition/e ect notation [97,
117, invariants and simulations. Linear processequationsresenble the UNITY
format [31] and recursive applicative program schemes[37]; state mappings are
comparable to re nement mappings [118 140 and simulation [57]. Van der
Zwaag [18(] gave an adaptation of the conesand foci method from [79] to a
timed setting, modulo timed branching bisimulation equivalence.

Outline of the chapter. This chapter is organized as follows. In Section
3.2, we presert the main theorem and prove that our method is sound modulo
branching bisimulation equivalence. A proof theory for reachability of focus
points is also presened. In Section 3.3, the conesand foci method is formalized
in PVS, and a mechanical proof framework is set up. In Section 3.4, we illus-
trate the method by verifying the Concurrent Alternating Bit Protocol. Part of
the veri cation within the medanical proof framework in PVS is preseried in
Section 3.4.4. We draw someconclusionsin Section 3.5.

3.2 Cones and Foci

In this section, we presert our version of the conesand foci method from [79] in
the setting of CRL. We do not describe the treatment of data typesin CRL
in detail. For our purposeit is sucient that processesan be parametrized
with data. We assumethe data sort of booleansBool with constart T and F,
and the usual connectives”™, ,: and) . For abooleanb, we abbreviateb= T
tobandb=Fto: b

Supposethat we have an LPE X (d:D) specifying the implementation of a
system,and an LPE Y (d®D9 (without occurrencesof) specifying the desired
external behavior of this system. We want to prove that the implemertation
exhibits the desired external behavior.

We assumethe presenceof an invariant | : D ! Bool for X. In the cones
and foci method, a state mapping : D ! DPrelates eat state of the imple-
mentation X to a state of the desired external behavior Y. Furthermore, some
statesin D are designatedto be focus points. In cortrast with the approac of
[79], we allow to freely designatefocus points, as long as ead state d:D of X
with | (d) can reach a focus point by a sequenceof -transitions. If a number
of matching criteria for d:D are ful lled, consisting of relations between data
objects, and if | (d), then the statesd and (d) are guaranteedto be branching
bisimilar. These matching criteria require that (A) all -transitions at d are
inert, (B) ead external transition of d can be mimicked by (d), and (C) if d
is a focus point, then vice versaead transition of (d) can be mimicked by d.

In Section 3.2.1, we presen the general theorem underlying our method.
Then we introduce proof rules for the reachability of focus points in Section
3.2.2.

3.2 Conesand Foci 25

3.2.1 The general theorem

Let the LPE X be of the form
X X
X(dD) = a(fa(d;e)) X (ga(d;e)) ha(d;e)

a2Act[f gekEa
Furthermore, let the LPE Y be of the form
X X
Y (d%D9 = a(f J(d%e)) Y(g3(d%e) ha(d%e)
a2Act eE,

Note that Y is not allowedto have -steps. We start with de ning the predicate
FC, designating the focus points of X in D. Next we de ne the state mapping
together with its matching criteria.

Denition 3.2.1 (Focus point) A focus condition is a mapping FC : D !
Bool. If FC(d), then d is called a focus point.

De nition 3.2.2 (State mapping) A state mapping is of the form : D !
DO

De nition 3.2.3 (Matc hing criteria) A state mapping :D! DO%satises
the matching criteria for d:D if for all a2 Act:
| 8eEa(h (die)) (d)= (g (d;e)));
Il 8eEa(ha(die)) h3((d);e));
I FC(d)) 8eEa(hi((d);e)) ha(d;e));
IV 8eEa(ha(die)) fa(d;e)=f2((d);e));
V 8eEa(ha(die)) (ga(d;e)) = g2((d);e)).

Matching criterion | requiresthat the -transitions at d are inert, meaning that
d and g (d;e) are branching bisimilar. Criteria 11, IV and V expressthat eah
external transition of d canbe simulated by (d). Finally, criterion III expresses
that if d is a focus point, then eat external transition of (d) can be simulated
by d.

Theorem 3.2.4 AssumelPEs X (d:D) and Y (d%D9 written as before (De -
nition 2.3.1). Let | : D! Bool be aninvariant for X . Supposethat for all d:D
with 1 (d),

1. :D! DOsatis es the matching criteria for d, and
2. thereis a &D such that FC(d) and d ! ' din the LTS for X.
Then for all d:D with 1 (d),

X(d) $, Y((d):

26 Chapter 3 Conesand Foci: A Mechanical Proof Framework

Pro of. We assumewithout lossof generality that D and D °are disjoint. De ne
B D[D° D[D°asthe smallestrelation such that whenewr | (d) for a
d:D then dB (d) and (d)Bd. Clearly, B is symmetric. We show that B is a
branching bisimulation relation.

Let sBtands! s° First considerthat casewhere (s) = t. By de nition
of B we have | (s).

If © = , then h (s;e) and s° = g (s;€) for someeE. By matching
criterion 1, (g (s;e)) = t. Moreover, | (s) and h (s;e) together imply
I (g (s;€)). Hence,g (s;e)Bt.

If ~ 6 , then ha(s;e), s° = ga(s;e) and * = a(fa(s;e)) for somea 2
Act and eE. By matching criteria 11 and IV, hi(t;e) and fa(s;€) =

f2(t;). Hence,t alfq(se) g2(t; e). Moreover, | (s) and h,(s;e) together
imply 1 (ga(s;€)), and matching criterion V yields (ga(s;€)) = d2(t; e),
S0 ga(s;€) B g3(t; ©).

Next considerthe casewheres = (t). Sinces! s° for somea 2 Act and e:E,
h9(s;e), s°= gi(s;e) and * = a(f I(s;€)). By de nition of B we have | (t). By
assumption 2 of the Theorem, there is a f:D with FC(f) suchthat t! ::! fin
the LTS for X . Invariant |, so alsothe matching criteria, hold for all stateson
this -path. Repeatedly applying matching criterion | weget (f) = (t) = s. So
matching criterion 111 together with hS(s;e) yields h,(f €). Then by matching

Ofa-
criterion 1V, fa(fe) = fi(s;e), sot ! ! g 2(Tq(sed da(f €. Moreover,

I (f) and ha(f; e) together imply 1 (ga(f, €), and matching criterion V yields
(a(f€)) = g2(s;€), sosBf and gi(s;e€) Baa(f, ©).
Concluding, B is a branching bisimulation relation.

We note that Groote and Springintveld [79] proved for their version of the cones
and foci method that it canbe derived from the axiomsof CRL, which implies
that their method is sound modulo branching bisimulation equivalence.

3.2.2 Pro of rules for reachabilit y

The conesand foci method requires asinput a state mapping and a focus con-
dition. It generatestwo kinds of proof obligations: matching criteria, and a
reachability criterion. The latter statesthat from all reachable states, a state
satisfying the focus condition must be reachable. Note that it su ces to prove
that from any state satisfying a given set of invariants, a state satisfying the
focus conditions is reachable. In this sectionwe develop proof rules, in order to
establish this condition. First we intro duce somenotation.

De nition 3.2.5 (-Reachabilit y) Givenan LTS (S;Lab;! ;s¢) and ;
S. is -reachable from , written as , if and only if for all x 2 there
existsay 2 sud that x ! Iy,

3.3 A Mechanical Proof Framework 27

The above mertioned reachability criterion can now be expressedas Inv
FC, where Inv denotesa set of invariants, and FC denotesthe focus condition.
Here and in the sequel,we use predicateswith variables from the state vector
to denote sets of states.

De nition 3.2.6 (Reac habilit y in one -step) Let X (d:D) bean LPE (see
De nition 3.2.1). The set of statesPrex (), that canreac the set of states
in one -step, is de ned as:

Prex ()(d) = 9e:E(h (d;e)" (g (d;€))

Lemma 3.2.7 (Pro of rules for reachabilit y) A list of rules for proving
with respectto an LPE X are given as follows:

(precondition) Prex ()

(implication) If) then

(transitivit y) If and then
(disjunction) If and ,thenf _ g
(invariant) If and | is aninvariant, thenf ~1g f ~lg.

(induction) If forall n> 0,f ~(t=n)g f ”(t < n)g, then
f ~ (t = 0)g, wheret is any term containing state variablesfrom D.

Pro of. Theserules can be easily proved. In the precondition rule we obtain a
onestep reduction from the semariics of LPEs. The implication rule is obtained
by an empty reduction sequencefor transitivit y we can concatenatethe reduc-
tion sequencesThe disjunction rule can be proved by casedistinction. For the
invariant rule, assumethat (d) and | (d) hold. By the assumption , we
obtain a sequenced ! I d% suchthat (d9. Becausel is an invariant, we
have | (d9 (by induction on the length of that reduction). Soindeedf 1 g(d9.
Finally, for the induction rule we rst prove with well-founded induction over
n and using the transitivit y rule that 8n:f ~ (t=n)g f ~ (t= 0)g. Then
obsenethat) f ~ (t = t)g, and usethe implication and transitivit y rule to
concludethat f ~(t=0)g.

The proof rules for reachability were proved correct in PVS, and they were used
in the veri cation of the reachability criterion for the CABP in PVS, which we
will presert in Section 3.4.4.

3.3 A Mechanical Pro of Framew ork

In this section, our method is formalized in the language of the interactive
theorem prover PVS [131]. This formalism enablescomputer aided protocol
veri cation using the conesand foci method. PVS is chosenfor the following

28 Chapter 3 Conesand Foci: A Mechanical Proof Framework

main reasons.First, the speci cation languageof PVS is basedon simply typed
higher-order logics. PVS provides a rich set of types and the ability to de ne
subtypesand dependert types. Second,PVS constitutes a powerful, extensible
system for verifying obligations. It has a tool set consisting of a type cheder,
an interactive theorem prover, and a model cheder. Third, PVS includes high
level proof strategiesand decisionproceduresthat take care of many of the low
level details assaiated with computer aided theorem proving. In addition, PVS
has useful proof managemen facilities, such as a graphical display of the proof
tree, and proof stepping and editing.

The type system of PVS contains basic types such as boolean, natural, in-
teger, real, et al. and type constructors sud as set, tuple, record, and func-
tion. Tuple, record, and type constructors are extensively usedin the following
sectionsto formalize the conesand foci method. Tuple types have the form
[T1,...,Tn] , where the Ti are type expressions. A record is a nite list of
elds of the form RITYPE=[# E1:T1, ...En:Tn #], where the Ei are record
accessor functions. Asscciated with every tuple type or record is a set of pro-
jection functions: '1,°2,..., (or proj _1,proj 2,...). A function construc-
tor hasthe form F:TYPE=[TL,...,Tn ->R], where F is a function with domain
T1 T2 ... TnandrangeR

A PVS speci cation canbe structured through a hierarchy of theories. Each
theory consistsof a signature for the type names, constarts introduced in the
theory, axioms, de nitions, and theoremsassaiated with the signature. A PVS
theory can be parametric in certain speci ed typesand values,which are placed
between[] after the theory name. A theory can build on other theories. To
import atheory, PVS usesthe notation IMPORTIN@@Illowed by the theory name.
For example,we can give part of the theory of abstract reduction systems[7] in
PVS asfollows:

ARS[A:TYPE]: THEORBEGIN
x,¥,ZZVAR A nVARnat R:VARpred[[AA]]
iterate(R,n)(x,y):RECURSIVE bool=
IF n=0 THENx=y

ELSEEXISTSz:iterate(R,n-1)(x,z) ANDR(z,y)
ENDIF MEASURE
star(R)(x,y):bool= EXISTS n:iterate(R,n)(Xx,y)
ENDARS

Theory ARScortains the basic notations, like transitiv e closure of a relation,
and theoremsfor abstract reduction systems. The rest of this section givesthe
main part of the PVS formalism of our approach. We will explain PVS notation
throughout this section, when necessary

3.3.1 LTSs and branc hing bisim ulation

We formalize basic notions like labeled transition systems, branching bisimu-
lation, linear processequations from Chapter 2 in PVS. An LTS (see De ni-

3.3 A Mechanical Proof Framework 29

tion 2.2.1) is parameterized by a set of states D, a set of actions Act and a
special action tau. The type LTSis then de ned as a record containing an ini-
tial state, and a ternary step relation. The relation step _01 extendsstep with
the re exiv e closureof the tau -steps. We also abbreviate the re exiv e transitiv e
closure of tau -stepstau _star . Finally, the set reachable of states reachable
from the initial state can be easily characterized using an inductiv e de nition.

LTS[D,Act: TYPE,tau:Act]: THEORBEGIN
IMPORTIN@®RS|D]
LTS: TYPE= [# initD, step:[D,Act,D->bool] #]
X,Y:-VAR D aVAR Act lts:VAR LTS

step(lts,a)(x,y):bool= Its"step(x,a,y)
step _01(Its)(x,a,y):bool= Its’step(x,a,y) OR(a=tau ANDx=y)
tau _star(lts)(x,y):bool= star(step(lts,tau))(x,y)

reachable(lts)(x):INDUCTIVE bool=
x=lts init OREXISTSy,a:
reachable(lts)(y) ANDIts step(y,a,x)
ENDLTS

To de ne a branching bisimulation relation (seeDe nition 2.2.3) between
two labeled transition systemsin PVS, we rst introduce a formalization of a
branching simulation relation in PVS. A relation is a branching bisimulation if
and only if both itself and its inverseare a branching simulation relation.

BRANCHIN&MULATIOND,E,Act:TYPE,tau:Act]: THEORBEGIN
IMPORTINGTS[D,Act,tau], LTS[E,Act,tau]
x1,y1,z2:VAR D x2,y2,z22:.VAR E
[ts1:VAR LTS[D,Act,tau] [ts2:VAR LTS[E,Act,tau]
a:VAR Act R:VAR[D,E->bool]
brsim(lts1,Its2)(R):bool=
FORALIx1,a,z1,x2:lts1 step(x1,a,z1) ANDR(x1,x2) IMPLIES
EXISTSy2,z2:tau _star(lts2)(x2,y2) AND
step _01(Its2)(y2,a,z2) ANDR(x1,y2) ANDR(z1,z2)
ENDBRANCHIN&MULATION

BRANCHINBISIMULATIOND,E,Act: TYPE,tau:Act]: THEORBEGIN

IMPORTIN@BRANCHIN&MULATION[D,E,Act,tau],
BRANCHIN&MULATIONI[E,D,Act,tau]

x1:VARD x2:VARE

[ts1:VAR LTS[D,Act,tau] [ts2:VAR LTS[E,Act,tau]

a:VAR Act R:VAR[D,E->bool]

brbisim(lts1,lts2)(R):bool=
brsim(lts1,Its2)(R) ANDbrsim(lts2,lts1)(converse(R))

brbisimilar(lts1,lts2)(x1,x2):b ool=
EXISTSR:brbisim(lts1,lts2)(R) ANDR(x1,x2)
brbisimilar(lts1,Its2):bool=
brbisimilar(lts1,lts2)(lts1” init, Its2 ‘ini t)

ENDBRANCHINBISIMULATION

30 Chapter 3 Conesand Foci: A Mechanical Proof Framework

In our actual PVS theory of branching bisimulation, we alsode ned a semi-
branching bisimulation relation [64]. In [13], this notion was usedto shaw that
branching bisimilarit y is an equivalence. Bastenshawvedthat the relation compo-
sition of two branching bisimulation relations is not necessarilyagain a branch-
ing bisimulation relation, while the relation composition of two semi-branding
bisimulation relations is again a semi-branciing bisimulation relation. It is
easyto seethat semi-branding bisimilarit y is re exiv e and symmetric. Hence,
semi-branding bisimilarit y is an equivalencerelation. Basten also proved that
semi-branding bisimilarit y and branching bisimilarit y coincide, that meanstwo
statesin an LTS are related by a branching bisimulation relation if and only
if they are related by a semi-brancing bisimulation relation. Thus, he proved
that branching bisimilarity is an equivalencerelation. We have cheded these
factsin PVS.

3.3.2 Representing LPEs and invariants

We now show how an LPE (seeDe nition 2.3.1) can be represerted in PVS.
The formal de nitions will slightly deviate from the mathematical presertation
before. A rst decisionwas to represet CRL abstract data types directly
by PVS types. This enablesone to reusethe PVS library for de nitions and
theoremsof \standard" data types,and to focus on the behavioral part.

A seconddistinction will bethat we assumedsofar that LPEs are clustered.
This meansthat ead action name occursin at most one summand, sothat the
set of summandscan be indexed by the set of action namesAct. This is no real
limitation, becausqgny LPE can be transformed into clustered form, basically
by replacing + by over nite types. Clustered LPEs enable a notationally
smoother presenation of the theory. Howewver, when working with concrete
LPEs this restriction is not corveniert, sowe avoid it in the PVS framework:
an arbitrarily sizedindex setf0;:::;n 1g will be used, represeried by the
PVS type below(n) . A third deviation is that we will assumefrom now on that
every summand has the same set E of local variables (instead of E, before).
Agajg this is no limitation, becausevoid summations can always be added (i.e.:
p= g P, whenedoesn't occurin p). This restriction is neededto avoid the
useof polymorphism, which doesn't exist in PVS. A fourth deviation is that we
do not distinguish action namesfrom action data parameters. We simply work
with onetype Act of expressionsfor actions. Note that this is a real extension.
Namely, in our PVS formalization, each LPE summandis a function from D E
(with D the set of states) to Act Bool D, soonesummand may now generate
stepswith various action names, possibly visible aswell asinvisible.

So an LPE is parameterized by a set of actions (Act), a global parameter
(State) and a local variable (Local), and by the size of its index set (n) and
the special action (tau). Note that the guard, action and next-state of a
summand depend on the global parameter d:State and on the local variable
e:Local . This dependencyis represerted in the de nition SUMMAND a PVS
function type. An LPE consistsof aninitial state and alist of summandsindexed
by below(n) . Finally, the function Ipe2lts providesthe LTS semarics of an

3.3 A Mechanical Proof Framework 31

LPE, Step(L,a) providesthe corresponding binary relation on states, and the
set of Reachable statesis lifted from LTS to LPE level.

LPE[Act,State,Local:TYPE,n:n at,ta u:Act]: THEORMBEGIN
IMPORTING.TS[State,Act,tau]
SUMMAND:TYPState,Local->[#act:Act,guard: bool, next:Stat e#]]
LPE:TYPET#init:State,sums:[below(n)->S UMMMDI#]

L:VAR LPE i:VAR below(n) d,d1,d2:VAR State
a:VAR Act e:VAR Local s:VAR SUMMAND
step(s)(dl,a,d2):bool=
EXISTSe:s(dl,e)’'guard ANDa=s(dl,e) act
ANDd2=s(d1,e) next
Ipe2lts(L):.LTS= (#init:= init(L),
step:= LAMBDAIl,a,d2: EXISTSi:step(L sums(i))(d1,a,d2)#)

Step(L,a)(d1,d2):bool= step(Ipe2lts(L),a)(d1,d2)
Reachable(L)(d):bool= reachable(lpe2lts(L))(d)
ENDLPE

We de ne an invariant (seeDe nition 2.3.2) of an LPE in PVS by a theory
INVARIANTas follows, where p is a predicate over states. p is an invariant of
an LPE if and only if it holds initially and it is presened by the execution of
every summand. Note that we only require presenation for reachable states.
This allows that previously proved invariants can be usedin proving that p is
invariant, which occurs frequertly in practice. The abstract notion of reaca-
bility can itself be proved to be the strongestinvariant (reachable _invl and
reachable _inv2).

INVARIANT[Act,State,Local:TY PE,n: nat, tau:A ct]: THEORBEGIN
IMPORTING.PE[Act,State,Local,n,tau]
L:VAR LPE p:VAR [State->bool]
d:VAR State a:'VAR Act e:VAR Local i.VAR below(n)
preserves(L,i)(p):bool=
FORALLd,e:Reachable(L)(d) ANDp(d) ANDL sums(i)(d,e) guard
IMPLIES p(L sums(i)(d,e) next)
invariant(L)(p):bool= p(L’init) ANDFORALL:preserves(L,i)(p)
reachable _invl: LEMMAnvariant(L)(Reachable(L))
reachable _inv2: LEMMAnvariant(L)(p)
IMPLIES subset?(Reachable(L),p)
ENDINVARIANT

3.3.3 Formalizing the cones and foci metho d

In this section, we give the PVS dewvelopmert of the conesand foci method.
Comparedto the mathematical de nitions in Section 3.2 we make two adapta-
tions. First, we usethe abstract reachability predicate instead of invariants; by
the previous lemmaswe can always switch back to invariants. Second,we have
to reformulate the matching criteria in the setting of our slightly extendednotion

32 Chapter 3 Conesand Foci: A Mechanical Proof Framework

of LPEs, allowing arbitrary index sets,and more action hamesper summand.

We start with two LPEs, for the implementation and the desired external
behavior of a system, X:LPE[Act,D,L,m ,t au] and Y:LPE[Act,E,L,n, tau] re-
spectively. Both LPE X and LPE Y have the sameset of actions and the same
set of local variables. Howeer, the type of global parameters(D and E, respec-
tively) and the number of summands(mand n, respectively) may be di erent.
Note that here we do not exclude the presenceof tau in the LPE Y. For the
correctnessproof this restriction is not needed,and by lifting this restriction we
avoid the useof subtypesin PVS. Howewer it doesnot really extend the method,
becausethe matching criteria enforcethat all tau -stepsin Y are tau -loops.

The next ingredients are the state mapping function h:[D->E] and a fo-
cus condition fc:pred[D] . But, as summandsare no longer indexed by action
names, we also need a mapping of the summandsk:[below(m)->belo w(n)].
The idea is that summand i:below(m) of LPE X is mapped to summand
k(@i):below(n) of LPE Y. Having these ingredients, we can subsequetly de-
ne the matching criteria (MC) and the readability criterion (RC). The indi-
vidual matching criteria (MC1{MC5) are displayed separately The theorem
CONESFO@hs proved in PVS along the lines of Section 3.2.

CONESFQWETHO[D,E,L, Act:TYPE,tau:Actm,n :nat] : THEORBEGIN
IMPORTIN@RANCHINBSIMULATIOND,E,Act,tau],
LPE[Act,D,L,m,tau], LPE [Act,E,L,n,tau]

X:VAR LPE[Act,D,L,m,tau] Y:VAR LPE[Act,E,L,n,tau]

h:VAR [D->E] fc:VAR pred[D] k:VAR [below(m)->below(n)]
d,d1:VAR D

% The matching criteria: MC1-MCS5.

MC(X.,Y.k,h.fc)(d):bool=
MC1(X,h)(d) ANDMC2(X,Y,kh)(d) ANDMC3(X.Y.k h.fc)(d)
ANDMCA(X.Y .k h)(d) ANDMC5(X,Y .k h)(d)

% The reachability criterion of focus points.
RC(X,fc)(d):bool=
EXISTSd1:fc(dl) ANDtau _star(lpe2lts(X))(d,d1)

% The main theorem.
CONESFOCITHEOREM
h(X'init)=Y"init AND(FORALLd:Reachable(X)(d)
IMPLIES MC(X,Y,k,h,fc)(d) ANDRC(X,fc)(d))
IMPLIES brbisimilar(lpe2lts(X),lpe2 lts(Y))
ENDCONESFQ®ETHOD

3.3 A Mechanical Proof Framework 33

x:VAR L i:VAR [below(m)] j:\VAR [below(n)]
MC1(X,h)(d):bool= FORALL: FORALLx:
X'sums(i)(d,x) act=tau ANDX sums(i)(d,x) guard
IMPLIES h(d)=h(X"sums(i)(d,x) next)
MC2(X,Y,k,h)(d):bool= FORALL: FORALLx:
NOTX sums(i)(d,x) act=tau ANDX sums(i)(d,x) guard
IMPLIES Y sums(k(i))(h(d),x) guard
MC3(X,Y,k,h,fc)(d):bool= FORALL: FORALLx:
fc(d) ANDY sums(j)(h(d),x) guard
IMPLIES EXISTSi:
k(i)=j ANDX sums(i)(d,x) guard ANDNOTX sums(i)(d,x) act=tau
MC4(X,Y,k,h)(d):bool= FORALL: FORALLx:
NOTX sums(i)(d,x) act=tau ANDX sums(i)(d,x) guard
IMPLIES X sums(i)(d,x) act = Y sums(k(i))(h(d),x) act
MC5(X,Y,k,h)(d):bool= FORALL: FORALLx:
NOTX sums(i)(d,x) act=tau ANDX sums(i)(d,x) guard
IMPLIES h(X sums(i)(d,x) next) = Y sums(k(i))(h(d),x) next

3.3.4 The symbolic reachabilit y criterion

The last part of the formalization of the framework in PVS is on the proof rules
for the reachability criterion. We start on the level of abstract reduction systems
(ARSIS)), which talks about binary relations, formalized in PVS aspred[S,S] .
First, we have to lift conjunction (AND and disjunction (OR to predicateson
S (overloading is allowed in PVS). We use Reachto denote . Next, seweral
proof rules can be expressedand provedin PVS. Here we only shaw the rules for
disjunction and induction; the latter dependson a measurefunction f:[S->nat]
(this rule is not usedin the veri cation of Concurrent Alternating Bit Protocol
later, but it wasessetial in the veri cation of the Sliding Window Protocol (see
Chapter 4)).

REACKCONDITIONS:TYPE]: THEORWBEGIN
IMPORTING\RSIS]
X,Y,Z:-VAR pred[S] x,Y:VAR S R:VARpred[[S,S]]
AND(X,Y)(x):bool= " X(x) ANDY(X) ;
OR(X,Y)(x) :bool= X(x) ORY(X) ;
Reach(R)(X,Y):bool= FORALLxX:X(x)
IMPLIES EXISTSy:Y(y) ANDstar(R)(X,y)
reach _disjunction: LEMMA® Disjunction rule
Reach(R)(X,Z) ANDReach(R)(Y,Z) IMPLIES Reach(R)(X ORY,Z)
f:VAR [S->nat] n:VAR nat
reach _induction: LEMMA®% Induction rule
(FORALLN:n>0 IMPLIES
Reach(R)(X ANDLAMBDA:f(x)=n, = X ANDLAMBDA:f(x)<n))
IMPLIES Reach(R)(X, X ANDLAMBDA:f(x)=0)
ENDREACKONDITION

34 Chapter 3 Conesand Foci: A Mechanical Proof Framework

Finally, the precondition and invariant rules depend on the LPE under
scrutiny, sowe de ne them in a separatetheory:

PRECONDITIOMNct,State,Local: TYPE,n:nat,tau ‘Act] : THEORMBEGIN
IMPORTINGNVARIANTI[Act,State,Local,n, taul],
REACHKONDITION][State]
L:VAR LPE X,Y:VAR pred[State] i:ZVAR below(n)
d:VAR State e:VAR Local I:VAR [State->bool]
precondition(L,X)(d):bool=
EXISTSi: EXISTSe:L'sums(i)(d,e) act=tau
ANDL sums(i)(d,e) guard ANDX(L sums(i)(d,e) next)
reach _precondition: LEMMA® Precondition rule
Reach(Step(L,tau))(precondition (L,X),X)
reach _invariant: LEMMA®% Invariant rule
Reach(Step(L,tau))(X,Y) ANDinvariant(L)(l)
IMPLIES Reach(Step(L,tau))(X ANDI, Y ANDI)
ENDPRECONDITION

To connect the proof rules on the Reach predicate with the readability
condition of the previous section, we proved the following theoremin PVS:

reachability[D,E,L,Act: TYPE, tau:Act, m,n:nat]: THEORMBEGIN
IMPORTINGEONESFO®ETHOD|D,E,L,Act,tau,m,n],
PRECONDITION[Act,D,L,m,tau]
|,fc: VAR[D->bool] X: VARLPE[Act,D,L,mtau] d: VARD
REACKRIT: LEMMAnvariant(L)(l) ANDReach(Step(L,tau))(l,fc)
IMPLIES (FORALLd:Reachable(L)(d) IMPLIES RC(L,fc)(d))
ENDreachability

This nishes the formalization of the conesand foci method in PVS. We
view this as an important step. First of all, this part is protocol independen,
soit canbereusedin di erent protocol veri cations. Second,it providesa rigor-
ous formalization of the meta-theory. For a concrete protocol speci cation and
implementation, and given invariants, mapping functions and focus condition,
all proof obligations can be generatedautomatically and proved with relatively
little eort. The theorem CONESFOG@Ii Section 3.3.3 states that this is su -
ciert to prove that the implementation is correct w.r.t. the speci cation modulo
branching bisimulation. No additional axioms are used besidesthe standard
PVS library. The les of the PVS formalization of the conesand foci method
can be found at http://www.cwi.nl /~v dpol/ conesfoci/.

3.4 Application to the CABP

Groote and Springintveld [79] proved correctnessof the Concurrent Alternating
Bit Protocol (CABP) [105 as an application of their conesand foci method.
Here we redo their correctnessproof using our version of the conesand foci
method, where in contrast to [79] we can take -loopsin our stride. We also

3.4 Application to the CABP 35

illustrate our mechanical proof framework and our approach to the reachability
analysis of focus points by this casestudy.

3.4.1 Informal description

In the CABP, data elemernts d;; dy;::: are communicated from a data transmit-
ter Sto adata receiver R via a lossychannel, sothat a messagean be corrupted
or lost. Therefore, acknowledgmerts are sert from R to Svia a lossy channel.
In the CABP, sending and receiving of acknowledgmerts is decoupledfrom R
and S, in the form of separatecomponerts AS and AR, respectively, where AS
autonomously sendsacknowledgmerts to AR.

S attaches a bit 0 to data elemers dyx 1 and a bit 1 to data elemerns
dok, and AS sendsback the attached bit to adknowledgereception. S keepson
sending a pair (di;b) until AR receiwesthe bit b and succeedsin sendingthe
messageac to S;then S starts sendingthe next pair (di+1;1 b). Alternation
of the attached bit enablesR to determine whether a received datum is really
new, and alternation of the acknowledging bit enablesAR to determine which
datum is being acknowledged.

The CABP contains unbounded internal behavior, which occurs when a
channel eternally corrupts or losesthe same datum or acknowledgmert. The
fair abstraction paradigm [8], which underlies branching bisimulation, says that
such in nite sequencesof faulty behavior do not exist in reality, becausethe
chanceof a channelfailing in nitely often is zero. Groote and Springintveld [79]
de ned a pre-abstraction function to hide all 's exceptthosethat are executed
in focus points, and used Koomen's fair abstraction rule [8] to eliminate the
remaining -loops. In our adaptation of the conesand foci method, neither
pre-abstraction nor Koomen'sfair abstraction rule are needed.

The structure of the CABP is shown in Figure 3.1. The CABP systemis
built from six componerts.

S is a data transmitter, which readsa datum from port 1 and transmits such
a datum repeatedly via channel K, until an acknowledgmernt ac regarding
this datum is received from AR.

K is a lossy data transmission channel which transfers data from S to R.
Either it deliversthe datum correctly, or it can make two sorts of mistakes:
losethe datum or changeit into a chedksum error ce

R is a data receiver, which receivesdata from K, sendsfreshly received data
into port 2, and sendsan acknowledgmert to AS via port 5.

AS is an acknowledgmenttransmitter, which receivesan acknowledgmert from
R and repeatedly transmits it via L to AR.

L is a lossyacknowedgmenttransmission channel which transfers acknowl-
edgmeris from AS to AR. Either it deliversthe acknowledgmert correctly,
or it can make two sorts of mistakes: losethe acknowledgmert or change
it into an acknowledgmert error ae.

36 Chapter 3 Conesand Foci: A Mechanical Proof Framework

Figure 3.1: The structure of the CABP

AR is an acknowledgment receiver, which receives acknowledgmens from L
and passeshem onto S.

The componerts can perform read r (:::) and sendsy(:::) actions to trans-
port data through port n. A read and a sendaction over the sameport n can
syndironize into a communication action ¢, (:::).

3.4.2 CRL speci cation

We give descriptions of the data types and eadh componert's speci cation in

CRL, which were originally preserted in [79]. For corvenienceof notation, in
ead summandofthe CRL speci cations below, weonly presen the parameters
whosevaluesare changed,e.g. d=d; denotesthat the new value of the parameter
ds is d.

We usethe sort Nat of natural numbers, and the sort Bit with elemers by
and by with an inversion function inv : Bit ! Bit to model the alternating bit.
The sort D cortains the data elemeris to betransferred. The sort Frameconsists
of pairs Hd; bi with d:D and b:Bit. Framealsocontains two error messagesce for
chedksum error and ae for acknowledgmert error. eq: S S! Bool coincides
with the equality relation betweenelemeris of the sort S.

The data transmitter S readsa datum at port 1 and repeatedly transmits
the datum with a bit bs attached at port 3 until it receivesan adknowledgmen
ac through port 8; after that, the bit-to-b e-attached is inverted. The parameter
is is usedto model the state of the data transmitter.

De nition 3.4.1 (Data transmitter)
S(ds:D; bs:Bit; is:Nat)
= 7 o ra(d) S(d=cki2=is) eqfisi 1)
+ (sa(hds; bsi) S() + rg(ac) S(inv (bs)=hy;1=is)) eqis;?2)

3.4 Application to the CABP 37

The data transmission channel K reads a datum at port 3. It can do one of
three things: it can deliver the datum correctly via port 4, losethe datum, or
corrupt the datum by changingit into ce. The non-deterministic choicebetween
the three options is modeled by the action j. by is the attached alternating bit
for K. And its state is modeled by the parameteriy.

Denition 3.4.2 (Data transmission channel)
K (dk:D; b:Bit; ix:N at)
P P) . .
= ap beit M3(hd;bi) K(d=d;b=la;2=ix) eqik;1)
+ () K(@=i) +] K3=ik) +] K(4=ik)) eqix;2)
+ sa(hde;bei) K (1=ik) edfix;3)
+ sy(ce) K (1=ix) eqix;4)
The data receiver R readsa datum at port 4. If the datum is not a chedksum ce
and if the bit attached is the expectedbit, it sendsthe received datum into port
2, sendsan acknowledgmert ac via port 5, and inverts the bit-to-b e-expected
is inverted. If the datum is ce or the bit attached is not the expected one, the

datum is simply ignored. The parameter i, is usedto model the state of the
data receiwer.

De nition 3.4.3 (Data receiv er)
R(d;:D; b :Bit; i, :Nat)
P . . :
= ap Ma(hd;bi) R(d=d;2=i;) edir;1)
+ (ra(ce+ 4pra(hdiinv(ly)i)) R() edir;1)
+ sp(dr) R(3=ir) edir;2)
+ ss(ac) R(inv(b)=h;1=i,) eqir;3)
The acknowledgmert transmitter AS repeats sendingits acknowledgmert bit b°

via port 6, until it receivesan acknowledgmert ac from port 5, after which the
adknowledgmert bit is inverted.

De nition 3.4.4 (Ac knowledgmen t transmitter)

AS(B:Bit) = rs(ac) AS(inv ()=I) + ss(if) AS()

The acknowledgmert transmission channel L readsan acknowledgmert bit from
port 6. It non-deterministically doesone of three things: deliver it correctly via
port 7, losethe adknowledgmen, or corrupt the acknowledgmert by changing
it to ae. The non-deterministic choice betweenthe three options is modeled by
the action j. b is the attached alternating bit for L. And its state is modeled
by the parameter .

38 Chapter 3 Conesand Foci: A Mechanical Proof Framework

De nition 3.4.5 (Ac knowledgmen t transmission channel)
L(b:Bit; i;:N at)
P . .
= peit Fe(B) L(b=lp;2=i)) eqi;1)
+ (jL@=i)+jLE=i)+]LA=0) eqi;?2)
+ s7(b) L(2=i) eqi;3)
+ s7(ae) L(1=i)) eqii;4)
The adknowledgmert receiver AR readsan adknowledgmen bit from port 7. If
the bit is the expected one, it sendsan adknowledgmert ac to the data trans-
mitter Svia port 8, after which the bit-to-b e-expectedis inverted. Acknowledg-

ments errors ae or unexpected bits are ignored. And its state is modeled by the
parameter i?.

De nition 3.4.6 (Ac knowledgmen t receiv er)

AR (R2:Bit; i2:N at)

r7(B) AR(2=i9) eq(ig; 1)

(r7(ae) + ro(inv () AR() eqid; 1)
sg(ac) AR (inv ()=; 1=i%) eqi? 2)

The CRL specication of the CABP is obtained by putting the six compo-
nents in parallel and encapsulatingthe internal actions at ports f 3; 4; 5; 6; 7; 8g.
Syndironization betweenthe componerts is modeled by communication actions
at connecting ports.

+

+

De nition 3.4.7 Let H denotefsSg;r3;Sa;r4;Ss;rs;S6;06;S7;r7;Ss; g, and |
denote f c3; C4; Cs; Cs; C7; Ca1] 0.

CABP (d:D)
= (@ (S(d;p; 1) K AR (bp; 1) k K (d;by; 1) k L(by; 1) k R(d; bo; 1) k AS(ly)))

Next the CABP is expandedto an LPE Sys. Note that the parameters
K (of AR) and kP (of AS) are missing. The reason for this is that during
the linearization the communications at ports 6 and 7 enforce eq(b;b) and

eqtP;h).
Lemma 3.4.8 For all d:D we have

CABP (d) = Syq(d;hy; 1;1;d; by; 1;d; by; 15 by 5 1)

3.4 Application to the CABP 39

where

Sys(ds:D; bs:Bit ;ig:Nat; i‘S):Nat;dr :D; b :Bit ;i :Nat;dg:D; b :Bit;
ik:Nat; b:Bit;i;:Nat)

= 7 4o ra(d) Sysd=d;250) eqfis; 1) 1)
+ Sys(ds=d;bs=h;2=ik) edis;2)” eqik;1) @)
+ (Sys(l=i)+ Sys(3=i)+ Sys4=iv) edix;2) ®)
+ Sys(de=d;2=ir;1=i) eqiri1)” eqlbyih) A eqiv: 3) @
+ sys(l=i) edir; 1) eqhr;inv (b)) A eqi; 3) ®)
+ sys(l=i) edir;1)” eqliy;4) 6)
+ sp(d) Sys(3=ir) eqir;2))
+ Sys(inv(b)=h;1=i;) eqi;3) ®)
+ sys(inv(by)=h;2=ii) eqi;; 1) ©)
+ (Sys(l=i)+ Sys3=i)+ Sys4=i)) edi;2) (10)
+ Syy(1=i;;2=10) eqil;1)” eqb;hs) * eqi;3) (11)
+ Sys(1=i)) eq(i%1)” eqh;inv (b)) ~ eqir;3) (12)
+ sys(l=i)) eqi%1)” eqii;4) (13)
+ Sys(inv (bs)=h; 1=is; 1=i2) eq(is; 2) * eqi?; 2) (14)

Pro of. See[79].

The speci cation of the external behavior of the CABP is aone-datumbu er,
which repeatedly reads a datum at port 1, and sendsout this samedatum at

port 2.

De nition 3.4.9 The LPE of the external behavior of the CABP is

B (d:D;bBool) =

3.4.3 Verication

P
wop 11(d)B(%F) b+ s(d) B(dT) b

using cones and foci

We apply our version of the conesand foci method to verify the CABP. Let

abbreviate D Bit
Furthermore, let

Nat Nat D Bit Nat D Bit Nat Bit Nat.
denote (ds; bs;is;i2;dr; by ;ir; de; b ik bi). We list six

invariants for the CABP, which are taken from [79].

40 Chapter 3 Conesand Foci: A Mechanical Proof Framework
De nition 3.4.10
F1() eqis; 1) _eqis; 2)
12() eqi%;1)_eqi?;2)
13() e(ik;1) _eqik;2)_e(ik;3)_e(ik;4)
() eqir;1) _eqir;2)_eqir;3)
I's() eqi;;1) _eqi;2) _edir;3)_edir;4)
le() (eq(is;1)) edbs;inv (b)) "~ eqbs;br) ~ eq(ds; dk)
A eqds;dr) N eqid 1) N eqir; 1))
N (eqbs; b)) eq(ds; dk))
~(eqir;2)_eqir;3)) edds;di) " eqbs;b) ™ eqlbs; b))
N (eqlbs;inv(ly))) eqds;dr) ™ eq(bs; b))
N (eqlbs;b)) edbs;inv (b))
N (eqids2)) eqbs;h)):
I 1 | 5 describe the range of the data parametersis, i2, ik, ir, and i, re-

spectively. | ¢ expresseghat ead componert in Figure 3.1 either has received
information about the datum being transmitted which it must forward, or did
not yet receiwe this information.

Lemma 3.4.11 I, 12,13, 14,15 andlg areinvariants of Sys.

Pro of. We needto show that the invariants are presered by ead of the

summands (1)

(14) in the speci cation of Sys. Invariants | 1 |5 are trivial

to prove. To prove |l g, we divide | g into its six parts:

le1()

le2()
le3()
lea()
les()
les()

(eqis; 1)) eqbs;inv (b)) * eqlbs;br) * eq(ds; dk)
N eq(ds;d) N eqid; 1) eqir; 1))
eqbs; b)) edds;dy)
eqir;2)_eqir;3)) eqds;dr)” eqhs;br) ™ eqls;bx)
eqbs;inv(b))) eqds;dr) ™ eqlbs;b)
eqbs;h)) eqbs;inv (b))
eqi2;2)) eqbs;h):

We consider only seven summandsin the speci cation of Sys; the other
summands trivially presene |¢. For the sake of preseration, we represen
eqby;inv (b)) as: eqby;), whereb, and b, range over the sort Bit.

1. Summand (1): 1" eqis; 1)) |e(d=d; 2=is).

| g1(d=d;; 2=is) is straightforward. By eq(is;1) and | 41, we have e((i;; 1),
ceqbs;b), and eqbs;br). By :eqbs;b), |e2(d=ds;2=is). By edir;1),
I 63(d=0k; 2=is). eq(bs; by) implies | 4(d=0k; 2=is). |65, | 66(d=0ak; 2=is) are

trivial.

2. Summand (2): 1" e(is;2) " e(ik;1)) |e(ds=0k;bs=h; 2=ik).
e((is; 2) implies | 1(ds=0k ; bs=hy; 2=ik), | 62(ds=0k; bs=kx; 2=iy) is straight-
forward. |43(ds=ck; bs=h; 2=ix) and | g4(ds=0k; bs=hx; 2=ix) follows imme-
diately from |43 and | g4, respectively. 145, |e6(ds=0k; bs=h;2=ix) are

trivial.

3.4 Application to the CABP 41

3. Summand(4): 16" eqi;;1)" eqlr; b)) eqik;3)) |e(dk=d;2=i;; 1=ik).
Assuminge((is; 1), by | 61, it followsthat : eq(hs; b¢) and eqlbs; by). Hence,
s eqb;h). This cortradicts the condition eqlb ;b). : eqis; 1) implies
I g1(dk=0;2=i;; 1=ik). les implies eqbs;b) _ eqbs;b), which together
with the condition eqb ;by) vields eqbs; b) » eqbs; b). Sole, implies
eq(ds;dk). Hence, | g3(dk=d ; 2=i,; 1=ix). By eqhbs; k), it follows that
| 6a(di =0 ; 2=i; 1=ik). 62, | 65, | 66(d =0 ; 2=i,; 1=ix) are trivial.

4. Summand (8): le” e(ir;3)) le(inv(b)=hk;1=i).
Assuming e((is; 1), by 11, we have e(i; 1), which contradicts the con-
dition e(ir;3). Solgi(inv(b)=h;1=i;). I g3(inv(kx)=hk; 1=i;) is straight-
forward. By e(ir;3) and | g3, we have e(ds; d;) and eq(bs;). Hence,
l ga(inv (Ix)=h; 1=i;). By eqi,;3) and | g3, we have eq(bs;), sol g5 im-
plies : eqbs;h). Hence,les(inv (I)=h;1=i;). 1s2, I ss(inv(br)=h;1=i,)
are trivial.

5. Summand (9): 16" eqi;;1)) Ile(inv(ly)=h;2=i),

| g5(inv (Ix)=h;2=i)) is straightforward. If ec(ig;Z), it follows | g that

eqbs;h), so by lgs we have : eqh;ly). Hence, | gs(inv (b)=h;2=i).
le1 lea(inv(ly)=h;2=i)) are trivial.

6. Summand (11): 16" eqi%; 1)~ eqb;bs) » eqir;3)) e(1=ij;2=i).
By eqh;bs) and | 5, we have : eq(bs;bx). Soby le1, : e(is;1). Hence,
I 61(1=ij;2=19). eqb;bs) implies | gs(1=ij;2=i9). lgx |65(1=ij;2=i0) are
trivial.

7. Summand (14): 16~ eqlis;2) " eqi%;2)) 16(inv (bs)=ky; 1=is; 1=i2).
To prove | g1 (inv (bs)=h; 1=is; 1=i2), we need to show that eq(bs;by) *
ceqb;bs) N eqds;dk) A eq(ds;dr) A eqir;1). As eqil;2), by Ig we
have eqbs;h), so by lg, we have : eqbs;). By legg, it follows that
eq(ds; dr) N eqbs;b). As eqbs;bc), by le2, eqds;dk). By les and |4,
eqbs;br) implies eq(ir;1). Hence, | g1(inv (bs)=hy; 1=is; 1=i0). e
| 66 (inv (bs)=hy; 1=is; 1=iQ) are trivial.

We de ne the focuscondition (seeDe nition 3.2.1)for Sysasthe disjunction

of the conditions of summandsin the LPE in De nition 3.4.8that deal with an
external action; thesesummandsare (1) and (7). (Note that this di ers from the
prescribed focuscondition in [79], which would be the negation of the disjunction
of conditions of the summandsthat deal with a)

De nition 3.4.12 The focus condition for Sysis

FC()=eqis;1)_eqir;?2):

42 Chapter 3 Conesand Foci: A Mechanical Proof Framework

We proceedto prove that ead state satisfying the invariants 1; 14 can
reach a focus point (seeDe nition 3.2.1) by a sequenceof -transitions.

mma 3.4.13 (Reac habilit y of focus points) For eath : together with
gzl Ih(), thereis a ™ sud that FC(’\) and ! I "in Sys

Pro of. The caseFC() istrivial. Let: FC(); in viewof | 1 and | 4, this implies
e(is;2)" (eqir;1)_eqir;3)). In casee(is;2)" e(i;3), by summand (8) we
canread a state with e((is; 2)" e((i,;1). From a state with e(is; 2)" e((i;; 1),
by I3 and summands(2), (3) and (6), we can reach a state where eq{is;2)
eqir;1) " eqix;3). We distinguish two cases.

1. eqlby; bo).

By summand (4) we can reach a focus point.

2. eqby;inv (b)).

If i2 = 2, then by summand (14) we can reach a focus point. Soby I,
we can assumethat i? = 1. By summands(5), (2) and (3), we can reac
a state where eq(is; 2) * eq(i; 1)~ eqir; 1)~ eqix; 3) * eqly;inv (b)) »
eqb¢;bs). By |Is and summands(10), (9) and (13) we can reach a state
whereeq(is; 2)" ed(id; 1)~ ed(ir; 1)" eqix; 3)" eq(by; inv (b)) ~ eq(b; bs)
eqi;3). If eqh;hs), then by summands(11) and (14) we canreach a focus
point. Otherwise, eqly;inv (kx)). Since eqbx;bs) and eqb ;inv (b)), we
have eqh;b). By summand (12), we canreach a state where e((is; 2) *
edid; 1)~ eqlir; 1)~ ed(in; 3) " edly;inv (b)) ~ eqlh; bs) * eqir; 1)
eqhb;inv(bs)) » eqb;k). Then by summand (9) we can reach a state
where eqb; bs), sinceh is replacedby inv (b). Then by summands(10),
(11) and (14), we can reach a focus point.

Our completely formal proof in PVS has many more steps. The main steps of
the proof using the rulesin De nition 3.2.7 can be found in Section 3.4.4.

We de ne the state mapping : ! D Bool (seeDe nition 3.2.2) by
()= hds;edis; 1) _eqi;;3) _: eqbs; by)i:

Intuitiv ely, maps those states to T in which R is awaiting a datum that
still hasto be received by S. This is the caseif either S is awaiting a datum
(eqis; 1)), or R has sert out a datum that was not yet acknowledgedto S
(eq(ir;3)_: eqbs;br)). Note that isindependert of i2;d,;dy; be;ik;b;i; we
write (ds; bs;is;brsir).

Theorem 3.4.14 For all d:D and by; b, :Bit ,

Sys(d; bp; 1;1;d; bp; 1;d; by ; 15 b3 1) $, B(d; T):

3.4 Application to the CABP 43

Pro of. It is easyto ched that 28_ I ,(d;bo; 1;1;d;by; 1;d;by; 15 by 1).
We obtain the following matching criteria (seeDe nition 3.2.3). For class
I, we only needto chedk the summands (4), (8) and (14), as the other nine
summandsthat involve an initial action leave the values of the parametersin
(ds; bs;is; by ;ir) unchanged.

1 eqir; D)% eqb ;)M eqix;3)) (ds;bsjis;br;iv) = (ds;bs;is;br;2=ir)
2. eqir;3)) (ds;bsiisibrsiv) = (ds;bs;is;inv (b)=h;1=i;)
3. eqis;2)Neqi2)) (ds;bsiis;by;iy) = (ds;inv(bs)=hy; 1=is; by ;ir)

The matching criteria for the other four classesare produced by summands(1)
and (7). For classll we get:

1 edis;1)) edis;1)_edir;3) _: eqlhs;hb)
2. eqir;2)) :(eqis;1) _eqir;3)_:eqbs;b))
For classlll we get:
1. (eqlis; 1) _edir;2)) "~ (edis; 1) _edir;3) _:eqhbs;hr))) edis;1)
2. (eq(is;1) _edir;2)) " : (ed(is; 1) _edir;3) _:edbs;hy))) edir;2)
For classIV we get:
1. 8d:D (eqis;1)) d=d)
2. eqir;2)) dr =ds
Finally, for classV we get:
1. 8d:D (eqis; 1)) (d=d;; bs; 2=is; by ;i) = Md; Fi)
2. e(qir;2)) (ds;bs;is; br;3=ir) = Hdg; Ti
We proceedto prove the matching criteria.
I.1 Let e((ir;1). Then

(ds; bs;is; by sir) hds; eqis; 1) _ eq(1;3) _: eqbs; by)i

hds; eqis; 1) _ eq2;3) _: eqbs; by)i
(ds; bs;is; by 5 2=ir):

I.2 Let e(i;;3). Then by I ¢, eqbs;). Hence,

(ds; bs;is;brsir) hds; eqis; 1) _ eq3;3) _ : eqbs; by)i
hds; Ti

hds; eq(is; 1) _ eq(ir; 3) _ : eq(bs;inv (br))i
(ds; bs;is;inv (b)=k ; 1=i;):

44 Chapter 3 Conesand Foci: A Mechanical Proof Framework

1.3 Let eq(i%;2). |6, eq(bs; b) together with | ¢ yield eq(bs;inv (k). Hence,

(ds; bs;is;brsiy) = hds;eqis;1) _eqir;3) _: eqhbs;by)i
= hds;Ti
= hds;eql;1)_eqir;3)_: eqinv(bs);b)i
= (ds; inv (bs)=hy; 1=is; by ;i):
1.1 Trivial.

1.2 Let eqi;;2). Then clearly : eqi,; 3), and by | s, eq(bs; bx). Furthermore,
accordingto lg, e(is; 1)) eqir;1), soe(i,;?2) alsoimplies : e(is; 1).

1.1 If : eqir;2), then eqis; 1) _eqir;2) implies e((is; 1). If eqir;2), then by
I, eqbs; b)), sothat eqis; 1) _eqir;3) _: eqbs;b) implies e(is; 1).

I1.2 If : e(is; 1), then e(is;1) _ e(i;2) implies e(ir;2). If e(is;1), then
s (eqlis; 1) _eqir;3) _: eqbs; b)) is false,sothat it implies eqi; 2).

IV.1 Trivial.
IV.2 Let e(i;;2). Then by I g, eqd;; ds).
V.1 Let e(is;1). Then by I g, eq(i;;1) and eqbs; by). Sofor any d:D,

(d=dk; bs; 2=is;br;ir) = hdieq2;1)_eql;3)_: eqlbs;by)i
= hd;Fi:
V.2
(ds; bs;is; by 5 3=ir) hds; eq(is; 1) _ eq3;3) _ : eqlbs;)i

hds; Ti:
Note that (d;bp;1;p;1) = Hd;Ti. Soby Theorem 3.2.4and Lemma 3.4.13,
Sys(d;bp; 1;1;d; bo; 1;d;by; L by 1) $ 4 B(d; T):

3.4.4 lllustration of the pro of framew ork

Let us illustrate the mechanical proof framework set up in Section 3.3 on the
veri cation of the CABP asit was described in Section 3.4.3. The purpose of
this sectionis to shov how the medanical framework can be instantiated with
a concrete protocol. A secondgoal is to illustrate in more detail how we can
usethe proof rules (seeLemma 3.2.7) for reachability, to formally provein PVS
that focus points are always reachable.

To apply the generictheory, we usethe PVS medanism of theory instantia-
tion. For instance, the theory LPE was parameterizedby setsof actions, states,
et al. This theory will be imported, using the set of actions, states et al. from
the linearized version of CABP, which we have to de ne rst. To this end we
start a new theory, parameterized by an arbitrary type of data elemens (D,
with special elemen do:D).

3.4 Application to the CABP 45

Dening the LPEs. The starting point will be the linearized version of
the CABP, represerted by Sys in Lemma 3.4.8. The type cabp_state is de-
ned as a record of all state parameters. Note that we use the prede ned
PVS-typesnat and bool (bool is also usedto represent sort Bit). The type
cabp_act is de ned as an abstract data type. The syntax below introduces
constructors (rl1,s2:[D->cabp _act] and tau:cabp _act), recognizerpredicates
(r1?,s2?,tau?:[cabp _act->bool]), and another destructors (d:[(r1?)->D]
and d:[(r2?)->D]). Subsequetly we import the theory LPE with the corre-
sponding parameters. The LPE for the implemertation of the CABP contains
18 summands(note that summands(3) and (10) in Lemma 3.4.8 ead represert
three summands). Note that the only local parameterin this LPE that is bound
by hastypeD

CABP[D:TYPE+,d0:D]: THEORBEGIN
cabp_state:TYPE= [#ds:D,bs:bool,is:nat,ils:n at,dr :D,br:boo I,
ir:nat,dk:D,bk:bool,ik:nat,b I:boo Lil :nat #]
cabp_act:DATATYPEBEGIN
r1(d:D):r1? s2(d:D):s2? tau:itau?
ENDcabp_act
IMPORTING.PE[cabp.act,cabp _state,D,18,tau]

The next step is to de ne the implementation of the CABP as an LPE
in PVS. It consistsof an initial vector, and a list of summands, indexed by
LAMBDA. The LAMBDAS,d) indicates the dependency of each summand on
the state and the local variables. Note that givenstate S, S'x denotesthe value
of parameter x in S. The notation S WITH[x := v] denotesthe samestate as
S except the value of eld x which is setto v. We only display the summands
corresponding to summand (1) and (14) of Sys.

i:-VAR below(18) S:VAR cabp_state d:VAR D
cabp: LPE=(#
init= (#ds:=d0,bs:=FALSE,is:=1,ils:= 1,dr :=d0,
br:=FALSE,ir:=1,dk:=d0,bk:=TRU E,ik :=1, bl:=T RUE{l:=1 #),
sums:=LAMBDA LAMBDAS,d):COND
i=0->(#act:=r1(d),guard:=S’is= 1,
next:=S WITH[ds:=d,is:=2]#),

i=17->(#act:=tau,guard:=S"is=2 ANDS"i1s=2,
next:=S WITH[bs:=NOT S’bs,is:=1,ils:=1]#)
ENDCOND#)

In a similar way, the desired external behavior of the CABP is presenried as
a one-datum bu er. The represenation of the LPE B from De nition 3.4.9in
PVS is:

46 Chapter 3 Conesand Foci: A Mechanical Proof Framework

buf _state: TYPE=[#d:D,h:bool#]
B:VARbuf _state d1:VAR D j:\VAR below(2)
IMPORTINGPE[cabp.act,buf _state,D,2,tau]
buffer: LPE=
(#init:=(#d:=d0,b:=TRUE#),
sums:=LAMBDA LAMBDAB,d1):COND
j=0->(#act:=r1(d1),guard:=B" b,next:=(#d:=d1,b:=FALSE#)#),
j=1->(#act:=s2(B'd),guard:=N OT B’b,next:=B
WITH[b:=TRUE]#)
ENDCOND#)

Invarian ts, state mapping, focus points. The next stepis to de ne the
ingredients for the conesand foci method. We needto de ne invariants, a state
mapping and focuspoints. In PVS theseare all functions that take state vectors
asinput. We only show a snapshot:

IMPORTINGnvariant[cabp _act,cabp _state,D,18]
11(S):bool= S’is=1 ORS’is=2

164(S):bool= (S’bs = NOTS'br) IMPLIES
S'ds=S’dr ANDS bs=S"bk

16(S):bool=161(S) AND... ANDI66(S)
IMPORTINGCONESFOMETHOD|cabstate,buf _state,D,cabp _act,tau,18,2]

FC(S):bool= S’is=1 ORS'ir=2

h(S):buf _state=(#d:=S’ds,b:=S"is=1 ORS’ir=3 ORNOTS bs=S"br#)
cabp_inv:LEMMA invariant(cabp)(l1 ANDI2 ANDI3 ANDI4 ANDI5 ANDI6)
matching:LEMMAReachable(cabp)(S) IMPLIES MC(cabp,buffer,k,h,FC)(S)

The proof of the readability criterion will be discussedin the next para-
graph. The correctnessof the invariants and the matching criteria were proved
already (seeSection3.4). Theseproofscould be formalized in PVS in a straight-
forward fashion. The proof script follows a xed pattern: rst we unfold the
de nitions of LPE and invariants or matching criteria. Then we use rewriting
to generatea nite conjunction from the quarti cation FORALL:below(n)
Subsequetly (using the PVS tactic THEN}, we apply the powerful PVS tactic
(GRIND) to the subgoals. Sometimesa few subgoalsremain, which are then
proved manually.

Reachabilit y of focus points. We formally prove Lemma 3.4.13, which
states that ead reachable state of the CABP can reach a focus point by a
sequenceof -transitions using the rules in Lemma 3.2.7. This corresponds
to the theorem CABERCin the PVS part below. Using the general theorems
CONESFO@hd REACKRIT, we concludefrom the speci ¢ theoremscabp_inv ,
matching and CABBERCthat CABRs indeed CORREQ@ir.t. the one-datumbu er
speci cation.

3.4 Application to the CABP 47

IMPORTIN@®RECONDITION][calgzt,cabp _state,D,18]

CABERC:LEMMA
Reach(step(cabp,tau))(I1 ANDI2 ANDI3 ANDI4 ANDI5,FC)
CABECORRECT:
THEOREDMfbisimilar(Ipe2lts(cabp),lpe2 lts(b uffe r))
ENDCABP

We now explain the structure of the proof of CABERC This proof is basedon
the proof rulesfor readhability, intro ducedin Sections3.2.2and 3.3.4. It requires
some manual work, viz. the identi cation of the intermediate predicates, and
characterizing the reachable set of states after a number of steps. Each step
corresponds to a separatelemma in PVS. The atomic stepsare proved by the
precondition rule (semi-automatically). An exampleof such alemmain PVS is:

Q2(S):bool = S’ir=1 ANDS’is=2 ANDS’ik=2 ANDS’ils=1
ANDS’bk = S'bs

Q3(S):bool = S’ir=1 ANDS’is=2 ANDS’ik=3 ANDS’ils=1
ANDS’bk = S'bs

Q2to _Q3: LEMMAReach(Tau)(Q2,Q3)

Thesebasicstepsare combined by using mainly the transitivit y rule and the dis-
junction rule. We now provide the completelist of the intermediate predicates,
together with the usedproof rules. We do not display the useof implication and
invariant rules, but of coursethe PVS proofs cortain all details. The fragmert
before corresponds to the third step of item (5) below, where summand (3) is
usedto increaseiy.

1 fi,=1Mig=2"ixk=4g fi,=1"ig=2"ix=1g
fip = 1Mig=2"iy =29 fi,=1"ig=2"ix=3g
Using the precondition rule, on summands(6), (2) and (3), respectively.
2.fl g™Nip=17ig=29 fi,=1"is=2"ix=3g
Using the disjunction rule with iy = 1_ix =2 iy = 3_ix = 4, and the
transitivit y rule on the results of step 1.
3. fiy =17is=2"ix=3"h =hg FC
Using the precondition rule on summand (4).
4 fi, =1Mis=2"iy=32i%=29 FC
Using the precondition rule on summand (14).

37 i0= 17 by 6 hg

5f|r: 1/\'3: 2A|k

fip = 17 ig= 27 i = 17 i0= 1g
fip = 17 ig= 27 i = 27 0= 17 by = by
fir = 17ig= 27 i = 32 i0= 17 b = hg=: Q

Using the precondition rule on summands(5), (2) and (3).

48 Chapter 3 Conesand Foci: A Mechanical Proof Framework

6. fQ =29 fQ"i = 1g;
fQrij=4g fQ"i = 1g;
fQrii=3"bh6hbg fQ"ii=1g fQ"ii=2"Nh6Nhg

fQMi1=3"h 6 hg
Using the precondition rule on summands(10), (13), (12), (9) and (10),
respectively.

7.fQMN (1214249 _(1=3"h6h)g fQNii=3"h6hg
Using the disjunction rule and the transitivit y rule on the results of step
6.

8.fQrNii=3"bh=Dhg fi;=1"is=2"ix=32i2=29 FC.
Using the precondition rule on summand (11), and then the transitivit y
rule with step 4.

9.fQ"lsg FC.
By Is, i1 2 f1;2;3;49. So we can distinguish the casesi; 2 f1;2;4g,
ii=3"bh 6 bsandij = 3" b = bs. In all but the last case,we arrive
at a situation whereb, = bs* h 6 b (by step 7). Note that this implies
bk = b _ b = bs. Sowe can use casedistinction again, and reach the
focus condition via step 3 or step 8.

10. fi, = 1Mig=2"ik =3 1,7 1s5g FC.
From |, and the disjunction rule we can distinguish the casesb. = by,
i=2andi?= 1" b 6 b. We solve them by the results of step 3, step
4, and transitivit y of 5 and 9, respectively.

11. fi, =37ig=29 fi,=1"is=2g.
Using the precondition rule on summand (8).
12. 11718138 14”15 FC.
Using the invariants | ; and | 4, we can distinguish the following cases:
is=1orig= 2”1, = 2 (both reach FC in zero steps);
is= 2" i, = 3 (leadsto the next caseby step 11);
is=2"i, = 1. This leadsto is = 2" iy = 1" iy = 3 by step2 and
then to FC by step 10.

This nishes the complete medanical veri cation of the CABP in PVS using
the conesand foci method. The les of the veri cation of the CABP in PVS
can be found at http://www.cwi.nl /~vdpol/ conesfoci /.

3.5 Conclusions

In this chapter, we have developed a medanical framework for protocol veri ca-
tion, basedon the conesand foci method. We summarizeour main contribution
as follows:

3.5 Conclusions 49

We generalizedthe original conesand foci method [79]. Comparedto the
original one, our method is more generally applicable, in the sensethat
it can deal with -loops without requiring a cumbersometreatment to
eliminate them.

We presented a set of rules to support the reachability analysis of focus
points. They have beenprovedto be quite powerful in two casestudies.

We formalized the complete conesand foci method in PVS.

The feasibility of this medanical framework has been illustrated by the
veri cation of the CABP. We are con dent that the framework forms a solid
basis for medhanical protocol veri cation. For instance, the same framework
has beenapplied to the veri cation of a sliding window protocolin CRL (see
Chapter 4), which we consider a true milestone in veri cation e orts using
processalgebra.

The foci and conesmethod provides a systematic approach to protocol ver-
i cation. It allows for fully rigorous correctnessproofsin a generalsetting with
possibly in nite state spaces(i.e. with arbitrary data, arbitrary window size,
et al.). The method requiresintelligent manual steps, such as the invertion of
invariants, a state mapping, and the focus criterion. However, the method is
such that after these creative parts a number of veri cation conditions can be
generatedand proved (semi-)automatically. So the strength of the mechanical
framework is that one can focus on the creative steps, and ched the tedious
parts by a theorem prover. Yet, a complete machine-cheded proof is obtained,
becausethe meta-theory has also been proof-chedked in a genericmanner. We
experiencedthat many proofsand proof scripts can be reusedafter small changes
in the protocol, or after a changein the invariants. Actually, in somecasesthe
PVS theorem prover assistedin nding the correct invariants.

50

Chapter 3 Conesand Foci: A Mechanical Proof Framework

Chapter 4

Verifying a Sliding Windo w Proto col in
CRL

4.1 Intro duction

Sliding window protocols[30] (SWPs) ensuresuccessfutransmissionof messages
from a senderto a receiver through a medium, in which messageanay get
lost. Their main characteristic is that the senderdoesnot wait for an incoming
adknowledgmert before sending next messagesfor optimal use of bandwidth.
This is the reasonwhy many data communication systemsinclude the SWP, in
one of its many variations.

In SWPs, both the senderand the receiver maintain a bu er. In practice
the bu er at the receiwer is often much smaller than at the sender,but here we
make the simplifying assumptionthat both bu ers cancortain up to n messages
(n > 0). By providing the messageswith sequencenumbers, reliable in-order
delivery without duplications is guaranteed. The sequencewumberscanbetaken
modulo 2n (and not less,see[165 for a nice argumen). The messagest the
senderare numberedfrom i to i + n (modulo 2n); this is called a window. When
an acknowledgmert reachesthe sender,indicating that k messagesave arrived
correctly, the window slides forward, so that the sending bu er can contain
messagewith sequencenumbersi + k to i + k+ n (modulo 2n). The window
of the receiver slidesforward whenthe rst elemert in this window is passedon
to the environment.

Within the processalgebraic community, SWPs have attracted much at-
tention, becausetheir preciseformal veri cation turned out to be surprisingly
dicult. We provide a comparison with veri cations of SWPs from the liter-
ature in Section 4.2, and restrict ourselves here to the context in which this
chapter waswritten. After the advert of processalgebrain the early eighties of
last certury, it was obsened that simple protocols, such as the alternating bit
protocol, could readily be veried. In an attempt to show that more di cult
protocols could also be dealt with, SWPs were considered. Middeldorp [125
and Brunekreef [25] gave speci cations in ACP [16] and PSF [123, respectively.
Vaandrager[171], Groerveld [68], van Wamel [17€ and Bezemand Groote [19]

51

52 Chapter 4 Verifying a Sliding Window Protocol in CRL

manually veri ed one-bit SWPs, in which the size of the sendingand receiving
window is one.

Starting in 1990, we attempted to prove the most complex SWP from [165
(not taking into accourt additional features such as duplex messagepassing
and piggybadking) correct using CRL, which is a suitable processalgebraic
formalism for such purposes. This turned out to be unexpectedly hard, and
has led to the developmert of new proof methods for protocol veri cation. We
therefore considerthe current chapter as a true milestone in processalgebraic
veri cation.

Our rst obsenation was that the external behavior of the protocol, as
givenin [165, was unclear. We adapted the SWP suc that it nicely behaves
as a queueof capacity 2n. The secondobsenation was that the SWP of [165
cortained a deadlock [69, Stelling 7], which could only occur after at least n
messagesvere transmitted. This error was communicated to Tanerbaum, and
has beenrepaired in more recert editions of [165. Another bug in the CRL
speci cation of the SWP was detected by meansof a model cheding analysis.
A rst attempt to prove the resulting SWP correct led to the veri cation of a
bakery protocol [71], and to the developmert of the conesand foci proof method
[79, 54]. This method plays an essetial role in the proof in the current chapter,
and has beenusedto prove many other protocols and distributed algorithms
correct. But the correctnessproof required an additional idea, already put
forward by Schoone [154)], to rst perform the proof with unbounded sequence
numbers, and to separately eliminate modulo arithmetic.

We present a speci cation in CRL of a SWP with buer size2n and win-
dow sizen, for arbitrary n. The medium betweenthe senderand the receiver
is modeled as a lossy queue of unbounded capacity. We manually prove that
the external behavior of this protocol is branching bisimilar [64] to a FIFO
gueue of capacity 2n. This proof is ertirely basedon the axiomatic theory
underlying CRL and the axioms characterizing the data types. It implies
both safety and livenessof the protocol (the latter under the assumption of
fairness). First, we linearize the speci cation, meaning that we get rid of par-
allel operators. Moreover, communication actions are stripp ed from their data
parameters. Then we eliminate modulo arithmetic, using the proof principle
CL-RSP [20Q]. Finally, we apply the conesand foci technique, to prove that
the linear speci cation without modulo arithmetic is branching bisimilar to a
FIFO queueof capacity 2n. All lemmasfor the data types, all invariants and
all correctnessproofs have beencheded using PVS. The PVS les are available
via http://www.cwi.n |/ ~pangjun /s wp/.

A conciseoverview of other veri cations of SWPs is preseried in Section
4.2. Many of theseveri cations deal with either unbounded sequencenumbers,
in which casethe intricacies of modulo arithmetic disappear, or a xed nite
window size. The papers that do treat arbitrary nite window sizesin most
casesrestrict to safety properties.

4.2 Related Work 53

Outline of the chapter. This chapter is set up asfollows. Section 4.2 gives
an overview of related work on verifying SWPs. Section 4.3 introduces the
proof techniquesof CRL usedin this chapter. In Section 4.4, the data types
neededfor specifying the SWP and its external behavior are preseried. Section
4.5 featuresthe CRL speci cations of the SWP and its external behavior. In
Section 4.6, three consecutive transformations are applied to the speci cation of
the SWP, to linearize the speci cation, eliminate argumerts of communication
actions, and get rid of modulo arithmetic. In Section4.7, properties of the data
typesand invariants of the transformed speci cation are proved. In Section4.8,
it is provedthat the three transformations presere branching bisimulation, and
that the transformed speci cation behaveslike a FIF O queue. We concludethis
chapter in Section 4.9.

42 Related Work

Sliding window protocols have attracted considerableinterest from the formal
veri cation community. In this section we presert an overview. Many of these
veri cations deal with unbounded sequencenumbers, in which case modulo
arithmetic is avoided, or with a xed nite window size. The papers that do
treat arbitrary nite window sizesmostly restrict to safety properties.

Innite windo w size Stenning [163 studied a SWP with unbounded se-
guence numbers and an in nite window size, in which messagesan be lost,
duplicated or reordered. A timeout mecanism is usedto trigger retransmis-
sion. Stenning gave informal manual proofs of somesafety properties. Knuth
[103 examined more general principles behind Stenning's protocol, and manu-
ally veri ed somesafety properties. Hailpern [82] usedtemporal logic to formu-
late safety and livenessproperties for Stenning's protocol, and establishedtheir
validity by informal reasoning. Jonsson[97] also veri ed both safety and live-
nessproperties of the protocol, using temporal logic and a manual compositional
veri cation technique.

Fixed nite windo w size Richier et al. [146 specied a SWP in a process
algebrabasedlanguageEstelle/R, and veri ed safety properties for window size
up to eight using the model chedker Xesar. Madelaineand Vergamini [119 spec-
ied a SWP in LOTOS, with the help of the simulation environment Lite, and
proved somesafely properties for window size six. Holzmann [91, 92] usedthe
Spin model cheder to verify both safety and livenessproperties of a SWP with

sequencenumbers up to v e. Kaivola [99] veried safetly and livenessproper-
ties using model cheding for a SWP with window sizeup to sewen. Godefroid
and Long [65] specied a full duplex SWP in a guarded command language,
and veri ed the protocol for window size two using a model cheder basedon
Queue BDDs. Stahl et al. [162 used a combination of abstraction, data in-

dependence,compositional reasoningand model chedking to verify safety and
livenessproperties for a SWP with window size up to sixteen. The protocol

54 Chapter 4 Verifying a Sliding Window Protocol in CRL

wasspeci ed in Promela, the input languagefor the Spin model chedker. Smith

and Klarlund [16(specied a SWP in the high-level languagelOA, and used
the theorem prover MONA to verify a safety property for unbounded sequence
numberswith window sizeup to 256. Latvala [117] modeled a SWP using Col-

ored Petri nets. A livenesgroperty wasmodel chedked with fairnessconstraints

for window sizeup to elewen.

Arbitrary nite windo w size Cardell-Oliver [29] specied a SWP using
higher order logic, and manually proved and medanically cheded safety prop-
erties using HOL. (Van de Snepsbteut [16]] noted that what Cardell-Oliver
claims to be a livenessproperty is in fact a safety property.) Scoone [154
manually proved safety properties for sewveral SWPs using assertional veri ca-
tion. Van de Snepsbeut [16]] gave a correctnessproof of a SWP as a sequence
of correctnesspreservingtransformations of a sequetial program. Paliwoda and
Sanders[132 speci ed a reduced version of what they call a SWP (but which
is in fact very similar to the bakery protocol from [71]) in the processalgebra
CSP, and veri ed a safety property modulo trace semartics. Reckl and Esparza
[148 veri ed the correctnessof this bakery protocol modulo weak bisimulation
using Isabelle/HOL, by explicitly cheding a bisimulation relation. Jonssonand
Nilsson [98] used an automated reachability analysisto verify safety properties
for a SWP with arbitrary sendingwindow size and receiving window size one.
Rusu[152 usedthe theorem prover PVS to verify both safety and livenessprop-
erties for a SWP with unbounded sequencenumbers. Chkliaev et al. [33] used
a timed state machine in PVS to specify a SWP with a timeout mecanism and
proved somesafety properties with the medcanical support of PVS. Correctness
is basedon the timeout mechanism, which allows messagesn the mediumsto
be reordered.

4.3 Pro of Techniques

The goal of this chapter is to prove that the initial state of the forthcoming

CRL speci cation of a SWP is branching bisimilar to a FIFO queue. In the
proof of this fact, we will usethree proof principles from the literature to derive
that two CRL speci cations are branching (or even strongly) bisimilar: sum
elimination, CL-RSP, and conesand foci.

Sum elimination [71] statesthat a summation over a data type from which
only one elemen can be selectedcan be removed. To be more precise,

p(d)/ d=erb. $ p@e)/b.

d:D

CL-RSP [20] statesthat the solutions of a linear CRL speci cation that
doesnot contain any innite sequenceare all strongly bisimilar. This
proof principle basically extends RSP [18] to a setting with data. The
reader is referred to [20] for more details regarding CL-RSP.

4.4 Data Types 55

The cones and foci method from [54, 79] rephrasesthe question whether
two linear CRL specications | (S;) and S; are branching bisimilar,
where S, does not contain actions from someset | of internal actions,
in terms of data equalities. The reader is referred to Chapter 3 for the
technical details of the conesand foci technique.

4.4 Data Types

In this section, the data typesusedin the CRL speci cation of the SWP are
preseried: booleans, natural numbers supplied with modulo arithmetic, and
bu ers. Furthermore, basic properties are given for the operations de ned on
thesedata types.

441 Booleans

We introduce the data type Bool of booleans.

T;F:! Bool

~N;_:Bool Bool! Bool
: :Bool ! Bool

) ;, :Bool Bool! Bool

T and F denote true and false, respectively. The in x operations » and _
represen conjunction and disjunction, respectively. Finally, : denotesnegation.
The de ning equationsare:

bAT = b ' T = F

b"F = F ' F = T

b_T = T b) B = ©°_:b

b_F = b b, ® = (b) O ®) b

4.4.2 |If-then-else and equalit y

For eat data type D in this chapter we assumethe presenceof an operation
if :Bool D D! D
with asde ning equations

if (T;d;e)
if (F;d;e)

d
e

Furthermore, for eac data type D in this chapter one can easily de ne a map-
pingeq: D D! Bool suc that eq(d;e) holds if and only if d = e can be
derived. For notational corveniencewe take the liberty to write d = e instead

of eq(d;e).

56 Chapter 4 Verifying a Sliding Window Protocol in CRL

4.4.3 Natural numbers

We introduce the data type Nat of natural numbers.

0:!' Nat
S:Nat! Nat
+;°: :Nat Nat! Nat

:<; ;>:Nat Nat! Bool

0 denoteszero and S(n) the successomf n. The inx operations +, * and
represert addition, monus (also called proper subtraction) and multiplication,
respectively. Finally, the inx operations , <, and > are the less-than(-or-
equal) and greater-than(-or-equal) operations. Usually, the sign for multiplica-
tion is omitted, and : (i = j) is abbreviatedto i 6 j.

i+0 = 0 i = T

i+ S() = S@i+j) si) 0 = F

i 0 = S(i) SG) = i |

0 i = 0 0<s@) = T

S(i) “SG) = i i<0 = F

i 0 = 0 S(i)< S() = i<]

i S(j) = (i))+i i = (<
i > = (G i)

We take as binding cornvertion:

f=;6g>fg>f+;g >f ;< ;>g>fg >f; g>1f ;,9:

4.4.4 Mo dulo arithmetic

Sincethe sizeof the bu ers at the senderand the receiver in the sliding window
are of size2n, calculations modulo 2n play an important role. We intro ducethe
following notation for modulo calculations:

j:Nat Nat! Nat
div:Nat Nat! Nat

ijn denotesi modulo n, while i div n denotesi integerdivided by n. The modulo
operations are de ned by the following equations (for n > 0):

if (i< n:ii (i © n)jn)
if (i < n:0;S(i * n)divn))

ijn
idivn

445 Buers

The sender and the receiver in the SWP both maintain a buer containing
the sendingand the receiving window, respectively (outside thesewindows both
bu ers areempty). Let bethe setof data elemeris that canbe communicated
between senderand receiver. The bu ers are modeled as a list of pairs (d;i)

4.4 Data Types 57

with d: and i:Nat, represerning that position (or sequencenumber) i of the
bu er is occupiedby datum d. The data type Buf is speci ed asfollows, where
[] denotesthe empty bu er:

[:! Buf
inb : Nat Buf ! Buf

gin denotesbu er g with all sequencenumbers taken modulo n.

[in I

inb(d;i; Q)jn inb(d;ijn; din)
test(i; g) produces T if and only if position i in q is occupied, retrieve(i; q)
producesthe datum that residesat position i in buer q (if this position is
occupied),! and removdi; q) is obtained by emptying position i in bu er g.

F

i=] _test(i; q)

if (i=]; d;retrieve(i; q))

I

if (i=]; removdi; g); inb(d; ; removei; 0)))

test(i; [J)

test(i; inb(d;j; q))
retrieve(i; inb(d;j; 9))
removdi; [])
removei; inb(d;j; q)

releasqi; j; g) is obtained by emptying positionsi up to j in g. releasgn(i; j; q)
doesthe samemodulo n.

releasqi; j; Q) if (i J; greleasdS(i);]; removdi; g)))

releasgn (i; j; 0 if (ijn=]in; o releasgn (S(i); j; removi; 0)))
next-empty(i; g) producesthe rst empty position in g, counting upwards from
sequencenumber i onward. next-emptyjn (i; g) doesthe samemodulo n.

if (test(i; q); next-empty(S(i););i)
if (next-empty(ijn;gn) < n; next-empty(ijn; dn);
next-empty(0; gjn))

next-empty(i; q)
next-emptyj, (i; q)

Intuitiv ely, in-window(i; j; K) producesT if and only if j liesin the range from
i to k © 1, modulo n, wheren is greater than i, j and k.
in-window(i; j; k) = i j<k_k<i j_j<k<i

Finally, we de ne an operation on bu ers that is only neededin the derivation
of somedata equalities in Section4.7.1: max(q) producesthe greatestsequence
number that is occupiedin q.

0
if (i max(q);i; max(q))

max([])
max(inb(d; i; o))

INote that retrieve(i; []) is unde ned. One could chooseto equate it to a default value in

or to a fresh error elemernt in . However, the rst approach could cover up aws in the

CRL specication of the SWP, and the second approach would needlessly complicate the

data type . We prefer to work with a partially de ned version of retrieve, which is allowed

in CRL. All operations in CRL models, however, are total; partially specied operations
just lead to the existence of multiple models.

58 Chapter 4 Verifying a Sliding Window Protocol in CRL

446 Mediums

The medium in the SWP between the senderand the receiver is modeled as
a lossy channel of unbounded capacity with FIFO behavior. We model the
medium containing framesfrom the senderto the receiver by a data type MedK.
It represerts a list of pairs (d;i) with a datum d: and its sequencenumber
i:Nat. Let [denotean empty medium.

0 ;1 MedK
inm : Nat MedK! MedK

gin denotesmedium g with all sequencenumbers taken modulo n.

0% n Ia
inm(d;i; 9)jn inm(d;ijn; gin)

memter(d;i; g) producesT if and only if the pair (d;i) isin g. length(g) denotes
the length of g. return-dat(i; g) and return-seq(i; g) produce the datum and
the sequencenumber, respectively, that residesat position i in g (positions are
counted from 0). For convenience,we uselast-dat(g) and last-sey(g) to produce
the datum and the sequencenumber, respectively, that residesat the end of g.
deletd(i; g) is obtained by emptying position i in g. Similarly, delete-las{g) is
obtained by emptying the last position in g.

memter(d; i; []K) = F

memter(d;i; inm(e;j; g)) = (d=e”i=j)_memker(d;i; g)
length([]*) 0

length(inm(d;i; 9)) S(length(g))

return-dat(i; inm(d;j; g))
return-seq(i; inm(d;j; g))
last-dat(inm(d;i; g))
last-sey(inm(d; i; g))
deletgi; inm(d:j; g))
delete-lastinm(d;i; g))

if (i = 0;d;return-dat(i 1;Q))
if (i = 0;]; return-seq(i 1;))
if (length(g) = 0; d; last-dat(g))
if (length(g) = 0;i; last-dat(g))
if (i = 0;g;inm(d;j; deletgi 1;qQ)))
if (length(g) = 0;9;
inm(d;i; delete-las{g)))

The medium containing the sequenceaumbersfrom the receiver to the sender
by a data type MedL. Similarly, we have the following de ning equations.

0" MedL

inm : Nat MedL! MedL
0 = 0"
inm(i; jn = inm(ijn; g%n)

4.5 Sliding Window Proto col 59

memter(i; [°) = F

memter(i; inm(j; g)) = i=] _memker(d;i; g)
length((]") 0

length(inm (i; g9) S(length(g9)

if (i = 0;j; return-se(i 1;99)

if (length(g% = 0;i; last-sey(gY)

if (i = 0;¢%inm(j; deletgi 1;g%))

if (length(g% = 0; g% inm(j; delete-las{g?))

return-seg(i; inm(j; g9)
last-seg(inm (i; g9)
deletdi; inm(j; g%)
delete-lastinm(j; g9)

4.4.7 Lists

We introduce the data type of List of lists, which are usedin the speci cation
of the desired external behavior of the SWP: a FIFO queueof size2n. Let hi
denote the empty list.

hi:! List

inl : List ! List
length() denotesthe length of , top() producesthe datum that residesat

the top of , tail () is obtained by removing the top position in , append(d;)
adds datum d at the endof , and + Orepresers list concatenation.

length(hi) = 0

length(inl (d;)) = S(length())

top(inl (d;)) = d

tail (inl(d;)) =

append(d; hi) = inl(d;hi)

append(d;inl(e;)) = inl(e;append(d;))

hi++ =

inl(d;)+ © = inl(d; + 9
Furthermore, q[i:;j i is the list containing the elemers in bu er q at positionsii
up to but not including j .

qizji = if (i j; hijinl(retrieve(i; q); q[S(i)::j 1))

4.5 Sliding Windo w Proto col

In this section,a CRL speci cation of a SWP is presenied, together with its
desired external behavior.

45.1 Specication of a sliding windo w proto col

Figure 4.1 depictsthe SWP. A senderS storesdata elemerts that it receivesvia
channel A in abuer of size2n, in the order in which they are received. S can
senda datum, together with its sequencenumber in the bu er, to a receiver R
via a medium that behavesas lossy queue of unbounded capacity, represeried
by the medium K and the channelsB and C. Upon reception, R may store the

60 Chapter 4 Verifying a Sliding Window Protocol in CRL

datum in its bu er, whereits position in the bu er is dictated by the attached

sequencenumber. In order to avoid a possible overlap between the sequence
numbers of dierent data elemerts in the buers of S and R, no more than

one half of the bu ers of S and R may be occupied at any time; these halves
are called the sending and the receiving window, respectively. R can passon

a datum that residesat the rst position in its window via channel D; in that

casethe receiving window slidesforward by one position. Furthermore, R can
send the sequencenumber of the rst empty position in (or just outside) its

window as an acknowledgmert to S via a medium that behavesas lossy queue
of unbounded capacity, represerted by the medium L and the channelsE and

F. If S receivesthis acknowledgmen, its window slidesforward accordingly.

R —

T

Figure 4.1: Sliding window protocol

The senderS is modeled by the processS("; m; g), whereqis a bu er of size
2n, " the rst position in the sendingwindow, and m the rst empty position in
(or just outside) the sendingwindow. Data elemens can be selectedat random
for transmission from (the lled part of) the sendingwindow.

P o Ta(d) SC; S(M)jzninb(di m; @)
[in-window("; m; (" + n)jz2n) .

P wnatr Se(retrieve(k; g); k) S('; m; o)
/ test(k;q) .

P . N
enae TF(K) S(k; m; releasgan (' k; 0))

S(":Nat; m:Nat; g:Buf)

+

+

The receiver R is modeled by the processR ("% %), where ¢ is a bu er of
size2n and “°the rst position in the receiving window.

4.5 Sliding Window Proto col 61

P P
R(%Nat;g*Buf) = & kenat Fe(dik) (RC%inb(d;k; o9)
/ in-window(" % k; "%+ n)jzn) . R(%)

+ sp(retrieve("% g9) R(S(9jzn; remove 2 o)
! test("%) .

+ sg(next-emptyzn (% 0%)) RC% D

Finally, we specify the mediums K and L, which have unbounded capacity
and may lose frames between S and R, and vice versa. We cannot allow re-
ordering of message#n the medium, asthis would violate the correctnessof the
protocol. The medium K (seeFigure 4.2) is modeled by the processK (g; p),
where g:MedK is a bu er with unbounded capacity, and p:Nat a pointer indi-
cating that the framesin between position 0 and p (excluding p) can still be
lost, and the framesbeyond p cannot be lost any more.

g with length(g) = n+ 1

(eosio) | (ersi1) (em;im) (ensin)

position: 0 1 m n

Figure 4.2: The medium K

K receives a frame from S, storesit at the front (position 0) of g, and
accordingly increasesp by one. It sendsthe last frame (last-dat(g); last-sey(g))
in gto R. A frame at position k can be lost (if k < p), and p is then decreased
by one. K can also make a choice that the frame at position p cannot be lost
(p:=p 1). The action j expresseshe nondeterministic choice whether or not a
frame is lost. In a similar way, we model the medium L by the processL (g% p?.

P

P
K (g:MedK; p:Nat) & kena Te(diK) K(inm(d;k;g);p+ 1)

+ wnat | K (deletgk;g);p 1)/ k< p.

+ sc(last-dat(g); last-sey(g)) K (delete-las{g); p)
/ p< length(g) .

+ jK(gp 1)/ p>0.

62 Chapter 4 Verifying a Sliding Window Protocol in CRL

P ,)
wnat TE(K) L(inm(k; g%;p°+ 1)
knat | L(deletek;g9;p° 1)/ k< p°.

se (last-se(g?) L (delete-lastg?); p?)
/ p°< length(g?® .

+ jL%p® 1)/ p°> 0.

L (g%MedL; p%Nat)

+

+

For eath channeli 2 fB;C;E;Fg, actions s; and r; can communicate, re-
sulting in the action ¢;. The initial state of the SWP is expressedby

(@ (S(0;0;[1) kR(O; [) kK (;0) kL([I";0)))

wherethe setH consistsof the read and sendactions over the internal channels
B, C, E, and F, namely H = fsg;rg;Sc;rc;Se;re;Sr;reg, while the set |

consistsof the communication actions over theseinternal channelstogether with

j,namelyl = fcg;cc;ce;Cr;jQ.

4.5.2 External behavior

Data elemers that are read from channel A should be sert into channel D in
the sameorder, and no data elemerns should be lost. In other words, the SWP
is intended to be a solution for the linear speci cation.

Z(:List) = P ¢ Ta(d) Z(append(d;)) / length() < 2n .
+ sp(top()) Z(tail()) / length()> 0.

Note that ra (d) can be performeduntil the list contains 2n elemers, because
in that situation the sendingand receiving windows will be lled. Furthermore,
sp(top()) canonly be performedif is not empty.

The remainder of this chapter is devoted to proving the following theorem,
expressingthat the external behavior of our CRL speci cation of a SWP cor-
respondsto a FIFO queueof size2n.

Theorem 4.5.1 (@ (S©;0;[) kR(O;[) kK(@";0)kL(";0)) $, Z(hi).

4.6 Transformations of the Specication

This sectionwitnessesthree transformations, oneto eliminate parallel operators,
one to eliminate argumerts of communication actions, and one to eliminate
modulo arithmetic.

4.6.1 Linearization

The starting point of our correctnessproof is a linear speci cation M g, in
which no parallel operators occur. M nhoq Can be obtained from the CRL

4.6 Transformations of the Speci cation 63

speci cation of the SWP without the hiding operator, i.e.,
@ (S(0;0;[1) kR(0; [) kK (0;0)k L(0";0)

by meansof a linearization algorithm preseried in [76].

The linear speci cation M moq of the SWP, with encapsulationbut without
hiding, takesthe following form. For the sake of presenation, we only presert
parameterswhosevaluesare changed.

M mod (" :Nat; m:Nat; g:Buf ;" %Nat; g®Buf ; g:MedK; p:Nat;
g%MedL; p%Nat)

® o TA() M mog (m:= S(m)jzn: 6= inb(d; m; o)
! in-window("; m; (C + n)jzn) -

P
w-nat Ce(retrieve(k; q); K) M moq (g:=inm(retrieve(k; 0); k; g); p:=p + 1)
/ test(k;q) .

P .
+ k:nat | Mmod(g:= deletg€k;g);p:=p 1)/ k<p.
+] Mmoa(p=p 1)/ p>0.

+ cc(last-dat(g); last-seay(g))
M mod (¢%= inb(last-dat(g); last-sey(g); ¢); g:= delete-lastg))
I p < length(g) ~ in-window("% last-sey(g); (°+ n)jzn) .

+

+ cc(last-dat(g); last-se&y(g)) M mod (g:= delete-lastq))
/ p< length(g) * : in-window(% last-seg(g); (°+ n)jan) .

+ sp(retrieve(’% o%) M moa ("%=S(*9jan; a%=remove %) / test("%) .

+ ce(next-emptyian (%)
M mod (g%=inm (next-emptyizn ("% a%); g); p%=p°+ 1)

P .
+ onat) Mmod(g%=deletetk; g9;p%=p° 1)/ k< p°.
j Mmod(pa-:po 1)/ p0>0-

cr (last-se(g))
M mod (:=last-sey(g9); o:= releasgn, (; last-se(g9);); g%= delete-lastg?)
I p°< length(g? .

+

+

Theorem 4.6.1
@ (S(0; 0;[1) k R(0; [) k K (0" ;0) k L(I";0))$_M moa(0;0; [1;0; [I; 1 ; 0; [; 0):

Pro of. It is not hard to seethat replacing M moq("; m; g; %% g; p;g%p% by
@ (SC;m;0) k RC%P k K(g;p) k L(g%pY) is a solution for the recursive
equation above, using the axioms of CRL [74]. (The details are left to the
reader.) Hence,the theorem follows by CL-RSP [20].

64 Chapter 4 Verifying a Sliding Window Protocol in CRL

4.6.2 Eliminating argumen ts of comm unication actions

The linear speci cation N o4 is obtained from M g by stripping all argumerts
from communication actions, and renaming these actions to a fresh action c.

N mod (" :Nat; m:Nat; g:Buf ; %Nat; q®Buf ; g:MedK; p:Nat
g%MedL; p%Nat)

= i d: rA(d) Nmod(m:: S(m)j2n;q::inb(d;m; q))
/ in-window(; m; C + Nn)jan) .

P

+ k:Nat € Nmod (@:=inm(retrieve(k; 0);k; g);p:=p+ 1) / test(k;q) .
P :

+ nat) Nmoa(gi= deletdk;g);pi=p 1)/ k<p.

+ J Nmoa(p:=p 1)/ p>0.

+ ¢Nmod(ag%=inb(last-dat(g); last-sey(g); o°); g:= delete-las{g))
/ p< length(g) ~ in-window(" % last-se&y(g); %+ n)jon) .

+ ¢ Nmog(g:=delete-lastg))
/ p< length(g) ~ : in-window(% last-sey(g); %+ n)jan) .

+ sp(retrieve"% 09)) Nmod((%=S(%j2n; q%=remove % q9)) / test("%qP) .
+ € Nmoa(g%=inm(next-emptyjzn ("%); g9; p%=p°+ 1)
P .
+ nae § Nmoa(g=deletgk; g%;p%=p° 1)/ k< p°.
+ Nmod(po:: po 1)/ p0> 0.

+ ¢ Nmod(:=last-sey(g?); q:= releasqan (; last-sey(g9); g); g%= delete-las{g®))
/ p°< length(g) .

Theorem 4.6.2
| (Mo (0;0;[1; 0; ;0 :0: 073 0)) $_ 1 o(Nmoa(0;0; [0; [1: 0 5 0; 05 0)):
Pro of. By a simple renaming.

4.6.3 Getting rid of modulo arithmetic

The speci cation of N nonmo ¢ IS Obtained by eliminating all occurrencesof |2,
from N noq, replacing in-window('; m; (" + n)j2n by m < ° + n, and replacing
in-window(" % last-sey(g); ((°+ n)jon by "0 last-seg(g) < "%+ n.

4.7 Properties of Data 65

N honmo d (:Nat; m:Nat; g:Buf ; *%Nat; q®Buf ; g:MedK; p:Nat;
g%MedL; p%Nat)

P : .

= b ¢ Ta(d) Nnonmo d(mM:=S(m); g:=inb(d;m;q) / m< " +n.

+ k:Nat € Nnonmo d (g:= inm(retrieve(k; 0); k; g); p:=p+ 1) / test(k;q) .
P .

+ w:nat J Nnonmo d(9:= deletgk; g);p:=p 1)/ k<p.

+ J Nponmoda(p:=p 1)/ p>0.

+ ¢ N onmo 4 (g%=inb(last-dat(g); last-sey(g); 0%); g:= delete-las{g))
/ p< length(g)» (° last-sey(g) < "%+ n) .

+ €N nonmo 4 (g:= delete-lastg))
/ p<length(g) " : (C° last-sey(g) < %+ n) .

+ sp(retrieve("%) Nnonmo d ((%=S("9; d=remove %) / test(*°d) .
+ €N nonmo ¢ (9%=inm(next-empty("% q®; g%; p®=p°+ 1)

. F w:nat J Nnonmo o (0%= delete(k; g%;p%=p° 1)/ k< p°.

+) Nnonmoa(p%=p° 1)/ p°> 0.

¢ N honmo d (:= last-se&y(g9); q:= releasd("; last-sey(g9); 0); g%= delete-las{g?))
/ p°< length(g? .

=+

Theorem 4.6.3
N mod (0; 0; [1; 0; [; 0 ; 0; 1" :0) $_ N nonmo a (0; 0; [1; 0; [1; I ; 0; I ; 0):

The proof of Theorem 4.6.3 is preseried in Section 4.8.1. Next, in Section
4.8.2, we prove the correctnessof N nonmo ¢- IN these proofs we will needa wide
range of data equalities, which we proceedto provein Section4.7.

4.7 Prop erties of Data

4.7.1 Basic prop erties

In the correctnessproof we will make useof basic properties of the operations on
Nat and Bool, which are derivable from their axioms (using induction). Some
typical examplesof such properties are:

b =D
i+k_<j+k: i<j .
gy (o prk o= (itk)

Lemmas4.7.1and 4.7.2 collect basicfacts on modulo arithmetic and on bu ers,
respectively. Lemma4.7.3contains someresults on modulo arithmetic related to
bu ers. Lemma4.7.4presens somefacts on the next-emptyoperation, together

(A)
(B)
(C)
(D)

(E)

(F)
(G)
(H)
1)
(J)

(K)

66 Chapter 4 Verifying a Sliding Window Protocol in CRL

with oneresult on max, which is neededto derive thosefacts. Lemmas4.7.5and
4.7.6 collect someresults on unbounded bu ers. Finally, Lemma 4.7.7 cortains
basic facts on lists. Unless stated otherwise (this only happensin Lemmas
4.7.3.2-4.7.3.64.7.3.9and 4.7.5.12)all variablesthat occur in a data lemmaare
implicitly universally quanti ed at the outside of the equality.

Lemma 4.7.1 Letn> O.
(iin)i = (0 + J)in

=

2. ijph<n
3.(injh=20
4. 1= (idivn) n+ij,
5. 1 j+n
) (idiv2n=jdiv2n”™jjon ijoan jjon + n) _ (idiv2n = S(j div2n)”
ij2n +n jj2n)
6.i j) idivn jdivn
Pro of.
1. By induction oni.
i <n.Thenij, =i.
i on.
(ijn +i)in
(i * n)in + J)in
((i " n) + $in (by induction, i; n > 0)
((i+) " nin (i n
(i +)in

2. Trivial, by induction oni.

3. Trivial, by induction oni.

4. By induction oni.
i<n.
Thenidivn=0andij, = i. Clearly,i = 0n + i.
i on.

Thenidivn= S((i * n)divn) andij, = (i * n)j,. Hence,

|

(i Fn)+n (becausei n)
(i “ n)divn)n+ (i * n)j,+n (by induction, i; n > 0)
S((i “ n)divn)n+ (i * n)jn

(i divn) n + ijy

4.7 Properties of Data 67
5.Letj i j+n.

Case 1: idiv2n < j div2n.

i
= (jdiv2n) 2n+ jjon ((idiv2n) 2n + ij2n) (Lem. 4.7.1.4)
= (jdiv2n idiv2n)2n+ (jjon ij2n)

2n+ (jjan ij2n) (i div 2n < j div 2n)
> 2n 2n (Lem. 4.7.1.2)
= 0 (contradict with j i)

Case 2: idiv2n = j div2n. We needto show jjon ijon jjon + N.

i i j+n
= (div2n)2n+jjon (idiv2n) 2n + ijon

(j div2n) 2n+ jjon + n (Lem. 4.7.1.4)
= jlan ilen jlan#n (idiv2n = j div 2n)

Case 3: idiv2n = S(j div2n). We needto show ijon + N < jjon.
i j+n
= (idiv2n) 2n+ ijoy
(j div2n) 2n+ jjon + n (Lem. 4.7.1.4)
= (jdiv2n) 2n+ 2n+ ijoy
(jdiv2n) 2n+ jjon + N (i div2n = S(j div 2n))
= djant N jjon

Case 4: idiv2n > S(j div 2n).

i (j+n
= (idiv2n) 2n+ ijon
((j div2n) 2n + jj2n) n (Lem. 4.7.1.4)
(j div2n) 2n + 4n + ijo
(div2n)2n jjon N (i div 2n > S(j div 2n))
= 3n+ ij2n jj2n
> 3n 2n (Lem. 4.7.1.2)
> 0 (contradict with i < j + n)

6. By induction oni.

i<n. Thenidivn= 0.

i n.

i divn

S((i * n)divn)

S((j * n)divn) (by induction, becausei j; n > 0)
j divn (becausen i j)

68 Chapter 4 Verifying a Sliding Window Protocol in CRL

Lemma 4.7.2 1. test(i; removdj; q)) = (test(i;) * 1 6 j)
2. 16]) retrieve(i; removdj; q)) = retrieve(i; q)
3. test(i; releasq(; k; q)) = (test(i;)~ : (j i< k))
4. :(i< k)) retrieve(i; releasqj; k;q)) = retrieve(i; g)
5.96 []) test(max(q);q)

Pro of.

1. By induction on the structure of g.

q= [
test(i; removdj; [])) = test(i; []) = F= test(i;[])) i 6 |.
q= inb(d;k;).
Case 1:j = k.
test(i; removdj; inb(d; k; %))
= test(i; removdj; qV)
= test(i;)" i6] (by induction)
= test(i; inb(d;k; %)) * i 6 | (becausg = k)
Case 2:j 6 k.

Case 2.1: i= k. Theni 6 j.

test(i; removdj; inb(d; k; %))
test(i; inb(d; k; removdj; o?))
T

test(i; inb(d; k; ¢9) ~ i 6 j

Case 2.2: i 6 k.

test(i; removej; inb(d; k; %))

test(i; inb(d; k; removej; q9))

test(i; removdj; q¥)

test(i;) " i 6 j (by induction)
test(i; inb(d; k; g9)) * i 6 |

2. By induction on the structure of q.

q= [

Then removdj; []) = [].
q= inb(d; k; 0.

Case 1. j = k.

retrieve(i; removej; inb(d; k; g%))

retrieve(i; removej; o°)

retrieve(i; oY) (by induction)
retrieve(i; inb(d; k; q%)

4.7 Properties of Data 69

Case 2:] 6 k.

Case 2.1: i = k.

retrieve(i; removéj; inb(d; k; ¢%))
retrieve(i; inb(d; k; removej; %))
d

retrieve(i; inb(d; k; q9)

Case 2.2: i 6 k.
retrieve(i; removdj; inb(d;k; %))
retrieve(i; inb(d; k; removej; q°))
retrieve(i; removej; o°)
retrieve(i; 99 (by induction)
retrieve(i; inb(d; k; g¥)
3. By induction onk ° j.
ik
Then test(i; releasdj; k;g)) = test(i;g) and: (j i< k)=T.
i < k.

test(i; release(j; k; g))
test(i; releasgS(j); k; removdj; g)))
test(i; removdj; @) * : (S(j) i< k) (by induction)

test(i;)~ : (j i< Kk) (Lem. 4.7.2.1)
4. By induction onk j.
ik
Then retrieve(i; releasqj; k; g)) = retrieve(i; q).
i < k.

Then: (j i< k) impliesi 6 j. Hence,

retrieve(i; releasqj; k; g))
retrieve(i; releasgS(j); k; removej; q)))

= retrieve(i; removdj; g)) (by induction)
= retrieve(i; Q) (Lem. 4.7.2.2,becausei 6)
5. By induction on the structure of q.
g= [
This caseis trivial.
= inb(d; k;).

By de nition, max(inb(d;k;q%) = if (k max(q); k; max(q?).
Case 1: k max(¢®). Then max(inb(d;k;q%) = k.

Clearly, test(k; inb(d; k; g9).

Case 2: k < max(q®). Then max(inb(d;k; %) = max(cP).
test(max(®); inb(d; k; g9) = test(max(q?;g®). Hence, by induction,
tes(max(qf); o).

70 Chapter 4 Verifying a Sliding Window Protocol in CRL

Lemma 4.7.3 1. test(k; qj2n)) k= Kjan
2. (8 :Nat(test(j; g)) i j<i+n)”™i Kk i+n)
) test(k;q) = test(Kjzn; gjzn)
3. (8j:Nat(test(j; q)) i | < i+ n)~ test(k;q))
) retrieve(k; q) = retrieve(Kjan; dizn)

4. (8 :Nat(test(j; @)) i j<i+n)”i k i+n)
) removek; Q)jzn = removeKjan; Qizn)

5. (8j:Nat(test(j; @q)) i j<i+n)™i k i+n)
) releasdi; k; 0)jon = releasgan (i; K; gj2n)

6. (8j:Nat(test(j; @)) i j<i+n)”™i k i+n)
) next-empty(k; @)jon = next-emptyjon (Kjzn; di2n)

7.1 k<i+n) in-window(ijan;Kjan; (i + n)jan)

8. in-window(ijon; Kjan; (i + N)j2n)
) k+n<i_i k<i+n_k i+2n

9. (8j:Nat(test(j;)) i j < i+ n)"test(k;qgzn))
) in-window(ijzn; K; (i + N)j2n)
Pro of.

1. Trivial, by induction on the structure of g, using Lemma 4.7.1.2.

2. By induction on the structure of q.
q= []. Then test(k;[]) = F = test(Kjan; [izn)-
q= inb(d;; ¢9.
Lettest(j;g)) i j<i+nandi k i+n.
Case 1: Kjon = “jon.
test("; g), soi " < i+ n. In combination with i k i+n,
Kjzn = “j2n, Lemmas4.7.1.4and 4.7.1.5, this implies k = . Hence,
test(k; q). Furthermore, Kjon = “jon implies test(Kjzn; gjzn).
Case 2: kjon 6 “jon. Then alsok 8 .

test(j; q®) test(j;)) i j < i+ n,soinduction can be applied
with respect to o°.

test(k; inb(d;"; g9)

test(k; o)

test(Kjzn; dY2n) (by induction)
test(kjzn; inb(d; ; 0)j2n)

3. By induction on the structure of q.

4.7 Properties of Data 71

g=[]. Then test(k;[]) = F.

q= inb(d;"; O

Let test(j; g)) i j < i+ nand test(k;q).

Case 1: k= ". Then alsokjzn = “jan.

Hence,retrieve(k; q) = d = retrieve(Kjzn; gi2n)-

Case 2: k6 .

test(j; @) test(j;g)) i j < i+ n, and test(k;q) together with
k 6 ° implies test(k; %, so induction can be applied with respect
to o°. test(k;q) andtest(;q), soi k<i+nandi < i+n.
In combination with k 6 *, Lemmas4.7.1.4and 4.7.1.5, this implies
Kjon & “j2n. Hence,

retrieve(k; q)

retrieve(k; qY)

retrieve(kjan; q%2n) (by induction)
retrieve(Kjzn; gjzn)

4. By induction on the structure of q.

a=[.

removek; [)jzn = [I = removeKkijzn; [ljzn)-

q= inb(d;; .

Lettest(j;g)) i j<i+nandi k i+n.

Case 1: k= ". Then alsokjzn = “jon.

removek; g)jan

removek; q%)jzan

removekjzn; ofzn) (by induction)
removeKkjzn; Qjz2n)

Case 2: k6 .
test(’; g), soi " < i+ n.In combination withi k i+n,k6 ",
Lemmas4.7.1.4and 4.7.1.5,this implies kj.n 6 “jon. Hence,

removek; g)jzn

inb(d; *; removek; g%)jzn

inb(d;"j2n ; removek; ¢)jan)

inb(d; jan ; removekjzn; q92n)) (by induction)
removeKkjon; Qian)

5. By induction onk * i. Lettest(j;q)) i j<i+n.

i = k. Then alsoijzn = Kjon.
Hence,releasq(i; k; Q)jon = Oj2n = releasdan (i; K; gjon).

72 Chapter 4 Verifying a Sliding Window Protocol in CRL

i<k i+n.
By Lemmas4.7.1.4and 4.7.1.5,ij,, 6 Kjon. Hence,

release(i; K;)jzan

releasg(S(i); k; removdi; 0))jzan

releasgn (S(i); k; removei; g)jan) (by induction)
releasgon (S(i); k; removeijon; g2n)) (Lem. 4.7.3.4)
releasgn (i; K; qi2n)

6. By induction on (i + n) - k. Lettest(jq) i j<i+n.

k=1i+n.
: test(i + n; g), soby Lemma 4.7.3.2,: test((i + n)jz2n;Qi2n). Then by
Lemma4.7.1.2,(i + n)j2n < 2n. Hence,

next-empty(i + n; q)jan

(i + n)jZn

next-empty((i + N)j2n; Gizn)
next-emptyjzn ((i + N)jon; di2n)

i k i+n.
Case 1: : test(k;g). By Lemma4.7.3.2,also: test(kjan; Qizn).
By Lemma 4.7.1.2,kjon < 2n. Hence,

next-empty(k; g)jzn

Kjan

next-empty(Kjzn; Gjzn)
next-emptyjzn (Kj2n; Q2n)

Case 2: test(k;q). By Lemma 4.7.3.2,alsotest(Kjzn ; Gz2n)-

We prove next-emptyzn (Kjzn; Gj2n) = next-emptyjon (S(K)jzn; dizn).
Case 2.1: Kjon = 2n 1.

By Lemma 4.7.4.3,

next-empty(Kjzn ; Gizn)
next-empty(S(Kj2n); Gi2n)
next-empty(2n; gjzn)

2n

Hence,

next-emptyjon (Kj2n ; Gi2n)
next-empty(0; Gjzn)
next-emptyion (S(K)jan; Gizn)

n 1.

N

Case 2.2: Kjon <

4.7 Properties of Data

Using Lemma 4.7.1.1,we can derive S(k)j2n = S(Kj2n). Since

next-empty(Kjan ; Gi2n)
next-empty(S(Kjzn); Gzn)
next-empty(S(K)jzn; Gizn)

we have next-emptyjzn (Kjzn; g2n) = next-emptyjan (S(K)jan; Gizn)-

Concluding,

next-empty(k;)jzn

next-empty(S(k);)jzn

next-emptyjzn (S(K)j2n; dizn) (by induction)
next-emptyjzn (Kj2n ; Qizn)

7. Leti k<i+n.
Case 1: S(idiv2n) 2n k.

73

Then S(idiv2n) 2n k< i+ n< S(idiv2n) 2n+ n (by Lem. 4.7.1.4).
Then by Lemmas 4.7.1.2,4.7.1.5and 4.7.1.6 it follows that kdiv2n =
(i+ n)div2n = S(idiv2n). Hence,in view of Lemma 4.7.1.4, Kjon <

(i + n)jZn < ij2n-
Case 2: k< S(idiv2n)2n i+ n.

Then (idiv2n) 2n i k < (idiv2n) 2n + 2n, so by Lemma 4.7.1.6
k div 2n = i div 2n. Furthermore, S(i div2n) 2n i+ n < S(idiv2n) 2n+

n, so (i + n)div2n = S(i div 2n). Hence,(i + N)jon < ijon Kjon.
Case 3: i+ n< S(idiv2n) 2n.

Then(idiv2n)2n i k< i+n< (idiv2n)2n+2n. By Lemma4.7.1.6,

kdiv2n = (i + n)div2n = idiv2n. Hence,ijon Kjon < (i + n)jan.
By de nition,
in-window(ijan : Kjon; (i + N)jan)
= ij.2n |_<jzn <_.(i + ”)J:Zn_
(i + n)jan < ij2n Kjon_
kj2n < (i + n)jZn < ij2n

soin all three caseswe concludein-window(ijon; Kjan; (i + N)jan).

8. We prove
(i+n k<i+2n_i k+n<i+n)
) in-window(ijon; Kjan; (i + N)j2n):

i+n k<i+2n.

Thenidiv2n (i+ n)div2n kdiv2n S(idiv2n). We distin-

guish three cases,in which we repeatedly apply Lemma 4.7.1.4.
Case 1: idiv2n = (i + n)div2n = kdiv 2n.

Theni < i+nyieldsijo, < (i + n)j2n andi+n kyields (i + n)j2n

kj2n .

74 Chapter 4 Verifying a Sliding Window Protocol in CRL

Case 2: S(idiv2n) = S((i + n)div 2n) = kdiv 2n.

Theni < i+ nyieldsijo, < (i + n)jon and k < i + 2n yields Kjon <
lJ2n.

Case 3: S(idiv2n) = (i + n)div2n = kdiv 2n.

Then i+ n Kk yields (i + n)j2n Kj2n and k < i + 2n yields
I(j2n < ij2n-

In all three caseswe can conclude: in-window(ijzn ; Kj2n; (i + N)j2n).
i k+n<i+n.

Theni+n k+ 2n<i+ 2n, soby Case 1,

:in-window(ijzn; (K + 2n)j2n; (i + N)j2n).

Hence,: in-window(ijan; Kjan; (i + N)j2n).

9. By induction on the structure of q.

q= [

This casefollows from the fact that test(k;[]jon) = F.
q=inb(d;";). Then test(;q), soi < i+ n.

Thus, by Lemma 4.7.3.7,in-window(ij2n; “j2n; (i + N)j2n). Hence,

test(k; inb(d;*; d%)jzn)

) k= "jon _ test(k; cﬁZn)

) k= "jon _in-window(ijon; K; (i + n)jan)
in-window(ijzn; K; (i + Nn)j2n)

Lemma 4.7.4 1. test(i;q)) i max(q)
2.1] < next-emptyi; q)) test(j; q
3. next-empty(i; @) i
4. next-empty(i; inb(d;j; @) next-emptyi; q)

5. j 6 next-empty(i; g)
) next-empty(i; inb(d;j; g)) = next-empty(i; q)

6. next-empty(i; inb(d; next-empty(i; g); q))
= next-empty(S(next-empty(i; q)); q)

7. : (i] < next-emptyi; g))
) next-empty(i; removd]j; q)) = next-empty(i; q)

Pro of.
1. By induction on the structure of g.

q= [
Then test(i; []) = F.

4.7 Properties of Data 75

q= inb(d;j; o).
Case 1: i = j. Thenclearlyi max(inb(d;j; o).
Case 2: i 6 j. Then test(i; inb(d;j; g%) implies test(i; ¢%, so

i max(q®) (by induction) max(inb(d;j; o°):

2. By induction onj - i.
i=j.
. test(i; q) implies next-empty(i; @) = i = j.
i<j.
Case 1: : tesf(i; g). Then next-empty(i;) =i <j.
Case 2: tesf(i; q).

i <] < next-empty(i; q)
, S(i)] < next-empty(S(i); q)
) test(; g) (by induction)

3. By induction on S(max(q)) ° i.

: test(i; g). (This includesthe basecaseS(max(g)) i.)

Then next-empty(i; q) = i.

test(i; q).

By Lemma4.7.4.1,i max(qg), soS(max(g)) -~ S(i) < S(max(q)) °

i. Hence,by induction, next-empty(i; g) = next-empty(S(i); q) > i.
4. By induction on S(max(q)) © i.

: test(i; q).

Then next-empty(i; inb(d;j; @) i (Lem. 4.7.4.3F next-empty(i; q).

test(i; g). Then alsotest(i; inb(d;j; g)).

By Lemma4.7.4.1,i max(q), soS(max(q)) ~ S(i) < S(max(q) -
i. Hence,

next-empty(i; inb(d;j; q))
= next-empty(S(i);inb(d;j; Q)
next-empty(S(i); q) (by induction)
= next-empty(i; q)

5. By induction on S(max(g)) ° i. Let j 8 next-empty(i;).
: test(i; q).

Then next-empty(i; q) = i. This implies| 6 i, so: test(i; inb(d;j; Q).
Hence, next-empty(i; inb(d;j; d)) = i.

Chapter 4 Verifying a Sliding Window Protocolin CRL

test(i; g). Then alsotest(i; inb(d;j; Q).
By Lemma4.7.4.1,i max(q), soS(max(q)) -~ S(i) < S(max(q))
i. Furthermore, test(i; q) implies] 6 next-empty(S(i); q). Hence,

next-empty(i; inb(d;j; q))

next-empty(S(i); inb(d;j; q))
next-empty(S(i); q) (by induction)
next-empty(i; q)

6. By induction on S(max(q)) i.

: test(i; q).
Then next-empty(i; g) = i. By Lemma 4.7.4.3,next-empty(S(i); q) 6
i. Hence,

next-empty(i; inb(d; next-empty(i; 9); Q)

next-empty(i; inb(d;i; g))

next-empty(S(i); inb(d;i; g))

next-empty(S(i); q) (Lem. 4.7.4.5)
next-empty(S(next-empty(i; q)); g)

test(i;).
By Lemma 4.7.4.1,i max(q), sothe induction hypothesiscan be
applied with respect to S(i).

next-empty(i; inb(d; next-empty(i; g); g))

next-empty(S(i); inb(d; next-empty(S(i); q); q))
next-empty(S(next-empty(S(i); q));) (by induction)
next-empty(S(next-empty(i; q)); q)

7. We apply induction on S(max(q)) i.

: test(i; q).

Then, by Lemma 4.7.2.1,: test(i; removdj; q)). Hence,
next-empty(i; removej; q)) = i = next-empty(i; q).
test(i;).

Let : (i i < next-empty(i;). test(i; q) implies : (S(i) j <
next-empty(S(i); g)). Furthermore, by Lemma 4.7.4.1,i max(q),
so the induction hypothesis can be applied with respect to S(i).
Since next-empty(i; g) = next-empty(S(i);q) S(i) (Lem. 4.7.4.3),
(i] < next-empty(i; g)) impliesj 6 i. Then, by Lemma 4.7.2.1,
test(i; removdj; g)). Hence,

next-empty(i; removej; q))

next-empty(S(i); removdj; q))
next-empty(S(i); q) (by induction)
next-empty(i; q)

4.7 Properties of Data 77

Lemma 4.7.5 1. length(g) = length(gjan)

2. i< length(g)) return-seq(i; 9)j2n = return-seq(i; gjzn)
3. i< length(g)) return-dat(i; g) = return-dat(i; gjan)

4. i< length(g)) deletdi; g)jn = deletdi; gjzn)

5. length(g) > 0) last-dat(g) = return-dat(length(g) 1;9)
6. length(g) > 0) last-sey(g) = return-seg(length(g) 1;0)
7. length(g) > 0) delete-las{g) = deletglength(g) 1;0)

8. (i < length(g) » memter(d;j; deletdi; g)))) memker(d;j; g)
9. i < length(g)) length(deletdi; g)) = length(g) 1

10. i < length(g)) memlter(return-dat(i; g); return-seq(i; g); g)
11. (i < length(g) 17 j < length(g))

) return-se(i; deletdj; g))=if (i < j; return-seq(i; g); return-seq(i + 1;g))
12. memter(d;i; g)

) 9j:Nat (j < length(g) * return-seq(j; g) = i * return-dat(j; g) = d)

Pro of. We prove Lemma4.7.5.11by induction on the structure of g. The other
lemmasare straightforward, by induction on g, and left to reader.

g= |]K . Then length(g) = 0. This caseis trivial.
g = inm(e;k; g1).

Let i < length(g;) andj length(gy).

Case 1:j = 0. Then: (i< j)and

return-sex(i; deletdj; g))
return-seq(i; g1)
return-seg(i + 1; Q)

Case 2:j > 0.
If i = 0,theni < j and return-seq(i; deletd]j; g)) = k = return-seq(i; g).
If i > 0, then

return-seq(i; deletdj; g))

return-seq(i 1;deletd] 1;01))

if (i 1<) ZLreturn-sey(i 1;0:);return-seq(i; g1)) (by induction)
if (i < j; return-seq(i; g); return-seq(i + 1; g))

78 Chapter 4 Verifying a Sliding Window Protocol in CRL

Lemma 4.7.6 1. length(g® = length(g92n)

2. i < length(g®) return-seq(i; g9jon = return-sex(i; g92n)

3. i< length(g®)) deletdi; g9jon = deletdi; g92n)
. length(g® > 0) last-sey(g%) = return-seg(length(g® 1; g9
5. length(g®) > 0) delete-las{g?) = deletglength(g® 1;g%
6. (i < length(g® » memter(j; delete(i; %))) memter(j; g9
7. i < length(g®) length(delete(i; g9) = length(g9 1
8
9

N

. i< length(g®) memter(return-seq(i; g%; g%

. (i < length(g®) 17 j < length(g%)
) return-seq(i; deletdj; g9)= if (i< j; return-seq(i; g9); return-seq(i + 1; %)

Pro of. The proof of Lemma 4.7.6.9is similar to the proof of Lemma 4.7.5.11.
The other lemmasare straightforward by induction on g°

Lemma 4.7.7 1. (+ 9+ %= +(%+ 0§
2. length(+ 9 = length() + length(9
3. append(d; + 9= +appendd; 9
. length(qizji)=j " i
510 k J) dizji=qicki+gk:ji
6.1 j) appendd;qfi:ji)=inb(d;j; [i=S(j)i
7. test(k;q)) inb(retrieve(k; q); k;q)[i::j i = qizj i
8
9

N

(i k<j)) removdk;q)li:ji = qiji
i) relesdk;; q[izji = qiji

Pro of. The proofsof thesenine facts are straightforward and left to the reader.
We restrict to a listing of the induction bases.

1. By induction on the length of
2. By induction on the length of
3. By induction on the length of
4. By induction onj - i.
5

. By induction onk " i.

4.7 Properties of Data 79

6. By induction onj ° i.
7. By induction onj ° i.
8. By induction onj ° i, together with Lemmas4.7.2.1and 4.7.2.2.
9. By induction onj ° i, together with Lemmas4.7.2.3and 4.7.2.4.

4.7.2 Invarian ts

Invariants of a system are properties of data that are satis ed throughout the
reachable state space of the system. Lemma 4.7.8 collects 27 invariants of
N nonmo ¢ that are neededin the correctnessproof. Occurrencesof variables
i; j:Nat and d;e: in an invariant are always implicitly universally quanti ed

at the outside of the invariant.

Lemma 4.7.8 The invariants hold for N nonmo o ((; m; ;"% 0% g; p; g p9).
1. p length(g)
2. p° length(g®
3. memter(i; g%) i next-empty("% 0
4 next-empty("% 9
5.i<j < length(g)) return-seqi; g% return-seq(j; g9
6. memter(i; g%) i
7.test(i;q)) i<m
8. memter(d;i;g)) i<m
9. test(i; @) i<m
10. test(i; ¥) 0 i< %+n
11.°9 m
12. next-empty("%g®) m
13. next-empty("% g9 O+ n

147 m
15. test(i; q)) = i
16.° i< m) test(i;q

17.° %4 n

80 Chapter 4 Verifying a Sliding Window Protocol in CRL

18.m “+n

19.i j <length(g)) return-seq(i; g) + n > return-seqj; 9)
20. (memter(d;i; g) M test(j; @)) i+ n>j

21. memker(d;i;g)) i+n °°

22. memker(d;i;g)) i+ n next-empty(%)

23. (memter(d;i; g) ~ test(i; q))) retrieve(i;q) = d

24. (test(i; q) " test(i; @¥))) retrieve(i; q) = retrieve(i; ¥

25. (memter(d;i; g) » memter(e;i;g))) d=-e

26. (memter(d;i; g) » test(i; q%)) retrieve(i;) = d

27.C i m~j nextemptyi; q?)) qfiji = oiji

Pro of. It is easyto verify that all invariants hold in the initial state (where
the bu ers and mediums are empty, the parametersin the natural numbers
equal zero). In casel-27 we show that the invariant is presened by ead of the
summandsA-K in the speci cation of N ,onmo ¢. FoOr ead of theseinvariants we
only treat the summandsin which one or more values of parameters occurring
in the invariant are updated. In ead of theseproof obligations, we list the new
valuesof theseparameterstogether with those conjuncts in the condition of the
summand under considerationthat play a role in the proof.

1. p length(g).
SummandsB;C;D;E and F needto be cheded. F is the sameaskE.
B: g:= inm(retrieve(k;q);k;g), p:= p+ 1;
length(inm(retrieve(k; q); k; g)) = length(g) + 1 p+ 1.
C: g:= deletdk;g), p:= p 1;under condition k < p;
Sincek < p length(g), by Lemma 4.7.5.9,
length(deletgk;g)) = length(g) 1 p 1.
D: p:= p 1;undercondition p> 0;
p 1< p length(g).
E: g:= delete-last{g); under condition p < length(g);
Since0 < length(g), by Lemmas4.7.5.7and 4.7.5.9,
length(delete-lastg)) = length(g) 1 p.

2. p° length(g9.
SummandsH;1;J and K needto be chedked.

H: g°:= inm(next-empty("% %; g%, p°:= p°+ 1;
length(inm(next-empty("% ¢9); g%) = length(g® + 1 p°+ 1.

4.7 Properties of Data 81

I: g°:= deletdk; g%, p°:= p° 1;under condition k < p%
Sincek < p® length(g®, by Lemma 4.7.6.7,
length(deletgk; g%) = length(g® 1 p° 1.

J: p%:= p° 1;under condition p°> 0;

p° 1< p® length(gY.

K: g°:= delete-lastg"); under condition p°< length(g®;
Since0 < length(g9), by Lemmas4.7.6.5and 4.7.6.7,
length(delete-las{g®)) = length(g® 1 p.

3. memter(i; g%) i next-empty("% 0.
SummandsE, G, H, | and K needto be cheded.
E: o°:= inb(last-dat(g); last-seg(g); o¥);
Let memter(i; 9. Then
i
next-empty("% 9
next-empty("% inb(last-dat(g); last-sey(g); 9)) (Lem. 4.7.4.4)

G: "0:= 5(°9, ¢°:= removd % ¢%; under condition test("% g9);
Let memter(i; g%. Then,

i

next-empty("%)

next-empty(S("9); ¥
next-empty(S("9; remove % %)) (Lem. 4.7.4.7)

H: g°:= inm(next-empty("% ¢¥; ¢9;

Let memker(i; inm(next-empty(" % 9; g9).

Case 1: i = next-empty("% o).

next-empty("%) next-empty("% o).

Case 2: i 6 next-empty("% o).

memier(i; inm(next-empty("% o®:; g%) = memker(i; g%)

i next-empty("% 9.

I g°:= deletgk; g%; under condition k < p%

Let memter(i; deletgk; g%). By Invariant 4.7.8.2,k < p® length(g%. By

Lemma 4.7.6.6, memker(i; deletgk; g%)) memter(i; g9)

i next-empty("%d0).

K: g°:= delete-las{g%; under condition p°< length(g?;

Let memler(i; delete-las{g?). By Lemmas4.7.6.5and 4.7.6.6,

memter(i; delete-las{g®9)) memter(i; g%) i next-empty % O.
4. next-empty("% 9.

SummandsE, G and K needto be cheded.

E: o°:= inb(last-dat(g); last-sey(g); o°);

* next-empty("%g) next-empty("% inb(last-dat(g); last-sey(g); d9)

(Lem. 4.7.4.4).

82

Chapter 4 Verifying a Sliding Window Protocolin CRL

G: "%:= (9, ¢°:= removd % ?; under condition test("% 9);

next-empty(" % o)

next-empty(S(*9; V)
next-empty(S(*9); removeé % %) (Lem. 4.7.4.7)

K: = last-sey(g%); under condition p°< length(g?.
0 < length(g%, soby Lemmas4.7.6.4and 4.7.6.8, memter(last-seg(g%); g).
Hence, by Invariant 4.7.8.3,last-sey(g% next-empty("% 9.

.i<j<length(g)) return-seqi; g% return-seq(j; gY).

SummandsH; | and K needto be cheded.

H: g°:= inm(next-empty("% o¥); g%;

Leti < j < length(g® + 1.

Case 1:i>0.Theni 1<j 1< length(g9). So

return-seg(i; inm(next-empty("% ¢9; g9)
= return-sey(i 1;¢9

return-seqj 1;99
= return-seq(j; inm(next-empty(" % q%; g%)

Case 2:i=0.

Sincej > 0, return-seq(j; inm(next-empty("%q®;g%) = return-seyj
1;99. Sincej 1<length(g?9, by Lemma 4.7.6.8, memter(return-seq(j
1;9%9;99. By Invariant 4.7.8.3,

return-segj 1,99
next-empty("% 9
= return-seqi; inm(next-empty("% %; g%) (becausei = 0)

I: g°:= deletgk; g%; under condition k < p%

Let i < j < length(deletgk; g%). By Invariant 4.7.8.2,k < p° length(gP).
So by Lemma 4.7.6.7, length(deletgk; g%) = length(g® 1. Sincei <
i+1 j<j+ 1< length(g?), return-sex(i; g% return-seyi + 1; 9%
return-seq(j; g9 return-seq(j + 1;9%. Soby Lemma4.7.6.9,

return-seq(i; deletgk; g%)
return-seq(i + 1; g9
return-seqg(j; 99
return-seq(j; deletgk; g9)

K: g°:= delete-last{g®; under condition p°< length(g?;
Let i < j < length(delete-las{g?). Since0 < length(g%, Lemmas4.7.6.5

4.7 Properties of Data 83

and 4.7.6.7imply length(delete-las{g?) = length(g® 1. Hence,by Lem-
mas4.7.6.5and 4.7.6.9,

return-seq(i; delete-las{g?)
= return-seqi; g9
return-seq(j; g%
= return-seq(i; delete-las{g®)

6. memker(i; g9) .
SummandsH, | and K needto be cheded.
H: ¢°:= inm(next-empty("% o9); g9;
Let memter(i; inm(next-empty("% ¢%; gY)).
Case 1: i = next-empty("% 9.
By Invariant 4.7.8.4," next-empty(" %).
Case 2: i 8 next-empty("% 0.
memker(i; inm(next-empty("% %;g%)) memker(i; g%) i
I: g°:= deletgk; g%; under condition k < p%
By Invariant 4.7.8.2,k < p° length(g9. Soby Lemma 4.7.6.6,
memier(i; deletgk; g%)) memter(i; g%) ° .
K : g°:= delete-lastg®); under condition p°< length(gY;
Since0 < length(g9), by Lemmas4.7.6.5and 4.7.6.6,
memier(i; delete-las{g®)) memter(i; g%) ~ i.

7. test(i;q)) i< m.
SummandsA and K needto be cheded.
A: m:= S(m), g:= inb(d;m; q);
test(i; inb(d;m; @), (i=m_test(i;g)) (i=m_i<m), i< S(m).

K: q:= releasq; last-sey(g9); 0);
test(i; releasq(; last-sey(g%; q))) test(i; q) (Lem. 4.7.2.3)) i< m.

8. memter(d;i; g)) i< m.
SummandsA; B; C;E and F needto be chedked. F is the sameasE.
A: m:= S(m);
memler(d;i; g)) i< m< S(m).
B: g:= inm(retrieve(k; g); k; g); under condition test(k; g);
Let memter(d;i; inm(retrieve(k; q); k; g)).
Case 1: i = k. Sincetest(k;q), by Invariant 4.7.8.7,k < m.
Case 2: i 6 k.
memter(d;i; inm(retrieve(k; g); k; g)) = memter(d;i; g)) i< m.
C: g:= deletdk; g); under condition k < p;
By Invariant 4.7.8.1,k < p length(g). Soby Lemma 4.7.5.8,
memter(d;i; deletdk;g))) memiker(d;i;g)) i< m.
E: g:= delete-las{g); under condition p < length(g);
Since0 < length(g), by Lemmas4.7.5.7and 4.7.5.8,
memler(d;i; delete-las{g))) memter(d;i; g)) i< m.

84

9.

10.

11.°

12.

13.

Chapter 4 Verifying a Sliding Window Protocolin CRL

test(i; g%) i< m.
SummandsA, E and G needto be cheded.
A: m:= S(m);
test(i; g%) i< m< S(m).
E: q°:= inb(last-dat(g); last-seg(g); o); under condition p < length(g);
Since0 < length(g), by Lemmas4.7.5.5,4.7.5.6and 4.7.5.10,
memier(last-dat(g); last-sey(g); 9). By Invariant 4.7.8.8, last-sey(g)<m .
Hence,
test(i; inb(last-dat(g); last-seg(g); o9)

. (i = last-sey(g) _ test(i; d%)

) (i = last-sg|(g) _i < m)

, i<m

G: ¢°:= remove % O);
test(i; remove % q9)) test(i;) (Lem. 4.7.2.1)) i< m.

test(i; @) ° i< %+ n.
SummandsE and G needto be cheded.
E: o°:= inb(last-dat(g); last-sey(g); o¥); under condition “° last-sey(g) <
\0+ n:
test(i; inb(last-dat(g); last-seg(g); o9)
(i = last-seg(g) _ test(i; q%)
) (i=last-segy(g) _ % i< %+ n)
, 0 < 04

G: "0:= 59, ¢°:= removd % ;

test(i; remove" %)
. (test(i;)~ i 69 (Lem. 4.7.2.1)
) (0 i< %+nri6 9

) S(9Y i<S(9Y+n

0
m.
SummandsA and G needto be chedked.
A: m:= S(m);
0 m< S(m).
G: "9:= S(°9; under condition test(*% ¥);
By Invariant 4.7.8.9,test("%q)) %< m. Hence,S('9 m.

next-empty("%) m.
By Invariant 4.7.8.11,"° m. By Invariant 4.7.8.9,: test(m; . Hence,
by Lemma 4.7.4.2,next-empty("%q® m.

next-empty("% g9 %+ n.
By Invariant 4.7.8.10,: test('°+ n; ¢®). Hence,by Lemma 4.7.4.2,
next-empty("%) %+ n.

4.7 Properties of Data

14.° m.
By Invariants 4.7.8.4and 4.7.8.12.
15. test(i;)) = .
SummandsA and K needto be cheded.
A: g:= inb(d;m; q);
By Invariant 4.7.8.14," m. Hence,

test(i; inb(d; m; q))
, (i = m_test(i; g))
) (i=m_" i)

K: " := last-sey(g9), q:= releasq; last-se&y(g9); q);

test(i; releasq; last-sey(g9; 9))
. (test(i; g~ : (O i< last-sey(g9))
) ¢ in:i (i< last-se(g?))
) last-se(g?) i

16.° i< m) testi; g).
SummandsA and K needto be cheded.
A: m:= S(m), g:= inb(d;m; q);

i < S(m)
) (i=m_" i<m)
) (i = m_ test(i;)
, test(i; inb(d; m; g))

85

(Lem. 4.7.2.3)

K: = last-sey(g9), q:= releasq; last-se&(g?); q); under condition

p’ < length(g);

Since0 < length(g9), by Lemmas4.7.6.4and 4.7.6.8,
memier(last-sey(g?; g9). Then by Invariant 4.7.8.6," last-s&(g?). So,

last-se(g®) i< m
. i<mn (i< last-se(gY))
) (test(q)”: (i< last-sey(g?))
test(i; releasq; last-sey(g%; @)

17.° "%+,
By Invariants 4.7.8.4and 4.7.8.13.

18. m “+n.
SummandsA and K needto be cheded.

A: m := S(m); under condition m < * + n;
Then S(m) ~+n.

(Lem. 4.7.2.3)

86

19.

Chapter 4 Verifying a Sliding Window Protocolin CRL

K: = last-sey(g%); under condition p°< length(g?;

Since0 < length(g9), by Lemmas4.7.6.4and 4.7.6.8,
memiker(last-sey(g%); g%. Then by Invariant 4.7.8.6," last-sey(g9.
Hence,m +n last-sey(g®) + n.

i j<length(g)) return-seyi; g) + n > return-seyj; g).
SummandsB; C; E and F needto be cheded. F is the sameaskE.
B: g:= inm(retrieve(k; q); k; g); under condition test(k; g);

Case 1:i> 0. Leti j < length(g)+ 1.

return-seq(j; inm(retrieve(k; q); k; 9))
return-seg(j 1;0)

I Al

return-seg(i 1;,9)+ n

return-seq(i; inm(retrieve(k;); k; g)) + n
Case 2: i = 0.
Case 2.1: j = 0. This caseis trivial.
Case 2.2:j 6 0.

Lemma4.7.5.10yields memter(return-dat(j 1;0);return-sey(j 1;9);0).
By Invariant 4.7.8.8, return-sej 1;9) < m. By Invariant 4.7.8.15,
testtk;g)) = k.

return-seqg(j; inm(retrieve(k; 9); k; 9))

= return-se(j 1;0)

< m
“+n (Lem. 4.7.8.18)
k+n

= return-seqg(i; inm(retrieve(k; q); k;g)) + n (becausei = 0)

C: g:= deletdk;g); under condition k < p;
Leti | < length(deletgk;g)). By Invariant 4.7.8.1,k < p length(qg).
By Lemma 4.7.5.9,length(deletdk; g)) = length(g) 1.

Case 1: k .
Sincei+ 1 | + 1< length(g), by Lemma 4.7.5.11,

return-seq(i; deletgk; g)) + n
return-seg(i + 1;9) + n
return-seg(j + 1;)
return-seq(j; deletgk; g))

v 1

Case 2: i<k j.
Sincei < j + 1< length(g), by Lemma 4.7.5.11,

return-seq(i; deletgk; g)) + n
return-segfi; g) + n
return-se(j + 1;0)
return-seq(j; delete(k; g))

v 1

4.7 Properties of Data 87

20.

Case 3:j < k.
Sincei | < length(g), by Lemma4.7.5.11,

return-seq(i; deletgk; g)) + n
return-seqg(i; g) + n
return-seq(j; g)

return-seq(j; deletgk; g))

I v

E: g := delete-las{g); under condition p < length(g);

Leti | < length(delete-las{g)). By Lemmas4.7.5.6and 4.7.5.9,0 <
length(g) implies length(delete-lastg)) = length(g) 1. Sincei j <
length(g), by Lemma 4.7.5.11,

return-seq(i; delete-lasfg)) + n
return-seq(i; g) + n
return-seq(j; g)

return-seq(j; delete-las{g))

v 1

(memler(d;i; g) ~ test(j; %)) i+ n>j.
SummandsB;C; E;F and G needto be cheded.

B: g:= inm(retrieve(k; g); k; g); under condition test(k; g);

Let memker(d;i; inm(retrieve(k; g); k; g)) and test(j; @9.

Case 1:i = k.

By Invariant 4.7.8.15, test(k;q) yields ° k, and by Invariant 4.7.8.9,
test(j; ¥ yieldsj < m. Hence,k+n “+n m (Inv. 4.7.8.18)> j.

Case 2:i 6 k.
memler(d;i; inm(retrieve(k; g); k; g)) = memter(d;i; g). Hence,i + n > j.

C: g:= deletdk; g); under condition k < p;

Let memter(d;i; deletgk;g)) and test(j;). By Invariant 4.7.8.1, k <
p length(g). In view of Lemma 4.7.5.8, memter(d;i; deletdk; g)))
memler(d;i; g). Hence,i+ n> j.

E: o := inb(last-dat(g); last-sey(g); q¥), g := delete-las{g); under condi-
tion p < length(g) and ° last-seg(g) < "%+ n.

Let memter(d;i; delete-las{g)) and test(j; inb(last-dat(g); last-segy(g); q°)).
Since0 < length(g), by Lemmas4.7.5.7and 4.7.5.8,

memter(d;i; delete-las{g))) memter(d;i; g).

Case 1: j = last-sey(g).
Case 1.1: i = last-se(g). This caseis trivial.

Case 1.2: i 6 last-seQ).

SinceO < length(g), by Lemma 4.7.5.6, last-sey(g)= return-seg(length(g)
1;g). Sincememter(d;i; g), by Lemma 4.7.5.12,there exists a k suc that
k < length(g) and return-seq(k; g) = i. By Invariant 4.7.8.19,

i + n> return-seg(length(g) 1;g) = last-sey(g).

88

21.

22.

23.

Chapter 4 Verifying a Sliding Window Protocolin CRL

Case 2: | 6 last-s&(g).
test(j; inb(last-dat(g); last-sey(g); q%) = test(j; ¢°). Hence,i+ n> j.

F: g:= delete-las{g); under condition p < length(g);

Let memler(d;i; delete-lastg)) and test(j; q. Since 0 < length(g), by
Lemmas4.7.5.7and 4.7.5.8,memter(d;i; delete-las{g))) memter(d;i; g).
Hence,i+ n> j.

G: g°:= remove % O);

Let memter(d;i; g) and test(j; remove % q?)). By Lemma4.7.2.1,

test(j; remove %))) test(j; q°. Hence,i + n> j.

memker(d;i;g)) i+n °C
SummandsB;C;E;F and G needto be chedked. F is the sameasE.

B: g:= inm(retrieve(k; g); k; g); under condition test(k; q);
Let memter(d;i; inm(retrieve(k; g); k; g)).

Case 1:i= k.
By Invariant 4.7.8.15,test(k;q) yields© k. Hence,k+n "~ +n
m (Inv. 4.7.8.18) “%(Inv. 4.7.8.11)

Case 2:i 6 k.
memlker(d;i; inm(retrieve(k; g); k; g)) = memter(d;i;g)) i+n O

C: g:= deletgk; g); under condition k < p;

Let memtler(d;i; deletgk; g)). By Invariant 4.7.8.1,k < p length(g). By
Lemma 4.7.5.8,we have

memker(d;i; deletgk;g))) memter(d;i;g)) i+n °C

E: g:= delete-last{g); under condition p < length(g);

Let memker(d;i; delete-las{g)). SinceO < length(g), by Lemmas 4.7.5.7
and 4.7.5.8,we have

memiker(d;i; delete-las{g))) memter(d;i;g)) i+n °C

G: %= S(°9; under condition test("% ¢?;
Let memter(d;i; g). By Invariant 4.7.8.20,test("% ¢ impliesi + n > °C.
Hence,i+ n S(CO.

memker(d;i;g)) i+ n next-empty(%qd.

We distinguish two cases.

Case 1: ¢°= []. Then next-empty("% %) = 0

By Invariant 4.7.8.21,memter(d;i; g)) i+n 0

Case 2: 6 [].

By Lemma 4.7.2.5,test(max(q%; ¢®). SoInvariant 4.7.8.20yields
memter(d;i;g)) i+ n > max(q). By Lemmas 4.7.4.1and 4.7.4.2,
next-empty("%q®) max(q®) + 1. Hence, memler(d;i;g)) i+ n
next-empty(" % g9).

(memter(d;i; g) ~ test(i; @)) retrieve(i; q) = d.
SummandsA; B;C;E;F and K needto be chedked. F is the sameaskE.

4.7 Properties of Data 89

24,

A: g:= inb(e;m; q);

By Invariant 4.7.8.8,memker(d;i; g)) i< m.

Soretrieve(i; inb(e;m; g)) = retrieve(i; q) = d.

B: g:= inm(retrieve(k; g); k; g);

Let memter(d;i; inm(retrieve(k; g); k; g)) and test(i; q).

Case 1: d = retrieve(k;g) and i = k. This caseis trivial.

Case 2: Otherwise. memter(d;i; inm(retrieve(k; g); k; g))= memker(d;i;).
Sincetest(i; q), retrieve(i;) = d.

C: g:= deletdk; g); under condition k < p;

Let memter(d;i; deletdk;g)) and test(i; g). By Invariant 4.7.8.1, k <
p length(g). Then by Lemma 4.7.5.8, memter(d;i; deletdk;g)))
memlter(d;i; g). Sincetest(i; g), retrieve(i;) = d.

E: g:= delete-las{g); under condition p < length(g);

Let memter(d;i; delete-lasfg)) and test(i; q). Since 0 < length(g), by
Lemmas4.7.5.7and 4.7.5.8,memtler(d;i; delete-las{g))) memter(d;i; g).
Sincetest(i; q), retrieve(i;) = d.

K: q:= releasq; last-sey(g9); 0);

Let memlker(d;i; delete-las{g)) and test(i; releasq; last-se&y(g9; q)). By
Lemma 4.7.2.3,test(i; q) and : i < last-sey(g%). By Lemma 4.7.2.4,
retrieve(i; releasq"; last-sey(g9); g)) = retrieve(i; q) = d.

(test(i;) ~ test(i; 9)) retrieve(i; g) = retrieve(i; o°.
SummandsA, E, G and K must be chedked.

A: g:= inb(d;m; q);

By Invariant 4.7.8.9,test(i; °) impliesi 6 m. So

test(i; inb(d; m; g)) ~ test(i; o)
test(i;) * test(i; o)
) retrieve(i; inb(d; m; g)) = retrieve(i;) = retrieve(i; ¢9

E: ¢°:= inb(last-dat(g); last-sey(g); q%; under condition p < length(g);
Let test(i; q) and test(i; inb(last-dat(g); last-seg(g); o°)).

Case 1: i 6 last-se)(g).

test(i; g) ~ test(i; inb(last-dat(g); last-segy(g); o)
) test(i; g) ~ test(i; g9
) retrieve(i; g) = retrieve(i; g%

= retrieve(i; inb(last-dat(g); last-se&y(g); aY)

Case 2: i = last-sa)(g).
Since0 < length(g), by Lemmas4.7.5.5,4.7.5.6and 4.7.5.10,
memler(last-dat(g); last-sey(g); g). Sincetest(last-sey(g); g),

retrieve(last-say(g); q)
last-dat(g) (Inv. 4.7.8.23)
retrieve(last-dat(g); inb(last-dat(g); last-seg(g); o°)

90

25.

26.

Chapter 4 Verifying a Sliding Window Protocolin CRL

G: ¢°:= remove % O);

test(i; g) ~ test(i; remove %)
. test(i; o) test(i;)~ i 6 ° (Lem. 4.7.2.1)
) retrieve(i;) = retrieve(i; 0

= retrieve(i; remove "% q%) (Lem. 4.7.2.2)

K: q:= releas; last-sey(g?; q);

test(i; releaseg("; last-se(g%); q)) * test(i; o°)

test(i; g) ~ test(i; @)~ : i < last-sey(g?)) (Lem. 4.7.2.3)
) retrieve(i; °) = retrieve(i; q)

= retrieve(i; releasq"; h% q)) (Lem. 4.7.2.4)

(memter(d;i; g) » memter(e;i;g))) d=e

SummandsB; C;E and F needto be cheded. F is the sameasE.
B: g:= inm(retrieve(k; g); k; g); under condition test(k; q);

Let memler(d;i; inm(retrieve(k; q); k; g)) and

memier(e;i; inm(retrieve(k; 9); k; 9)).

Case 1: i = k.
By Invariant 4.7.8.23,test(k; g) implies d = retrieve(k; g) = e.
Case 2:i 6 k.

memter(d;i; inm(retrieve(k; g); k;g))) memker(d;i; g) and
memter(e;i; inm(retrieve(k; q); k; g))) memter(e;i; g). Hence,d = e.
C: g:= deletdk;g); under condition k < p;

By Invariant 4.7.8.1,k < p length(g). By Lemma 4.7.5.8,

memlter(d;i; deletgk; g)) » memter(e;i; deletdk; g))
) memter(d;i; g) » memker(e;i; g)
) d=e

E: g:= delete-las{g); under condition p < length(g);
Since0 < length(g), by Lemmas4.7.5.7and 4.7.5.8,

memler(d;i; delete-las{g)) » memler(e;i; delete-las{g))
) memter(d;i; g) » memker(e;i; g)
) d=e

(memlter(d;i; g) test(i; q%)) retrieve(i; ¥ = d.

SummandsB; C;E;F and G needto be cheded.

B: g:= inm(retrieve(k; g); k; g); under condition test(k; q);

Let memler(d;i; inm(retrieve(k; g); k; g)) and test(i; q9).

Case 1: d = retrieve(k;q) andi = k.

Sincetest(k; g) and test(k; g, by Invariant 4.7.8.24,retrieve(k; %) = d =
retrieve(k; g).

4.7 Properties of Data 91

27.

Case 2: Otherwise.

memker(d;i; inm(retrieve(k; g); k; g)) = memter(d;i; g). Since test(i; q°),
retrieve(i; ¢¥) = d.

C: g:= deletdk; g); under condition k < p;

Let memker(d;i; deletgk; g)) and test(i; °. By Invariant 4.7.8.1,k < p
length(g). By Lemma4.7.5.8,memter(d;i; deletdk; g))) memter(d;i; g).
Sincetest(i; %, retrieve(i; g% = d.

E: o := inb(last-dat(g); last-sey(g); q¥), g := delete-las{g); under condi-
tion p < length(g);

Let memker(d;i; delete-las{g)) and test(i; inb(last-dat(g); last-seg(g); q9)).
Since0 < length(g), by Lemmas4.7.5.7and 4.7.5.8,

memter(d;i; delete-las{g))) memkter(d;i; g).

Case 1: i = last-sa(Q).

Since 0 < length(g), by Lemmas 4.7.5.5, 4.7.5.6 and 4.7.5.10, we have
memier(last-dat(g); last-sey(Q); 9).

Since memter(d; last-say(g); delete-las{g)), by Invariant 4.7.8.25,

d = last-dat(g) = retrieve(last-sey(g); inb(last-dat(g); last-sey(g); q9).

Case 2: i 6 last-sey(Q).

Then test(i; inb(last-dat(g); last-sey(g); %)) test(i; o).

By memter(d;i; g), retrieve(i; ¢% = d.

F: g:= delete-lastg); under condition p < length(g);

Let memter(d;i; delete-lastg)) and test(i; g°. Since 0 < length(g), by
Lemmas4.7.5.7and 4.7.5.8,memter(d;i; delete-las{g))) memter(d;i; g).
Sincetest(i; q9, retrieve(i; ¥ = d

G: °:= removd % ;

By Lemma 4.7.2.1, test(i; remove % q%) implies test(i; g and i 6 "°
Hence, memter(d;i; g)) retrieve(i; remove™%) = retrieve(i; ¢® (Lem.
4.7.2.2)=d.

¢ i m~rj o nextempty(i; o)) qfizji = qTiji.

Let® i mandj next-emptyi; g%). We apply induction onj i.
If i j,thendfizji = hi= qYi;ji.

Leti<j.

Case 1. i=m,

By Invariant 4.7.8.9, j next-empty(i; @ = m. Hence, di;ji = hi =
aqJizzji.

Case 2:° i< m.

Then by Invariant 4.7.8.16, test(i; g). Furthermore, by Lemma 4.7.4.2,

92 Chapter 4 Verifying a Sliding Window Protocol in CRL

i<j nextemptyi; g implies test(i; . Hence,

qliz;j i

inb(retrieve(i; q); q[S(i)::j i)

inb(retrieve(i; q); gIS(i)::ji) (by induction)
inb(retrieve(i;); qS(i):ji) (Inv. 4.7.8.24)
qXij i

4.8 Correctness of N o

In Section4.8.1, we prove Theorem 4.6.3, which statesthat N nog and N nonmo d
are strongly bisimilar. Next, in Section 4.8.2 we prove that N nonmo ¢ behaves
like a FIFO queueof size2n. Theorem 4.5.1is proved in Section4.8.3.

4.8.1 Equalit y of Nmeq and N nonmo d
In this sectionwe presert a proof of Theorem 4.6.3. It su ces to provethat for
all ; m; %Nat, g; g%Buf, g:MedK and g®MedL,
N mod ("j2n; Mjzn; Gizn; " F2n: qF2n; Gizn; P; g%2n; P9
$ Nnomoda(sm;q%a%g:p:g%pP?)

Pro of. We show that N mod(j2n: Mj2n; Gizn; " J2n; f2n; Gizn; P;92n; P9 is a so-
lution for the de ning equation of N nonmo ¢ ((; M; 0; "% 0% g; p; 0% p%. Hence,we
must derive the following equation.?

IF\)I mod ("J2n; Mjzn; dizn; " Y2n; d2n; Gzn; P; 9920 PO
da: Ta(d) Nmoa(m:=S(m)jzn;q:=inb(d;m; d)j2n)

/I m< +n. (A)
P . _ |
* nat € Nmod(g:=inm(retrieve(k; o), k; g)jzn; p:=p+ 1)
! test(k;q) . ®)
P) -
+ wnat | Nmod(9:= deletdk; @)jon;pi=p 1)/ k<p. ©)
+ j Nmoa(P=p 1)/ p>0. ©)
+ ¢ Nmog(g%=inb(last-dat(g); last-sey(g); Q)j2n ; 9:= delete-las{g)jan)
/I p< length(g) ~ (° last-sey(g) < %+ n) . (E)

+ ¢ Nmog(g:=delete-lastg)jon)
/ p< length(g)~ : (C° last-seyg) < %+ n) . (F)

2By abuse of notation, we usethe parameters *, m, g, *% % g, g°in an ambiguous way. For
example, m refers both to the second parameter of N ,oq and to the value of this parameter.

4.8 Correctnessof N moq

+ sp(retrieve("% g)) Nmoa("%=S(9Yjzn; a%=remove % q)jzn)
/ test("%) .

+ €N moa(g%=inm(next-empty("% o9; g%jzn; p%=p°+ 1)

P . .
+ nat) Nmod(9%=deletek; g9jzn; p%=p° 1)/ k< p°.
+ J Nmod(po::p0 1)/ po> 0.

+ CNmoa(:=last-se(g9jan; o= release(’; last-sey(g%); 0)jan;
g%=delete-lastg%j»n) / p°< length(g) .

93

In order to provethis, we instantiate the parametersin the de ning equation

Of Nmod With “jon; Mjon; Gizn; ‘an »Qizn; p;qun) pO.

N mod ((j2n; Mjzn; dizn; " Y2n; @2n; Gon; P;9%2n; PO

P oL : A
= 4 Ta(d) Nmod(m:=S(mjzn)jzn; G:=inb(d; Mj2n; Gizn))
[in-window(j2n; Mj2n; Cj2n + N)j2n) -

P _ _ _ |
+ ionat ©Nmoa(g:=inm(retrieve(k; gjzn): ki Gjzn); pi=p+ 1)
I test(k; gjz2n) -

P . .
+ w-nat | Nmod(9:= deletgk; gjon);p:=p 1)/ k<p.
+ j Nmoa(pi=p 1)/ p>0.

+ ¢ Nmod(g%=inb(last-dat(gjn); last-sey(gizn); qG2n);
g:=delete-las{gjzn)) / p < length(gjzn)"
in-window("Y2n ; last-sey(gjzn); ((J2n + N)j2n) -

+ ¢Nmog(g:=delete-lastgjzn)) / p < length(gjzn)"
- in-window(" 92 ; last-se(gizn); (Yon + N)j2n) -

+ sp(retrieve("Jon: of2n)) Nmoa ("%=S("Jzn)izn: o= remove Jzn: ofzn))

I test("Y2n; oF2n) -
+ EN mod (¢%= inm(next-emptyizn (*3zn; dJ2n); gY2n); p%=p°+ 1)
+ nat) Nmoa(g®=deletgk; g%2q);p%=p° 1)/ k< p°.
+ j Nmoa(p%=p® 1)/ p°> 0.

+

g%=delete-las{gY2n)) / p°< length(g92n) .

CNmod(":= laSt_SQ(qun)izn: q:=releasgon (“jon; |aSt-SGZ](ng2n)izn; Qi2n);

(A)

(B)
(C)
(D)

(E)

(F)

(G)
(H)
1)
(J)

(K)

In order to equate the eleven summandsin both speci cations, we obtain
the following proof obligations. Casesfor summandsthat are syntactically the

sameare omitted.

Chapter 4 Verifying a Sliding Window Protocolin CRL

A m< "+ n, in-window(jon;Mjan; (Cjan + N)j2n).
m< +n
, m< +n (Inv. 4.7.8.14)

) in-window(Tjon; Mjon; C + N)jon) (Lem. 4.7.3.7)
Reversely
in-window("jzn; Mjan; C + N)j2n)
) m+n<’_° m< +n_m " +2n (Lem. 4.7.3.8)
m< ' +n (Inv. 4.7.8.14,4.7.8.18)
Moreover, by Lemma 4.7.1.1,(C + n)jan = Cjon + N)j2n.
S(m)jzn = S(Mj2n)jan-
This follows from Lemma 4.7.1.1.
inb(d; m; g)j2n = inb(d; Mj2n; Gjzn).
This follows from the de nition of bu ers modulo 2n.

B Below we equate the ertire summand B of the two speci cations. The
argumert p ;= p+ 1is omitted, becauseit is irrelevant for this derivation.

P : : .
k:Nat C© N mod (g:=inm(retrieve(k; g); k; g)jan)

/ test(k;q) .
P
= k:Nat © N mod (g:=inm(retrieve(k; d); Kjzn; gj2n))
[testtk;q)»~ k< +n. (Inv. 4.7.8.7,4.7.8.15,4.7.8.18)

P)

= k-Nat € Nmod (g:=inm(retrieve(Kjzn; Gizn); Kj2n; Gj2n))
| test(Kjon;Qion) ™~ k< +n. (Lem. 4.7.3.2,4.7.3.3)
P

= kO:Nat k:Nat © Nmod(g:: inm(remeve(ko;quH); k(l, ngn))
| test(k®qzn) " k< >+ n”ko= Kjo . (sum elim.)
P

= kO:Nat k:Nat © Nmod(g:: inm(remeve(ko;quH); k(l, ngn))
I test(k®%qjzn) ~ k = (" div2n)2n + k®
“j2n KO< Tjont NN k0= Kjon .

P
+ onat . knat ©Nmod(g:=inm(retrieve(k® gjzn); K% gjzn))
I test(k®%qjzn) ® k = S(div2n)2n + k®
KO+ n < “jan A KO= Kjon . (Lem. 4.7.1.4,4.7.1.5)

= wonat © Nmod(g:=inm(retrieve(k® gjzn); k% gjan))
/ teSt(kO;qun)A \j2n k0< \j2n +n” kO: ko.

+ onar ©Nmod(g:=inm(retrieve(k’ gjzn); kC gjzn))
I test(k% gjon) A KO+ n< Vjon A kKO= KO, (sum elim., Lem. 4.7.1.3)

P
= onat ©Nmod(g:=inm(retrieve(k’ gjzn); K’ gjzn))
| test(k% qjzn) . (seebelow)

4.8 Correctnessof N mogd 95

The last equality follows from the following derivation:

— N N

test(K% Qi2n)

test(k%2n; Qon) (Lem. 4.7.3.1)
* k9 < #n (Inv. 4.7.8.7,4.7.8.15,4.7.8.18)
in-window(jon : K92n: C + N)jon) (Lem. 4.7.3.9)
ko+ n< ‘j2n — ‘j2n ko< ‘j2n +n

_k%® Cjzn+ 2n (Lem. 4.7.1.1,4.7.3.8)
KO+ n< Yjon _Vjon K9< Tjon + n (Lem. 4.7.1.2,4.7.3.1)

C k< p) deletgk;g)jan = deletgk;gjzn).
By Invariant 4.7.8.1,k<p length(g). Sothis followsfrom Lemma4.7.5.4.

length(g) = length(gjzn).

This follows from Lemma 4.7.5.1.

p< length(g)) (° last-se(g) < %+ n=

in-window(*%zn ; last-se(g)jzn; (" J2n + N)i2n)).

Since 0 < length(g), Lemmas 4.7.5.5, 4.7.5.6, and 4.7.5.10 yield
memter(last-dat(g); last-sey(g); g). Soin combination with Invariant
4.7.8.22, this implies next-empty("%q® last-seg(g) + n. Hence,
by Lemma 4.7.4.3,°° last-seg(g) + n. Furthermore, by Invariant
4.7.8.8, last-sgy(g) < m, by Invariant 4.7.8.18,m " + n, and by
Invariant 4.7.8.17, "%+ n. Hence, last-se(g) < %+ 2n. Soby
Lemmas4.7.3.7and 4.7.3.8,

0 last-sey(g) < "% n = in-window("Yzn; last-s&y(g)izn; ("°+ Nn)jzn).
And by Lemma 4.7.1.1,("°+ n)jan = ("Y2n + N)jon.

p< length(g)) inb(last-dat(g); last-se(g); d)jzn =
inb(last-dat(gjzn); last-se(gjzn); f2n).

This follows from the de nitions of bu ers modulo 2n, and Lem-
mas4.7.5.5,4.7.5.6,4.7.5.2and 4.7.5.3.

p< length(g)) delete-las{g)j.n = delete-las{gj2n).
This follows from Lemmas4.7.5.7and 4.7.5.4.

(% last-sey(g) < "%+ n)
. ¢ in-window(9zn; last-say(@)jzn; (*Gan + N)jan).
This follows immediately from the seconditem of the previous case.

p < length(g)) delete-las{g)j.n = delete-las{gj2n).
This follows immediately from the fourth item of the previous case.

test("% g9 = test("Y2n; q%2n).
This follows from Lemma 4.7.3.2together with Invariant 4.7.8.10.

test("%)) (retrieve("%) = retrieve(3zn; dJ2n)).
This follows from Lemma 4.7.3.3together with Invariant 4.7.8.10.

96 Chapter 4 Verifying a Sliding Window Protocol in CRL

S(‘O)jZn = S(‘an)jZn-
This follows from Lemma 4.7.1.1.

remove % a)jzn = remove Yan; of2n).
This follows from Lemma 4.7.3.4together with Invariant 4.7.8.10.

H inm(next-empty("% o¥jzn; g%j2n = inm(next-emptyizn (Gzn; dF2n); 9%20)-
By Lemma 4.7.3.6and Invariant 4.7.8.10,
next-empty("% gjan = next-emptyjon ((92n; d92n). Sothe desired equality
follows the de nition of mediums modulo 2n.

I k< p®) deletgk;gjzn = deletek; g%zn).
By Invariant 4.7.8.2,k < p® length(g9). Sothe desired equality follows
from Lemma 4.7.6.3.

K length(g®) = length(gY2n).
This follows from Lemma 4.7.6.1.

p°< length(g®)) last-sey(g)jzn = last-se(g%zn)jzn -
This follows from Lemmas4.7.6.4,4.7.6.2and 4.7.1.1.

release(’; last-se(g%; q)j2n = releasgon (Cjon; last-se(gYjzn; Gion)-

By Lemmas4.7.6.4and 4.7.6.8,the condition p®< length(g® implies
memter(last-sey(g?); g%. Soby Invariant 4.7.8.6," last-sey(g®). By
Invariants 4.7.8.3and 4.7.8.12,last-se(g9) next-empty("%q) m.
And by Invariant 4.7.8.18,m "+ n. So" last-se(g®) "+ n.
Furthermore, by Invariants 4.7.8.7,4.7.8.15and 4.7.8.18,test(i; g))

) i <+ n. Hence,the desired equation follows from Lemma
4.7.3.5.

p’< length(g?)) delete-las{g%)j.n = delete-las{gYzn).
This follows from Lemmas4.7.6.3and 4.7.6.5.

Hence, N mod (j2n; Mjzn; dizn; " Y2n; 032n: Gizn: P %20 P9 is a solution for the
de ning equation of N nonmo a (; M; 0; "% q% g; p; g% p%. Soby CL-RSP, they are
strongly (and thus branching) bisimilar.

4.8.2 Correctness of N nonmo d

We prove that N nonmo ¢ iS branching bisimilar to the FIFO queueZ of size 2n
(seeSection 4.5.2), using the conesand foci method [54].
Let abbreviateNat Nat Buf Nat Buf MedK Nat MedL Nat.
Furthermore, let : denote (; m;q; %% g;p;g%pY). The state mapping
) List, which maps states of N nonmo ¢ 10 States of Z, is de ned by:

() = qT %:next-empty("®)i ++ glnext-empty(" % ¢¥) ::mi

Intuitiv ely, collects the data elemerts in the sending and receiving windows,
starting at the rst position of the receivingwindow (i.e., *9 until the rst empty

4.8 Correctnessof N mogd 97

position in this window, and then cortinuing in the sendingwindow until the
rst empty position in that window (i.e., m). Note that is independert of
Y 0;p; 0% p% we therefore write (m; o; "% o).

The focus points are those states where either the sendingwindow is empty
(meaning that * = m), or the receiving window is full and all data elemeris in
the receiving window have been acknowledged, meaningthat ~ = "%+ n. That
is, the focus condition for N nonmo a (; m; @; "% 0% g; p; g% p9 is

FCCimg %l gpaip®) == "=m_"="%n

Lemma 4.8.1 Foreath : wherethe invariants in Lemma4.7.8 hold, there is
l.

Pro of. By Invariants 4.7.8.12and 4.7.8.13,next-empty("% g% minfm; %+ ng.
We prove by induction on minfm; *%+ ng next-empty("% Y that for ead state
where the invariants in Lemma 4.7.8 hold, a focus point can be reached by a
sequenceof internal actions.
Basis: next-empty("% g% = minfm; %+ ng.
Let y = length(g®) and x = next-empty("%q”) at state . By summand H,
we reach a state © with g° := inm(x;g%. Hence, at state ° there exists a
0 k < y sud that return-seg(k;g% = x and return-seq(i; g% 6 x for any
k <i<y. Inview of Invariant 4.7.8.5,k < i <y) x> return-seqi; g9. Then,
by repeating summand J (p° times), we reach a state ®with p® = 0. Then,
by repeating summand K (y (k + 1) times), we reach a state °Osuch that
last-seg(g®) = x. During these executionsof H;J and K the valuesof m; % ¢°
remain the same. By again performing summand K , we reach a state " where
* = last-se(g) = x = minfm; %+ ng. Then "= mor > = %+ n, soFC(").
Induction step: next-empty("% g% < minfm; %+ ng.
Lety = length(g) and x = next-empty(*% ¢°) at state . By Invariants 4.7.8.4and
4.7.8.127 x < m. Soby Invariant 4.7.8.16,test(x;). Furthermore, in view of
Lemma4.7.4.3,"% x < % n. By summandB, we perform aninternal action to
astate 9with g:=inm(d;x; g) (where d denotesretrieve(x; g)). Hence,at state
Othereexistsa0 k < y sudh that return-seg(k; g) = x and return-seq(i; g) 6 x
for any k < i < y. Then, by repeating summandD (p times), we reach a state
Owith p = 0. Then, by repeating summandsE and F (y (k + 1) times),
we reach a state °Pwith last-dat(g) = d and last-seg(g) = x. During these
executionsof B;D;E and F, the values of m; ° remain the same; and since
during the executionsof E and F last-say(g) 6 X, in view of Lemma4.7.4.5,the
value of next-empty(" % ¢® remainsthe same. By again performing summandE,
we reach a state °Where q®:= inb(d;x; g). Recallthat x = next-empty("% 0.

next-empty(" % in (d; next-empty(" % ¢®; q9)
= next-emptyS(next-empty("% q¥); O (Lem. 4.7.4.6)
> next-empty("% %) (Lem. 4.7.4.3)

98 Chapter 4 Verifying a Sliding Window Protocol in CRL

So we can apply the induction hypothesisto conclude that from ©°%°% focus
point " can be reached by a sequenceof internal actions.

Theorem 4.8.2 For all e,
¢ o(Nnonmo a (0; 0; [1; 0; [1: [; 0: [0)) $_, Z(hi):

Pro of. By the conesand foci method we obtain the following matching criteria
(seeDe nition 3.2.3). Trivial matching criteria are left out.
Classl:

(p< length(g) » *° last-seg(g) < "%+ n)

) (Mg %) = (m;q; %inb(last-dat(g); last-sey(g); ¢°))

pP<length(g®)) (miq O = (m;release(’; last-sa(g?); 0); "% o)

Classl!:
m< - +n) length((m;q %)) < 2n
test("%c®) length((m;q; %c?) > 0
ClasslII:
(C=m_ =% n)~length((Mg %)) <2n)) m< +n
(C=m_"="%n)"length((m:q; %) >0)) tesi()
Class|V:
testC%q®)) retrieve(’%q®) = top((m;q; % qY)
ClassV:

m<'+n) (S(m);inb(d;m;q); %) = append(d; (m;q;*%d)
testC%q®)) (m; g SCY;remove % g9) = tail ((m; g %))

1.1 (p< length(g) » *° last-se(g) < "%+ n)
) (Mg %)= (m;q % inb(last-dat(g); last-sex(g); 4.
Let p < length(g). By Lemmas4.7.5.5,4.7.5.6and 4.7.5.10,
memter(last-dat(g); last-sey(Q); 9).

Case 1: last-sey(g) 6 next-empty("%). By Lemma 4.7.4.5,
next-empty(" % inb(last-dat(g); last-sey(g); @%) = next-empty("%q%). Hence,

(m; g; *% inb(last-dat(g); last-se(g); o))
= inb(last-dat(g); last-sey(g); O %:next-empty(" % i
+ g[next-empty(*% g% ::mi

Case 1.1: "0 last-sey(g) < next-empty("%).
By Lemma 4.7.4.2,test(last-seg(g); g%, so by Invariant 4.7.8.26and
memler(last-dat(g); last-se&)(g); g), retrieve(last-se&y(g); q°) = last-dat(g).

4.8 Correctnessof N mogd 99

(1)

(@)

Soby Lemma 4.7.7.7,inb(last-dat(g); last-se&(g) ; Q[%:next-empty("% V)i
= T %:next-empty("% 9)i.

Case 1.2: : ("% last-sey(g) < next-empty(*%q?%)). Using Lemma 4.7.7.8,
it follows that

inb(last-dat(g); last-seg(g); @[%:next-empty(* %)i
removelast-seg(g); inb(last-dat(g); last-sey(g); g%)
[%:next-empty("% ¢O)i

removelast-sey(g); O %:next-empty(" % i

qT %:next-empty(" % gO)i

Case 2: last-seg(g) = next-empty("%).
The derivation splits into two parts.

Using Lemma 4.7.7.8,it follows that

inb(last-dat(g); last-segy(g); Q[®:last-sey(g)i
removelast-dat(g); inb(last-dat(g); last-sey(g); g))[%:last-sey(g)i
removelast-dat(g); QO ®:last-sey(g)i

oY ©:last-seg(g)i

By Invariant 4.7.8.4," last-say(Q).

By Invariant 4.7.8.8 and memter(last-dat(g); last-sey(g); g), last-sey(g) <
m. Thus, by Invariant 4.7.8.16 tesf(last-sey(g);). Soby Invariant 4.7.8.23
together with memter(last-dat(g); last-sey(g); g), retrieve(last-sey(g); q) =
last-dat(g). Since™ S(last-sey(g)) m, by Invariant 4.7.8.27,

qqS(last-segy(g)) ::next-empty(S(last-sey(g)) ; i
= q[S(last-se&(Q))::next-empty(S(last-s&(q)); q9)i

Hence,

inb(last-dat(g); last-seg(g); o°)
[last-sey(g) ::next-empty(S(last-seg(g)) ; O)i
= inl(last-dat(g); inb(last-dat(g); last-sey(g); q°)
[S(last-sey(Q)) ::next-empty(S(last-se&(q)); q9)i)
= inl(last-dat(g); removelast-segy(g); inb(last-dat(g); last-sey(g); qY)
[S(last-seg()) ::next-empty(S(last-seg(g)); i) (Lem. 4.7.7.8)
= inl(last-dat(g); removelast-sey(g); o°)
[S(last-sey(Q)) ::next-empty(S(last-se&()); q9)i)
= inl(last-dat(g); q[S(last-sey(g)) ::next-empty(S(last-sey(g)) ; V)i)
(Lem. 4.7.7.8)
= inl(last-dat(g); q[S(last-seg(g)) ::next-empty(S(last-seg(g)) ; q0)i)
(seeabove)
= (last-sey(g)::next-empty(S(last-s&(q)); q9i

100

1.2

1.1

1.2

1.1

Chapter 4 Verifying a Sliding Window Protocolin CRL

We combine (1) and (2). Recall that last-seg(g) = next-empty(" % d9).

(inb(last-dat(g); last-se&y(g); 99

[%:next-empty(" % inb(last-dat(g); last-sey(g); g¥)) i)

+ g[next-empty(* % inb(last-dat(g); last-seg(g); qV) ::mi
= inb(last-dat(g); last-sey(g); qA[" %:next-empty(S(last-sey(g)) ; ¢O)i

++ g[next-empty(S(last-sey(g)) ; g% ::mi (Lem. 4.7.4.6)
= (inb(last-dat(g); last-se&y(g); [%:last-sey(g)i

+ inb(last-dat(g); last-sey(g); o°)

[last-seg(g) ::next-empty(S(last-sey(g)) ; i)

+ g[next-empty(S(last-seg(g)); o°)::mi (Lem. 4.7.4.3,4.7.7.5)
= (o %:last-segy(g)i ++ g[last-seg(g)::next-empty(S(last-seg(g)) ; QO)i
+ g[next-empty(S(last-se&(g)); g0 ::mi (1), (2))

= oY %last-sey(g)i++ qflast-sey(g)::mi (Lem. 4.7.7.1,4.7.4.2,4.7.7.5)

p°< length(@®)) (m;q;° %) = (m;release; last-sey(g9); g); % 9.
p% length(g%, soby Lemmas4.7.6.4and 4.7.6.8, memler(last-sey(g%); g9.
By Invariant 4.7.8.3,last-sey(g% next-empty("% ¢¥). Soby Lemma4.7.7.9,

releasq; last-sey(g%; g)[next-empty(" % g ::mi = g[next-empty(" % g% ::mi
m< +n) length((m;q %)) < 2n.
Letm< "+ n.

length(qT %:next-empty(" % g9)i + gnext-empty("% g ::mi)
= length(qT %:next-empty("% g9i)

+length(qinext-empty("% g% ::mi)) (Lem. 4.7.7.2)
= (next-empty("%q))+ (m ' next-empty("%) (Lem. 4.7.7.4)

n+(m) (Inv. 4.7.8.13,4.7.8.4)
< 2n

test("% %)) length((m;q; %)) > 0.

test("% o) together with Lemma 4.7.4.3yields

next-empty("%) = next-empt(S(9;) S(C9. Hence, by Lemmas
4.7.7.2and 4.7.7 .4,

length((m; q; %)
= (nextempty("%q) © ")+ (m * next-empty("% o))
> 0

(C=m_"="%n)"length((m;q; %)) <2n)) m< +n.
Case 1: "= m. Then m < " + n holds trivially .

4.8 Correctnessof N mogd 101

1.2

V.1

Case 2: "= O+ n.

length((m; g; %)
= (nextempty("%¢) 9
+(m ° nextempty("% %)) (Lem. 4.7.7.2,4.7.7.4)
(C%n) " "9+ (m) (Inv. 4.7.8.13,4.7.8.4)
= n+(m ")

Solength((m; ;"% qg%)) < 2n impliesm < * + n.

(C=m_"="%n)~length((m;q; %)) > 0)) test%O.

Case 1: "= m. Thenm * next-empty("%g® m ° * (Inv. 4.7.8.4)= 0.
Hence,

length((m; q; %)

(next-empty("%) 9

+(m * nextempty("%q?)) (Lem. 4.7.7.2,4.7.7.4)
next-empty("% g% © O

Hence, length((m; g; % g%) > 0 yields next-empty("% g% > % which im-
plies test("% ¢9).

Case 2: ~ = "%+ n. Then by Invariant 4.7.8.4,next-empty("%) %+ n,
which implies test("%).

test("%q®)) retrieve("%) = top((m; g %).
test("% g¥) implies next-empty("% ¢ = next-empty(S(9; ¥ SCY (Lem.
4.7.4.3). Hence,

qT %:next-empty("% V)i
= inl(retrieve("% o°); qqS(9::next-empty(" % g9i)

So
top((m; g;"% %)
= top(inl(retrieve(" % g%; gIS(9 ::next-empty(" %)i
+ g[next-empty(*% g% ::mi))
= retrieve(’%)

m<+n) (S(m);inb(d;m;a); %) = append(d; (m;q; %).

qT %:next-empty(" % oO)i ++

inb(d; m; g)[next-empty("% q°)::S(m)i
= T %:next-empty("% qO)i ++

append(d; ginext-empty("% g% ::mi) (Lem. 4.7.7.6,Inv. 4.7.8.12)
= append(d; qT %:next-empty("% q¥)i ++

gnext-empty("% ¢ ::mi) (Lem. 4.7.7.3)

102 Chapter 4 Verifying a Sliding Window Protocol in CRL

V.2 testC%q)) (m;q;S(CY;remove % g?) = tail ((m; q; % qY).
test("% ¥, together with Lemma 4.7.4.3implies next-empty("% ¢©) =
next-empty(S(C9;) S(Y. Hence,

remove"% O[S("9::next-empty(S("Y; remove" % V)i

+ g[next-empty(S("9; remove"% V) ::mi

remove % qA[S("9::next-empty(S(9);)i

+ g[next-empty(S("9; g ::mi (Lem. 4.7.4.7)
remove % qO[S(9::next-empty(" % g9i + glnext-empty("% g9 ::mi
qIS(9 ::next-empty("% g)i + gnext-empty("% g% ::mi (Lem. 4.7.7.8)
tail (g %:next-empty(" % g9i + g[next-empty(" % g% ::mi)

4.8.3 Correctness of the sliding windo w proto col

Finally, we can prove Theorem 4.5.1.

Pro of.
1 (@ (S(0;0;[) kR(O; [1) kK (0" ;0) k L(0";0)))
$ 1 (Mmoa(0;0;[;0;[1; 0% ;0; 1" ; 0)) (Thm. 4.6.1)
$ cig(Nmoa(0;0;[1;0;[1; 0 ;0;0%: 0) (Thm. 4.6.2)
$ fcj g(N nonmo d (0; O; [1; 0; [];DK ;0; DL ;0)) (Thm. 4.6.3)
$, Z(hi) (Thm. 4.8.2)

4.9 Conclusions

In this chapter, we have proved the correctnessof a sliding window protocol
with an arbitrary nite window size n and sequencenumbers modulo 2n. We
showed that the sliding window protocol is branching bisimilar to a queue of
capacity 2n. This proof is ertirely basedon the axiomatic theory underlying

CRL and the axioms characterizing the data types,and was cheded with the
help of PVS. It implies both safety and livenessof the protocol.

Chapter 5

A Note on K -state Self-Stabilization in
a Ring with K = N

5.1 Intro duction

In his seminal paper [40], Dijkstra introducedthe notion of self-stabilization. A
distributed system is said to be self-stabilizing if it satis es the following two
properties:

1. convergene: starting from an arbitrary state, the systemis guaranteedto
reach a stable state;

2. closure: oncethe systemreadesa stable state, it cannot becomeunstable
anymore.

A systemwith the property of self-stabilization can have the advantagesof fault
tolerance, robustnessfor dynamic topologies,and straightforward initialization.

Consider a system with a number of processessharing a common resource
(usually called critical section). Given an arbitrary initial state of the system,
there might be more than one processenabledto accesshe common resource.
The problem of mutual exclusion is to guarantee that the common resource
cannot be accessedoy more than one processsimultaneously. Self-stabilizing
algorithms for mutual exclusionmake surethat ead in nite run of the system
reachesa stable state where exactly one processis enabled; and from then on,
mutual exclusion of the common resourceis guaranteed.

In [40], Dijkstra presened three elemenary self-stabilizing algorithms for
mutual exclusion on a ring network: an algorithm with K -state processesan
algorithm with four-state processesand an algorithm with three-state processes.
Regarding their correctness,he wrote:

\F or brevity's sake most of the heuristics that led meto nd them,
together with the proofs that they satisfy the requiremerts, have
beenomitted, [...]".

103

104 Chapter 5 A Note on K -state Self-Stabilization in a Ring with K = N

After more than ten years, Dijkstra [42] published a proof of self-stabilization of
his algorithm with three-state processesand acknowledgedthat the veri cation
was actually not trivial.

In this chapter, we focuson Dijkstra's algorithm with K -state processesWe
considera system of N + 1 processesnumbered from O through N, arranged
in a unidirectional ring. Each processp; has a counter v(i) that can hold a
value from O0to K 1. Each processcan obsene its own counter value and the
counter value of its anti-clo ckwise neighbor. pg is a distinguished processthat is
enabledwhen v(0) = v(N), and when enabled,it canincremert its counter by
1 modulo K. Each processp; fori = 1;:::;N is enabledwhenv(i) 6 v(i 1),
and when enabled, it can update its courter value sothat v(i) = v(i 1). Thus
the behavior of the system can be preserted as follows:

Dijkstra’'s K -state algorithm for mutual exclusion.

if v(i)6 v(i 1)fori=1;:::;N,thenv(i):=v(i 1).

The system is said to be in a stable state if it contains exactly one enabled
process,which can be interpreted as holding a token. This token can be passed
along the ring network; a processcan accesshe commonresourceonly when it
holds the token.

This algorithm has been proved correct by di erent proof methods for self-
stabilization, e.g. [172 167, 16§. It attracted much attention from the formal
veri cation community. There are two distinct traditions in automatic veri ca-
tion: theorem proving and model chedking. Merz [124] formalized the algorithm
and proved it correct in Isabelle/HOL [13(. Qadeerand Shanlkar [144] applied
PVS [13] to prove its correctness. Later on, Kulkarni et al. [10€] also proved
its correctnessusing PVS in a di erent fashion. Model cheking techniqueswere
applied to this algorithm in [159 169. Due to the state explosionproblem, this
approach has somerestrictions: it cannot be directly usedfor any possibleini-
tial state, and/or it can only prove the algorithm correct with a limited number
of processesand states.

However, all these proofs only showed correctnessof the algorithm under a
weaker condition, namely the algorithm is correctif K > N. This alsohappened
in Schneider's survey paper on self-stabilization [153. The only exception we
could nd is [106. Although they proved the algorithm correct for K > N,
almost at the end of the paper, they stated:

\it is possibleto prove stabilization when K N{ we will need
to redo only the proofs that depend on this assumption, namely
Lemmas6.4, 6.6, 6.8."

However, the validity of this claim is not clear, especially their formulation of
Lemma 6.4 is falsewhenK = N.

5.2 Proof of Self-Stabilization 105

Judging on the literature, it seemsto be a common belief that Dijkstra's
K -state mutual exclusionalgorithm on aring only stabilizeswhenK > N. But
in fact, Dijkstra gave a note after preseriing the solution with K -state machines
in [40] asfollows:

\Note 1. [...] the relation K N is sucien t."
A brief informal proof sketch was given by himselfin [41]. In addition, he said:

\(and for smaller valuesof K counter exampleskill the assumption
of self-stabilization.)"

We note that, if K = N, there should be at least three processesn the ring;
namely, if K = N = 1, then clearly pg is always enabledand p; is never enabled.
If K > N, then the algorithm alsoworks for a ring with two processes.

In this chapter, we formally provethat if N > 1, then K N is sucient
for the stabilization of Dijkstra's K -state mutual exclusion algorithm. For the
condition K > N, the proofsin [172 167, 144, 124, 10 usedthe classicpigeon-
hole principle. The proof for K = N becomesconsiderably more complicated,
sincethe pigeonholeprinciple cannot be simply applied for any state of the al-
gorithm. This will be explained in detail in Section 5.3. Our proof, which is
dierent from the proof sketch in [41], hasbeenchededin PVS.

Outline of the chapter. In Section 5.2, we show that Dijkstra's K -state
mutual exclusionalgorithm on a ring also stabilizes when the number of states
per processis onelessthan the number of processe®n the ring, namely K N.
We formalized the algorithm and cheded our proof in PVS. Our veri cation in
PVS is basedon [144], we reusedtheir formalization of the algorithm and most
of their lemmas. We present the crucial lemmas of our PVS veri cation in
Section5.3. In Section5.4, we show that K N is sharp by a counter-example,
which was missingin [41]. Section5.5 contains someconclusions.

5.2 Pro of of Self-Stabilization

We give the proof that Dijkstra's K -state mutual exclusionalgorithm on a ring
stabilizeswhenK N. First we provethe closureproperty for self-stabilization
(seeProposition 5.2.2).

Lemma 5.2.1 In ead state of the algorithm, there is at least one enabled
process.

Pro of. We distinguish two cases:

106 Chapter 5 A Note on K -state Self-Stabilization in a Ring with K = N

Lemmab.2.1limplies that norun of the algorithm ever deadlocks, asin ead state
the enabledprocess(es)can\re", meaningthat the counter value is updated.

Prop osition 5.2.2 Once in a stable state, the system will remain in stable
states.

Pro of. We assumep; is the only enabled processin some stable state. It is
easyto seethat whenp; res, it makesitself disabled,and it makesat most p;'s
clockwise neighbor enabled. By Lemma 5.2.1, in ead state of the algorithm,
there exists at least one enabled process. Therefore, after the ring of p;, the
clockwise neighbor of p; is the only enabledprocess,sothe systemremainsin a
stable state.

We proceedto provethe convergenceproperty for self-stabilization (seeThe-
orem 5.2.5).

Lemma 5.2.3 In ead innite run of the algorithm, po res in nitely often.

Pro of. Given a state, considerthe sum over all elemerts in the setfN i j

strictly decreasesFurthermore, for eadt state, this sumis at least 0. Hence,in
ead in nite run, pp must re in nitely often.

De nition 5.2.4 The legitimate states are those states that satisfy v(i) = x
foralli < jandv(i) = (x 1)modK for all j i N, for somechoice of
x< K andj N.

Note that a legitimate state is stable, asonly p; is enabled.

Theorem 5.25 Let N > 1. Evenif K = N, Dijkstra's K -state mutual exclu-
sion algorithm for N + 1 processestabilizes.

Pro of. By Lemma 5.2.1, no run of the algorithm deadlocks. By Lemma 5.2.3,
in eadh in nite run of the algorithm py res in nitely often.

Let N > 1. We prove that ead innite run of the algorithm visits a le-
gitimate state. Consider the casewhere py res for the rst time. Then just
before that, v(0) = v(N) = y for somey, and the new value of v(0) becomes
(y+1) mod K. Now considerthe casewhenpy res again. Then just beforethat,
v(0) = v(N) = (y+ 1) mod K. In order for py to changeits counter value from
y to (y+ 1) mod K, it must have copied (y + 1) mod K from its anti-clo ckwise
neighbor py 1. This momert must have occurred after p, changedits courter
value to v(0) = (y + 1) mod K. But then, just after py copies(y + 1) mod K
from py 1, we actually have v(N 1) = v(N) = (y+ 1) mod K. In other
words, since N > 1 implies that py 1 6 po, two dierent nonzero processes
hold the samecounter value (y+ 1) mod K. Then the N nonzeroprocesse$old

5.3 Mechanical Veri cation in PVS 107

at most N 1dierent counter valuesfrom f0;:::;K 1g. When K N (so
in particular when K = N), then at this point in time there is an x < K that
doesnot occur asthe cournter value of any nonzeroprocessin the ring.

Sincepy res in nitely often, evertually v(0) becomesx. The other processes
merely copy counter valuesfrom their anti-clo ckwise neighbors, so at this point
no other processholds x. The next time py res, v(N) = v(0) = x. The only
way that py getsthe counter value x is if all intermediate processe$ave copied
x from po. We concludethat all processesave the counter value x, which is a
legitimate state.

Dijkstra [41] gave a speci ¢ scenarioto shaw that the systemwill de nitely
reach a legitimate state, after po has beenenabledfor N times. In most cases,
a legitimate state can be detected earlier than in that scenario,as shown in the
above proof.

5.3 Mechanical Verication in PVS

In [144], Qadeerand Shanlkar preserted a detailed description of a medanical
veri cation in PVS of stabilization of Dijkstra's K -state mutual exclusion al-
gorithm. Although they only cheded the correctnessof the algorithm under
the condition K > N, their PVS formalism and proof could for a large part be
reused? which saved us much e ort and gave us many insightful thoughts on
the veri cation in PVS.

First, we presert Qadeerand Shanlar's claimsto sketch their proof skeleton.
Then we show the lemma that we had to adapt for our proof. The algorithm
satis es the following properties, for ead state of the system, and ead in nite
run from this state:

I. there is always at least one enabled process;
I1. the number of enabledprocessesever increases;
I11. the enablednessf eadh processis evertually toggled;

IV. po evertually takeson any cournter value below K (follows by Property

1);

Theseproperties require no restriction on the relation betweenN and K. Prop-
erty | corresppndsto Lemma 5.2.1. Property |1 follows the fact that when a
processres, it makesitself disabled, and it makesat most its clockwise neigh-
bor enabled. Property Ill is a more general version of Lemma 5.2.3. Qadeer
and Shanlar's PVS proof of these rst four properties could be (more or less)
reusedby us directly.

(follows by Property 1V, and the proof of Theorem 5.2.5);

1The URL http://www.csl.sri.com/ pvs/exa mples/s elf - st abil ity / contains their PVS
formalization and proofs.

108 Chapter 5 A Note on K -state Self-Stabilization in a Ring with K = N

VI. evertually v(0) = x,andv(i) 6 x foralli 2 f1;:::;Ng; then pg is disabled

VII. the systemis self-stabilizing (follows by properties VI, I, and 11).

The proof of Property V usesthe pigeonholeprinciple, which statesthat if each
of n+ 1 pigeonsis assignedto one of n pigeonholesthen somehole must corntain
at least two pigeons. This principle was also formulated and proved in [144].

lemma correspondsto Property V. It states that the nonzeroprocessesio not
cortain all the possiblecounter values.

Lemma 5.3.1 (Lemma 4.13in [144) If K > N, then 9x < K (x 625(v)).

Under the condition K > N, this can be informally proved as follows [144]:
there are N nonzero processesand henceat most N distinct courter values
at these processesif there are K (K > N) possiblecounter values, then there
must be somex < K that is not the counter value at any nonzeroprocess.

If we relax the condition to K N, the above proof fails, becausethe
pigeonhole principle does not apply when the number of pigeons equals the
number of pigeonholes.

Starting from this point, we assumethat K N. We de ne T(v) to denote
the setfx < K j9i 2 f1;:::;N 1g(v(i) = x)g. In the following lemma the
pigeonholeprinciple doesapply.

Lemma 5.3.2 9x < K (X 62T (Vv)).

Pro of. T(v) contains at most N 1 distinct counter valuesat processegrom
p1 to py 1. If thereare K (K N) possiblecounter values, then there must
be somex < K with x 62T (V).

To ched the proof of Lemma 5.3.2 in PVS, we could simply follow the PVS
proof stepsof Lemma 5.3.1in [144]. Now we intro duce an extra lemma.

Lemma 5.3.3 v(N)2 T(v)) S(v)= T(v).
Pro of. This is straightforward by the de nitions of S(v) and T(v).

In PVS, Lemma 5.3.3 could be proved by using existing PVS libraries for the
nite cardinalities. Now we presert the main lemma for our PVS proof, corre-
sponding to Lemma 5.3.1in [144] (Property VI).

Lemma 5.3.4 Each innite run of the algorithm evertually reades a state
where the nonzeroprocessesio not cortain all the possiblecourter values.

Pro of. We know from Property Il that py will evertually re. By the algo-
rithm, we then have v(N) = v(N 1), sothat v(N) 2 T(v). By Lemma5.3.3,
S(v) = T(v). By Lemma 5.3.2, we can nd an x < K with x 62T(v), so
X 62S(v).

5.4 K = N is Sharp 109

After proving Lemma 5.3.4, and reusing (more or less)the lemmasand the
PVS proof stepsfor properties VI and VI 1 in [144], we could mechanically prove
self-stabilization of Dijkstra's K -state algorithm in PVS.

54 K = N is Sharp

In this section, we give a counter-example shawing that a smaller value of K
would kill self-stabilization. For example, in Figure 5.1 (which assumesthat
N 3), we have a systemwith K = N 1, meaning that ead processcan

Po Po
PN . PN p1
PN 1 P2 PN 1 P2
PN 2 P3 PN 2 P3
Inital state — Step: 2 -
;
Po Po
PN . p1 b PN p1
PN 1 P2 PN 1 1 P2
PN 2 P3 PN 2 N 2 P3
Step: N +1 - Step: N 1

Figure 5.1: A courter-example: aring with K = N 1

We have a run as follows:
Step 1: py res and makespy enabled;

Step 2: pn 1 res and makespy enabled;

StepN 1: p, res and makesps enabled;

Step N: p; res and makesp, enabled;

110 Chapter 5 A Note on K -state Self-Stabilization in a Ring with K = N

Step N + 1: pg res and makesp; enabled.

From the initial state, after the above N + 1 steps(all processesdiave red only

once), the systemendsin a state where the counter values of the processesare

symmetric (modulo N 1) to the initial state, soit still hasN enabledprocesses.
This scenariocan be executedin nitely often without breaking the symmetry.

Sothe systemwill never reac a legitimate state. Thus K = N is sharp!

5.5 Conclusions

Judging on the literature on self-stabilization, it seemso be commonbelief that
Dijkstra's K -state algorithm on a ring stabilizeswhen K > N. In this chapter
we show that, cortrary to this commonbelief, the algorithm alsostabilizeswhen
the number of states per processis onelessthan the number of processe®n the
ring (namely K = N). Our proof wasformalized and chedked in PVS, basedon
[144). We have given a counter-example shawing that K = N is indeed sharp.

One important fact (Lemma 5.3.4) used in our proof is that the nonzero
processesdo not contain all the possible counter values. By this obsenation,
together with the fact that ead processis in nitely often enabled,we can prove
that ead innite run of the algorithm will reach a legitimate state. For the
caseK > N, this fact can be proved using the pigeonholeprinciple, asis done
in [172 167, 144, 124, 106. For the caseK = N in this chapter, we choosethe
momert that py is enabledand res, which makesv(N) = v(N 1). After that
we can apply the pigeonholeprinciple. Another important fact (Lemma5.2.2)is
that whenewer the systemreadesa stable state, it will remain in stable states.
Thus we have proved the properties for self-stabilization.

Regarding the veri cation in PVS, we downloadedthe PVS code and proof
by Qadeerand Shanlar. Following their proof stepsin PVS, we simply addeda
newde nition of T (v), provedtwo newlemmas(Lemma5.3.2and Lemma5.3.3),
and adapted onelemmaaslLemma5.3.4. The whole veri cation did not taketoo
much e ort. First, we spert a few days to understand the formalism and proof
in [144. Since the PVS system, including PVS libraries, has been updated
after 1998, the downloaded PVS proof could not be simply rerun. We made
someadaptions to make their PVS proof work again. After that, when we had
the idea to prove (as shown in Section 5.2) the algorithm correct under the
condition K = N, the proof was completely chedked in PVS within one day.
The les containing our PVS formalization and proofs can be found at the URL
http://www.cwi.n I/ ~pangjun /s ta bil iz ati on/.

Part 11

Mo del Checking

111

Chapter 6

Analysis of a Distributed System for
Lifting Trucks

6.1 Intro duction

This chapter reports on the analysisof a real-life systemfor lifting trucks (lorries,
railway carriages, busesand other vehicles). The system consistsof a number
of lifts; ead lift supports one wheelof the truck that is being lifted and hasits
own micro-controller. The controls of the di erent lifts are connectedby means
of a network. A special purpose protocol has been developed to let the lifts
operate synchronously.

This system has beendesignedand implemented by a Dutch compary, that
is specializedin the designof embedded systems. When testing the implemen-
tation the dewvelopers found three problems. They solved these problems by
trial and error, partly becausethe causesof two of the three problems were
unclear. In closecooperation with the developers, we speci ed the lift systemin

CRL. Next, we analyzedthe resulting speci cation with the CRL tool setand
CADP. The three known problems turned up in our speci cation (which adds
to our con dence that the speci cation is closeto the actual implementation).
In addition we found a fourth error. This error was unknown and found its
way into the implemenrtation of the lift system. We incorporated solutions for
these problems in the speci cation. We have analyzedthe CRL speci cation
that results from the incorporation of the proposedsolutions, shawing that this
speci cation meetsthe requiremerts of the dewvelopers.

However, this happenedindependertly of the dewelopers, who decided not
to wait for the results of the formal analysisin CRL and to redesign their
implemenrtation basedon their own solutions. To distinguish betweenthe two
lift systems,we call the rst lift system “original design' and the one with the
solutions of the developers ‘redesign'.

The dewvelopersexperienceda new problem in the redesign. Again the reason
wasunclear. Sincethe error tracesdisplayed aregular pattern in time, the devel-
opers thought modeling exact timing might reveal the reasonfor this problem.
In the CRL speci cation, time is abstracted away. We could extend the CRL

113

114 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

model with exact timing information, but there is no automated veri cation
tool set for timed processalgebras. Therefore it was decidedto use UPPAAL
[111], which is atool set for validation and model cheding of real-time systems.
The UPPAAL model of the redesignwas achieved in seeral steps. First the
CRL model was translated into UPPAAL. Then the UPPAAL model was re-
ned to moveit closerto the real system;ead lift is split into two componerts,
where one componert communicates with the other lifts and the other compo-
nent can receiwe input from the environment. The dewelopers' solutions for the
aforemertioned problems were adopted. After discussionswith the developers,
exact timing information was added. The requiremerts for the lift systemwere
formulated in UPPAAL, using its requiremert speci cation languageand test
automata, and model cheded. Using the graphic simulation tool in UPPAAL,
we detected the reasonfor the new problem, which the dewelopers encourtered
in the redesign. We proposea new solution, which is basedon the solution that
was already put forward in the analysis of the original design. The UPPAAL
model with the new solution satis es all the requiremerts.

The dewvelopers acknowledgethe e ciency and usefulnessof formal veri ca-
tion for their redesign. Our solution is being implemented in the new releaseof
the lift system;they are now more con dent in the correct functioning of the
redesignedlift system.

Outline of the chapter. This chapter is organized as follows. After this
intro duction, we give an informal speci cation of the lift systemin Section6.2.
Next we discussthe requiremerts which the systemshould satisfy in Section6.3.
From Section6.4to Section6.6, we presen the analysisof the original designof
the lift systemin CRL. From Section6.7to Section6.9, we presert the analysis
of the redesignof the lift systemin UPPAAL. We show that the solutions of the
dewelopers do not solve these problems found in the original designcompletely,
while a re ned version of our solution in the CRL speci cation does. We
concludethis chapter in Section6.10.

6.2 Description of the Lift System

First, we explain the generallayout of the lift system (Section 6.2.1). Then we
explain the manner in which lift movemen is controlled (Section 6.2.2).

6.2.1 Layout of the lift system

The system studied in this chapter consists of an arbitrary number of lifts.
Each lift supports one wheel of a vehicle being lifted. The systemis operated
by meansof buttons on the lifts. There are four such buttons on ead lift: up,
down, setref and axle . The systemknows three kinds of movemerts. If the
up or down button of a certain lift is pressed,all the lifts of the systemshould
go up, respectively down. If the up (or down) button is pressedtogether with
setref , only onellift (the one of which the buttons are pressed)should go up

6.2 Description of the Lift System 115

(or down). This allows the operator to adjust the height of a lift to inequalities
in the surfaceof the o or. If the up or down button is pressedtogether with
the axle button, the opposite lifts (and only those) are supposedto move up
or down, respectively. This is neededto replacethe axle of a truck. As dierent
trucks may have di erent numbers of wheels,the operator may add or remove
lifts to or from the system. We have only studied the rst kind of movemert.

Normally, the lifts contain a locking pin which is intended to prevert the lift
from moving down when motors fail, or oil is leaking from the hydraulic pumps
or valves. This pin restricts the movemert of the lifts. If onewants to move the
lifts over a larger distance this pin hasto be retracted. This detail is not taken
into accourt in our speci cation.

Lift movemert is controlled by meansof a micro-cortroller. In real life, the
lift cortroller canadopt eight di erent states. For our study the following states
areimportant: star tup , standby , up, and down. The meaningof thesestates
will becomeclear in the courseof the discussion.

The controllers of the dierent lifts belonging to a system are connected
to a CAN (Controller Area Network) bus [147] which is interrupted by relays
(seeFigure 6.1). Theserelays do not exist in real systems,they are part of the
protocol developed by the developers. The di erent cortrollers connectedto the
bus are called stations. There is a relay betweenevery pair of adjacert stations
and ead relay is cortrolled by the station at its left side.

The CAN busis a simple, low-cost, multi-master serial bus with error detec-
tion capabilities. Multi-master meansthat all stations can claim the bus at eath
bus cycle and seweral stations can claim the bus simultaneously, in which casea
non-destructive arbitration medanism determines which messages transmit-
ted by the bus. A messageon the bus is immediately received by all other
stations connectedto the sendingstation via closedrelays. The CAN protocol
doesnot use addresses.

In the lift system, the user data eld of the messagedransferred over the
bus cortains three piecesof information: the position of the sender station,
the type of the messageand the (measured) height of the sender'slift. There
are two kinds of messagesstate messagesand sync messages.State messages
report the state of the senderstation (e.g. startup , standby, up, down).
sync messagesnitiate physical movemert. In responseto a sync messagesach
station will immediately report its state to the motor of its lift. This means
that if the station is in the up state after a sync messagethe lift will move up
a xed distance;if the station is in the down state, the lift will move down a
xed distance; and if the station is in standby it will not move.

The system continuously chedks the heights broadcast in the messagego
determine if they do not di er too much. If there is somethingwrong an emer-
gency stop is brought about. This is not modeled in our speci cation as this
would increasethe number of states of the systemtremendously.

116 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

G
Lji —g

Figure 6.1: State of the relays before (left) and after (right) initialization

6.2.2 Control of lift movement

To assurethat all lifts move simultaneously in the samedirection, the station
initiating a certain movemert must verify whether all stations are in the appro-
priate state beforeit sendsthe sync message.

The CAN protocol allows seweral stations to claim the bus at the sametime.
Howewer, in the lift system, the stations are programmed in such a way that
(during normal operation) the stations take turns claiming the bus. They claim
the busin a xed order (clockwise in Figure 6.1).

To achieve this orderly usageof the bus, ead station must know its position
in the network. Furthermore, in orderto be ableto nd out whether all stations
are in the samestate, eat station must know how many stations there are in
the network. This is achieved by meansof a startup phasein which all the
stations cometo know their position in the network aswell asthe total nhumber
of stations in the network. This startup phaseis discussedbelow:

Startup

When the system is switched on, all the relays are open (seethe left part of
Figure 6.1).
In the startup phasetwo things might happen to a station:

The setref button of that station might be pressed. In this casethe
station will initiate the startup phaseas follows:
1. it storesthat it has position 1;
. it adopts the startup state;
. it closesits relay;
. it broadcastsa star tup message;

a b~ WD

. it opensits relay, this guaranteesthat this station will only receive a
star tup messagevhen all stations have determined their positions;

6.2 Description of the Lift System 117

6. it waits for a startup message;

7. it storesthe position of the senderof that messageas the number of
stations in the network;

8. it adopts the standby state;
9. it broadcaststhis state.

The station might receive a startup messagefrom another station. In
this case:

1. it adds1 to the position of the senderof that messageand storesthis
asits own position;

it storesits own position asthe number of stations in the network;
it adopts the startup state;

it closesits relay;

it sendsa startup messaggnote that unlike the previous part the

station doesnot openits relay, it will receive all subsequen star tup
messages);

6. { if it receivesanother startup messagdt storesthe position of
the senderof that messageasthe number of stations in the net-
work;

{ if it receivesa standby messageit adopts the standby state
(if the station has position 2 it will in addition initiate normal
operation by broadcasting a standby message).

o~ D

Assume, for example that in the system of Figure 6.1 the setref button
of station B is pressed. The station of this lift gets position 1. It closesthe
relay betweenB and C, broadcastsa startup message,and opens this relay
again. The startup messagdrom B is received by only one station (C). This
station draws the conclusionthat it has position 2. It subsequetly closesthe
relay to D and broadcastsa startup message. This messageis received by
only one station (D). This station draws the conclusionthat it has position 3,
closesthe relay to A and sendsa startup message.This messagéds received
by A and C. C draws the conclusionthat now there are three stations in the
network. A drawsthe conclusionthat it hasposition 4, closesthe relay to B and
broadcastsa star tup message.This messages received by B, C, and D. C and
D draw the conclusionthat now there are four stations in the network. Station
B draws the conclusionthat the circle is completed. It storesthe position of the
senderof that messagdg4) asthe number of stations in the network, adopts the
standby state and initiates normal operation by sendinga standby message.
This messageis received by C, D, and A which adopt the standby state in
response.

The result is that all stations are connectedin the manner pictured in the
right part of Figure 6.1, that all stations know how many stations there are in
the network and what their position is, and that all stations are in standby .
Normal operation starts when station 2 broadcastsits state.

118 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

Normal op eration

During normal operation, the rst station (with position 1) broadcastsits state
and height, then the next station broadcastsits state and height and soon, until
the last station has broadcastits state and height, after which the rst station
starts again.

receive SYNC, move(up) receive SYNC, move(up)

receive UP UP pressed

P released

receivé DOWN

STANDBY

receive SYNC

receivg UP
DOWN\pressed

receive DOWI receive DOWN

Down
Active

receive SYNC, move(dow

receive SYNC. move(down)

Figure 6.2: State transitions of an individual lift during normal operation

The transition diagram of ead lift during normal operation is sketched in
Figure 6.2.1 Initially all stations arein standby . A station in standby changes
to another state if one of its buttons is pressedor if it receivesa messagewith
another state. The station that is initiating a certain change (i.e. when it is
in standby and a button is pressed)is called the active station. All other
stations are passiwe. If the up or down button of a certain lift is pressedand
its station is in standby , that station becomesactive and changesits state to
up or down, respectively. When a passiwe station receivesa state messagejt
adopts the state in that message.An active station doesnot changeits state in
responseto state messages.The state of an active station changesonly if the
pressedbutton is released. In that caseits state changesto standby and the
station becomespassiwe again.

As said, physical movemert is initiated by a sync message. In order to
assurethat all lifts move in the samedirection, the active station will count
the number of messageshat cortain the intended state. The active station will
send a sync messageif and only if it has counted enough messageswith the

1Some actions of pressing or releasing a button are not represerted in this gure, since
those actions do not make any state transition of a lift during normal operation phase.

6.3 Requirements 119

right state (i.e. all the other stations are in the samestate asitself), whenit is
its turn to usethe bus.

Assume, for example, that all stations are in standby and that the up
button of station 4 (in the right part of Figure 6.2) is pressed. This station
adopts the up state. When it is this station's turn to usethe bus (getting a
messagefrom its predecessor),t will broadcastits state; in responsethe other
stations will adopt the up state too. Next, it is station 1's turn to usethe bus.
This station will broadcastits state (which is up). The messagdrom station 1
is received by all other stations, among which the active station 4. As the state
in the messagés the sameasthat of the active station 4, this latter station will
count this message.In the next two cyclesstation 2 and station 3 claim the bus
in turn and broadcast their states (up), both messagesre courted by station
4. So, station 4 will have received the right number of up messagesvhenit is
its turn to usethe busagainand it will senda sync messageo initiate physical
movemert.

6.3 Requiremen ts

There are v e requiremerts for the lift system, that have beenformulated in
cooperation with the developers. Each requiremert describesa di erent aspect
of the system'sbehavior.

1. Deadlock freeness the lift systemnever endsup in a state whereit cannot
perform any action.

2. Livenessl : it is always possiblefor the systemto get to a state in which
pressing the up or down button of any lift will yield the appropriate
response.

3. Liveness||I : if exactly one up or exactly one down button is pressed
and not released,then all the lifts will (eventually) move up or down,
respectively.

4. Safety| : if oneof the lifts moves,all the other lifts should simultaneously
move in the samedirection.

5. Safety Il : if the lifts move, an appropriate button was pressed. In other
words, the lifts will not move if no one has presseda button.

The two livenesgequiremerts make surethat buttons can always be pressed
and in responsethe lifts will always move. The two safely requiremerts make
sure that the systemwill move properly.

6.4 CRL Mo del of the Original Design

We speci ed the lift systemin CRL. As is demonstrated by this casestudy,
this languageis useful as a tool to analyze embedded cortrollers.

120 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

As we described in Section 6.2, our speci cation is an abstraction of the real
system. Such details as the locking pins, the parameter of height containing
in the messagesand the cheding of the height broadcastin messagesre not
modeled in our speci cation. And we only studied two kinds of movemert of
the lift system: If the up or down button of onelift is pressed,all the lifts of
the systemshould go up, respectively down. The initial speci cation for system
with three lifts is givenat http://www.cwi.n I/~ pangjun/l ift /. Herewe only
highlight someparts of this speci cation. The part on data typesis discussed
in Section6.4.1, and the part on processesn Section 6.4.2.

6.4.1 Data types

Obviously we needto represent the physical structure of the lift system. This is
done by meansof the sort Address The constructors of this data type consistof
identi ers (one for ead station). The functions suc and pre yield the identi ers
of the neighbors in the circle. suc yields the one at the right-hand side, pre
yields the one at the left-hand side (seeFigure 6.1). Becauseof the similarity
in structure, we usethis data type alsoto represen the position of a station.
We specify the sort Addresswith three elemeris below:

sot Address
func 1,2,3:! Address
map suc: Addres$s Address
pre: Addres$ Address
eq: Address Address Bool
rew suc(1)=2 pre(1)=3
suc(2)=3 pre(2)=1
suc(3)=1 pre(3)=2
eq(1,1)=T eq(1,2)=F eq(1,3)=F
eq(2,2)=T eq(2,1)=F eq(2,3)=F
eq(3,3)=T eq(3,1)=F eq(3,2)=F

This data type is alsousedto identify the position of relays. Relay n is the one
betweenthe station with addressn and the station with addresssuc(n); it is
cortrolled by the station at the left side (addressedasn).

To model the bus, we must record which relays are closed. This is done by
means of the sort Alist, which is a list of addresses.The constructors of this
sort are ema and insert. ema stands for an empty list. insert constructs a
new list by inserting an addressinto a list. The function removega; A) removes
all the occurrencesof the addressa from the list A. Function test(a;A) tells
us whether the addressa is in list A. The function empty(A) is usedto judge
whether a list is empty, or not. if (b;A; A9 is an auxiliary function to specify
test and reset where b is a data term of sort Bool. It is usedto simulate
conditional equations, meaningthat if b holds then A is selected,otherwise A'.
And the concatenation of two lists is represeried by the function conc(A; A9).
The function AddressegA; a) is usedto get the list of all stations connectedto
the station a via list A of closedrelays. a is excludedin the result. Functions

6.4 CRL Model of the Original Design 121

Addresses-up Addresses-down Addresses-up-auxand Addresses-down-auxare
usedto help the speci cation of Addresses

sot Alist
func ema:! Alist
insert: Address Alist! Alist
map remove:Address Alist! Alist
test: Address Alist! Bool
empty: Alist! Bool
if: Bool Alist Alist! Alist
conc: Alist Alist! Alist
AddressesAlist Address Alist
Addresses-upAlist Address Addres$ Alist
Addresses-don: Alist Address Addres$ Alist
Addresses-up-auxBool Bool Alist Address Address Alist
Addresses-den-aux: Bool Bool Alist Address Address Alist
var a,a' Address
A, A" Alist
b: Bool
rew remove(a,ema)=ema
remove(a,insert(a’,A))=if(eq(a,a"),remove(a,A),insert(a¥emove(a,A)))
test(a,ema)=F
test(a,insert(a',A))=if(eq(a,a’),f,test(a,A))
empty(ema)=T
empty(insert(a,A))=F
if(T,AA)=A
if(F,A,AN=A"
conc(ema,A)=A
conc(insert(a,A),A")=insert(a,conc(A,A"))
Addresses(A,a)=conc(Address-up(A,a,a),AddressaaigA,a,a))
Addresses-up(A,a,a’)=Addresses-up-aux(test(a,A),eq(suc(g)ma,a’)
Addresses-den(A,a,a’)=
Addresses-den-aux(eq(pe(a),a’),test(pre(a),A),A,a,a")
Addresses-up-aux(T,T,A,a,a")=insert(suc(a),ema)
Addresses-up-aux(T,F,A,a,a")=insert(suc(a),Address-up(A,saza"))
Addresses-up-aux(F,b,A,a,a")=ema
Addresses-den-aux(T,b,A,a,a)=ema
Addresses-den-aux(F,T,A,a,a")=
insert(pre(a),Addresses-den(A,pre(a),a’))
Addresses-den-aux(F,F,A,a,a")=ema

In our model, the following states of stations are speci ed by a sort State:
standby , up, down, startup and sync. The state sync is not really a state,
but it can be broadcastin a messagenstead of the states. This kind of message
is usedto syndhronize the physical movemernt of all the lifts.

sort State

122 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

func standby, up, down, startup, sync: ! State

The messagedraveling in the network are speci ed by a sort Message A
messagéhasthe form mes(a;s): a is the position of the station sendingthe mes-
sageand s is the state of the sendingstation. By usingthe functions getaddess
and getstate we can get the position, respectively the state of the station.

sot Message

func mes: Address State! Message

map getaddressMessagé Address
getstate: Messagé State

var a: Addresss: State

rew getaddress(mes(a,s))=a
getstate(mes(a,s))=s

6.4.2 Pro cesses

In this section, we focus on the processpart of our speci cation. The bus and
the stations are both modeled as separateprocesses.

The speci cation of the bus posestwo problems. First, we must represen
which relays are open and which onesare closed. This is doneby parameterizing
the bus processwith an Alist R of identi ers of all closedrelays. If a station
closesa relay, the identi er of the relay is addedto this list. If it opensa relay,
the identi er of the relay is removed from this list. This is achieved with the
help of two actions r_open-relay(n) and r_close-relay(n).

Second,we must represen the transportation of message®ver the bus. In
the system, a messageput on the bus by one station is received by all the other
stations connectedto the sendingstation via closedrelays. This is modeled by
meansof a delivery process(Deliver) parameterizedwith an Alist A of stations
that have yet to receive the message After acceptinga messagerom a station
with the action r_stob(m; a) (receive messagem from station a to the bus),
the bus processmovesto the delivery phase, provided that the list R is not
empty. This phaseconsistsof a number of cycles. In ead cycle, the message
is deliveredto one station in list A by the action s_btos(m; a) (send messagemn
from the bus to station a) and then the next cycle is entered with the station
a removed from list A. If the last station is removed, the bus processreturns
to the Bus phase. The Deliver processhas R as one of its parameters; this is
neededto restart the Bus processafter the delivery phasewith the correct list
of closedrelays. In the delivery phase,the bus doesnot accept messagesrom
the stations, which ensuresthat a messagebroadcastby a station is received by
all stations connectedto it beforethe next station can senda message.

act r_stob, s btos: Message Address
r_open-relg, r_close-relg: Address

proc Eus(R:AIist)ls

mes:Message a:Addressr-StOb(mes'a)

6.4 CRL Model of the Original Design 123

(Blys(R) empty(Addresses(R,a)) Deliver(mes,R,Addresses(R,a)))
+p aaddresd -OPEN-rely(a) Bus(remove(a,R))
+ ,addresd -ClOse-relgi(a) Bus(insert(a,R))

proc Beliver(mes:Messag&:Alist, A:Alist) =
a:Addresss-thS(mes'a)
(Bus(R) empty(remove(a,A)) Deliver(mes,R,remove(a,A)))
}-_est(a,A)
+p aaddresd -OPEN-relg(a) Deliver(mes,remove(a,R),A)
+ Laddresd-Close-relg(a) Deliver(mes,insert(a,R),A)

The actions r_stob and s_btos are intended to communicate with the actions
s_stob (send a messagdrom a station to the bus) and r_btos (receive a message
from the bus to a station) into c_stob and c_btos respectively. Likewise,the
actions r _open-relay and r_close-telay are synchronized with the actions s_open-
relay and s_close-relay.

comm s_stob j r_stob = c_stob
s_btos|j r_btos = c_btos
s.open-rely j ropen-relay = c_open-rely
s.close-relg j r_close-relgt = c_close-relg

After modeling the bus process,we come to the speci cation of the lift
cortroller. The following actions are assaiated with the buttons of a lift. They
do not represen all physical actions of pressinga button of the real system.
Only those actions of pressinga button which have e ect on the behavior of the
system are modeled in our speci cation (seeFigure 6.2). For example, in the
normal operation phase,a setref button can be physically pressed. Sincein
this phasea station doesnot respond to this action, the action setref cannot
occur according to our speci cation of the normal operation phase (see the
speci cation of Lift2). Leaving out theseactionsdoesnot a ect our veri cation.
The action of outputting state s of station n to the motor input is represered
asthe action move(n; s).

act setref,up, down, released:Address
move: Address State

The cortrol of the lift systemmovemern is divided into two phases.Initially ,
all relays are open. In the rst phase(startup phase),the network connection
is set up, and ead station getsto know its position and the number of stations
in the network. In the secondphase (normal operation phase), the stations
claim the busin a xed order and the physical movemert of the system can be
initiated. Each lift processis parameterizedwith an addressn, which identi es
the station.

The behavior of a station in the startup phaseis modeled by two processes,
Lift0 and Liftl. Initially , all stations are in Lift0. Lift0 species the initial
behavior of a station. In this phase, the setref button of a station can be
pressed,or a station can receive a startup messagefrom another one. Liftl

124 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

models how the stations with a position greater than 1 get to know the number
of stations in the network. The parameter m is added to Liftl to record the
position of a station. The parameter nos is usedto remenber the number of
the stations.

The station of which the setref button is pressedgets position 1. It closes
its relay with the action s_close-elay(n) and broadcastsa startup message.
Next, it opensits relay with the action s_open-relay(n) and waits for a star tup
message.When it getsthe startup messagejt responds by changing its state
to standby and broadcastingits state, then it goesinto the normal operation
phase,which is modeledasLift2 . If a station (not the one on which the setref
button is pressed)gets a startup message,it adds 1 to the position of the
message'ssender and stores this both asits m and asits nos. It adapts the
startup state, closesits relay and broadcastits own state. Next, it movesinto
Liftl, whereit can changeits own nos accordingto the position of the star tup
messaged receives. In the phaseof Liftl , ead station getsto know the number
of stations in the network by the position of the last star tup message.When
a station with a position greater than 1 getsa standby messagejt adopts its
statesto standby and goesinto processLift2. If it is its turn to claim the bus
(when it receivesa messagdrom its predecessor)jt alsobroadcastsa st andby
messageIn this way, the startup phaseis nished and all stations are connected
to one bus. The processed.ift0 and Liftl are specied as follows:

proc LiftO(n:Address)=

g,etref(n)s_close-relg(n) s_stob(mes(1star tup),n) s_open-rela/(n)
mes:Messagg-btos(meS'n)
(s_stob(mes(1st andby),n) Lift2(n,1,getaddress(mes3t andby)
Peq(getstate(mes)st artup))

+ mes:Messager—thS(mes’n)
(s_close-relgi(n) s_stob(mes(suc(getaddress(mesj)ar tup),n)
Lift1(n,suc(getaddress(mes)),suc(getaddress(mes)))

eg(getstate(meskgtartup))

proc Igiﬂl(n:Address,m:Address,nos:Address):
mes:Messagg-btos(mes’n)
(Lift1(n,m,getaddress(mes))
eq(getstate(mes)tar tup)
((s_stob(mes(1standby),n) Lift2(n,m,nosstandby)
eg(getaddress(mes)ip(m))
Lift2(n,m,nosst andby))
eg(getstate(mesgtandby))

Note that during the startup phase,all the stations expect to receiwe either a
startup messager astandby messageptherwiseit will result into a deadlock.
This can be model cheded later on.

The behavior of a station during normal operation is speci ed by meansof
two processeqLift2 and Lift3). The parameter s is usedto record the state

6.4 CRL Model of the Original Design 125

of the station. In this phase,the stations broadcast their messagesn a xed
order. A station knows that it is its turn to claim the bus when it receivesa
messagefrom its predecessor.In both Lift2 and Lift3, a station responds to
an incoming sync messageby immediately outputting its state to the motor
input with the action move(n; s). Lift2 modelsthe behavior of a station that is
passiwe or in standby . In this phase,a station will respond to a state message
by adopting the state in the message When a station getsthe turn to claim the
bus, it adoptsthe state in the received messageand broadcastsit. In addition, a
station in standby will respond to an action of pressinga button. It adoptsthe
corresponding state and becomesactive (Lift3). Lift3 models the behavior of
an active station. The parameter count is usedto count the number of stations
that are in the same state as this active one. This courter is initiated with
the number of stations in the network. Each time the active station receivesa
messagewith the samestate asitself, the courter is decreased.When the active
station getsthe turn to usethe bus, it will determine whether it has received
enough messagesf the right type (i.e. whether its counter equals2 and the
state of the messageof its predecessois the sameasthe state of itself). If so, it
will senda sync messageputput its state to the motor, broadcastits own state
and reset the cournter to the number of the stations in the network. If not, it
will broadcastits state and resetits counter. When the pressedbutton on the
lift is released(modeled by releasal(n)), the active station returns to standby .

proc Lift2(n:Address,m:Addressnos:Addresss:State)=
(up(n) Lift3(n,m,nosup,nos)+down(n) Lift3(n,m,nosdown ,nos))
g,q(sst andby)
+ mes:Messagg-btos(mes'n)
(move(n,s)Lift2(n,m,nos,s)
eq(getstate(meskync)
(s_stob(mes(m,getstate(mes)),nlift2(n,m,nos,getstate(mes))
eg(getaddress(mes)tp(m))
Lift2(n,m,nos,getstate(mes))))

proc Lift3(n:Address,m:Addressnos:Addresss:State, count:Address)=
released(nlLift2(n,m,nosst andby)
Bot(eq(sst andby))
+ mes:Messagg-btos(mes'n)
(move(n,s)Lift3(n,m,nos,s,count)
eg(getstate(meskync)
((s_stob(mes(msync),n) move(n,s)
s stob(mes(m,s),n)Lift3(n,m,nos,s,nos)
eq((getstate(mes),s) eq(count,2)
s_stob(mes(m,s),n)Lift3(n,m,nos,s,nos))
eg(getaddress(mes)ip(m))
(Lift3(n,m,nos,s,pe(count))
eq(getstate(mes),s)
Lift3(n,m,nos,s,count))))

126 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

By putting n Lift0 processesand one Bus processin parallel, we model a
systemwith n lifts (n 2) asfollows:

init |, @ (Bus(ema)k Lifto(1) k Lifto(2) k ... Lifto(n))

where | denotesthe set f c_stob, c_btos, c_open-relay, c_close-elayg and H
denotesthe set f s.open-relay, r_open-relay, s_close-rlay, r_close-elay, s_stob,
r_stob, s_btos, r_btogy. Initially , the list of identi ers of closedrelays is empty.

The encapsulationoperator @enforcesthe actions s_open-relay, s_close-elay,
s btos and s_stob to occur in communication with the actions r_open-relay,
r_close-rlay, r_btos and r_btos respectively. To analyze the speci cation, all
internal actions like the communication between bus and stations can be ab-
stracted away, which is achieved by converting them into the action with the
help of the operator.

6.5 Analysis the Original Design

In our study, the CRL tool setwasusedto generatea labeledtransition system
from the CRL specication. This LTS was analyzed with the CADP tool
set. When an error was found the speci cation was modi ed and the modi ed
speci cation was analyzed again.

It is interesting to seethat the problems were being detected in a rather
unordered fashion. For instance problem 1 showed itself by visualizing the
systembehavior for a systemwith 3 lifts after hiding all communications to and
from the bus and reducing the resulting LTS modulo branching bisimulation.
The rst signof the problem wasthat not all internal actions had beenremoved.
Trying to understand the reasonfor this uncoveredthe preciseproblem quickly.

Four errors were found in the original design. We discussthese problems
separately and proposesolutions (Sections6.5.1{6.5.4). The modi ed speci ca-
tion resulting from the incorporation of our suggestionswas showvn to meet the
requirements (Section 6.6).

6.5.1 Problem 1

The rst problem occurs if in the startup phase station 2 sendsa star tup
messagebefore the relay betweenstation 1 and 2 is opened(seeFigure 6.1 and
the examplein Section 6.2.2). This star tup messagss received by station 1,
which will draw the erroneousconclusionthat the circle is completed. From
this all sorts of errors may occur (depending on the exact timing). For example,
station 1 sendsthe standby messagewhich initiates normal operation, while
the relay betweenstation 1 and station 2 is opened, no station will receiwe this
message. The startup phasewill continue as intended until station 1 receives
the star tup messagdrom the last station in the system. As this is unexpected
it will result in a deadlock.

The dewelopershad spotted this problem in the testing phase,but they were
unaware of its cause. They had solved the problem by adding delays before
sendinga star tup message.

6.5 Analysis the Original Design 127

In our revised speci cation, the delay is modeled by the communication of
two actions, s_sync and r_sync. This is enoughto make surethat station 2 waits
till the relay betweenstation 1 and station 2 is closed,beforeit sendsa star tup
messagé.

Our experiments have indicated that this solves the problem adequately
(if the delay is long enoughto make sure that the relay betweenstation 1 and
station 2 is openedbeforestation 2 sendsthe star tup message).The developers
implemented our solution and con rmed that it su ces to delay only the second
startup message.The main modi cation is madein the de nition of process
Lift0. It is shown together with the solution to the secondproblem at the end
of Section 6.5.2.

6.5.2 Problem 2

The secondproblem occurs if the setref buttons of two lifts are pressedat
almost the sametime. This may result in dierent lifts moving in dierent
directions. Assumethat the system consistsof four lifts (A, B, C, D) and that
the setref buttons of A and C are pressedat the sametime (seeFigure 6.1).
Both A and C senda startup messagewhich is received by respectively B
and D. The relays betweenA and B, and betweenC and D are openedagain.
Next B closesthe relay betweenB and C and then B broadcastsa star tup
message. This messages received by C. Station C draws the conclusion that
the circle is completed and initiates normal operation. At the sametime D
closesthe relay betweenD and A and sendsa star tup messagedhat is received
by A, after which A initiates normal operation. The result is that there are two
independertly operating networks, one consisting of A and D; the other of B
and C. There is no way in which the stations or the bus can prevert or detect
this situation.

A similar situation may occur if the setref buttons of two neighboring
lifts (say A and B) are pressed. Assume that B sendsa startup message
before A does so. The messagefrom B is received by C. Assume that next
the relay betweenB and C is opened again and that A subsequetly sendsits
startup message.Station B receivesit, draws the conclusionthat the circle is
completed, and initiates normal operation. Station A opensthe relay between
A and B, and after receivinga star tup messagdrom D it nishes the startup
phase. The result is that B is isolated from the rest of the network. Again the
systemwill not detect this error.

We have modi ed the speci cation in suc way that it is impossibleto ini-
tiate the system by pressingthe setref button of sewral lifts at once. The
processSetref_monitor is de ned to prevent that in the startup phasemore than
one setref button is pressedat dierent lifts at the sametime. The action
setref(n) in Lift0 is replaced by the action s.init (n), which applies a lock on
the monitor. After station 1 getsa startup message,t releasesthe lock by
the action s_stable During the period when the monitor is locked, pressing

2The operator @can enforce the two actions s_sync and r_sync to occur in communication
with ead other, and not on their own.

128 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

the setref button at another station doesnot have an e ect on the whole lift
system.

comm s.init j r_init = c_init
s_stablej r_stable= c_stable
S.Syncj r_sync= c_sync

proc §etretmonitor:
nAddresd -INit(n) r_stableSetreftmonitor

proc LiftO(n:Address)=
s.init(n) s_close-rels(n) s_stob(mes(1star tup),n)
g,open-relay(n) s.sync
mes:Messagg-btos(mes’n)
(s_stables stob(mes(1st andby),n)
Lift2(n,1,getaddress(mes3t andby)
g,q(getstate(mes)st artup))
+ mes:Messagg-btos(mes'n)
(s_close-relg(n)
(r_syncs_stob(mes(2st ar tup),n) Liftl(n,2,star tup)
eg(getaddress(mes),1)
s_stob(mes(suc(getaddress(mesg) ar tup),n)
Lift1(n,suc(getaddress(mesBt ar tup))
eqg(getstate(mesygtartup))

The dewelopers did not implemernt this solution, but choseto emphasize
in the manual that it is important to make sure that in the initial phasethe
setref button of only onelift is pressed.We alsotook this assumptioninto our

CRL model. Given the chosenbus it seemsimpossibleto solve this problem
satisfactorily. As a result of our analysis, the implemertation of the lift system
was adapted. At initialization of the system, a random identi er is created to
minimize the risk that morethan oneindependert network comesinto existence.

6.5.3 Problem 3

The third problem occurs if during normal operation a button is pressedand
releasedat an inappropriate momert. Supposethat in a network of four stations
all stations are standby , and that the down button of station 1 is pressed,as
a result of which it acquiresthe down state. When it is the turn of station 1
to usethe bus it broadcaststhe down state, and all other stations adopt this
state in response. Supposethat the down button of station 1 is releasedafter
station 3 sendsits down messagebut beforestation 4 hasdonethis. As aresult
station 1 returns to the standby state. In this state it adopts the state of all
state messagest receives, so when station 4 sendsits state messaget adopts
the down state. We now have the situation that all stations arein down state,
but there is no active station. This meansthat they will remain in that state
until the systemis shut down.

6.5 Analysis the Original Design 129

This problem was independertly discovered by the developers when testing
the system. They tried to use ags to solve this problem, more discussioncan
be found in the analysis of the redesign. Our solution to this problem is simple.
We let the station wait to become passiwe after the button is released,until
it is that station's turn to usethe bus. This is the solution incorporated in
our modi ed speci cation. The main modi cation is madein the de nition of
processLift3. It is shown together with the solution to the fourth problem at
the end of Section 6.5.4.

6.5.4 Problem 4

The fourth problem occurs when during normal operation two (up or down)
buttons on dierent lifts are pressedat almost the sametime. Supposethere
are four stations in the network and that the down buttons of station 1 and
station 2 are pressedat the samemomen, as a result of which both stations
becomeactive. Assumethat it is station 1's turn to usethe bus. It sendsa
down messageand in responsestation 3 and station 4 adopt the down state.
In turn stations 2, 3 and 4 senda down message When it is the turn of station
1 to usethe bus again, it has counted three down messagessoit sendssync
(after which all lifts move down), and as the down button is still pressedit
then sendsdown. Now it is station 2's turn and as this station is active and
has counted three down message#t sendsa sync message.Suppose(and now
comesthe problem) that the down button of station 1 is releasedafter station
1 hassert the down messageand before station 2 sendsthe sync message As
aresult station 1 isin standby whenit receivesthe sync messageand its lift
remains at the sameheight while the others move down.

A similar problem occurs if the down button of station 2 is releasedjust
after station 3 hassert its down messagebut before station 1 sendsits sync
message In this caselift 2 will remain at the sameheight while the others move
down.

This problem was not known to the dewelopers and found its way into the
implemertation. We proposeto solve this problem by allowing a station to
becomeactive only when it is its turn to usethe bus and only when at that
momert there is no other station active. In the revised speci cation, a Bool
parameter is addedinto the de nition of processLift2 to mark the station that
wants to be active. It is set true when one button of the station is pressed.
When it is the marked station's turn to usethe bus, but it nds there is already
an active station in the system, the marked station fails to be active. It adopts
the state of the received messageand broadcaststhe message.Our experimerts
indicate that this solvesthe problem adequately

proc Lift2(n:Address,m:Address nos:Addresss:State, c:Bool)=
(up(n) Lift2(n,m,nosup,nos, T)+down(n) Lift2(n,m,nosdown ,nos,T))
gq(sst andby)
+ mes:Messagg-btos(mes’n)
(move(n,s)Lift2(n,m,nos,s,c)

130 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

eg(getstate(meskync)
(((s_stob(mes(m,s),n)Lift3(n,m,nos,s,nos)
eg(getstate(mes)kt andby)
s stob(mes(m,getstate(mes)),nb.ift2(n,m,nos,getstate(mes),F))
c
s_stob(mes(m,getstate(mes)),nb.ift2(n,m,nos,getstate(mes),F))
eg(getaddress(mes)tp(m))
(Lift2(n,m,nos,s,c) ¢ Lift2(n,m,nos,getstate(mes),c))))

proc Lift3(n:Address,m:Addressnos:Addresss:State, count:Address)=
released(nLift3(n,m,nosst andby ,nos)
Bot(eq(sst andby))
+ mes:Messagg-btos(meS'n)
((s_stob(mes(mst andby),n) Lift2(n,m,nosst andby ,F)
eq(sstandby)
(s-stob(mes(msync),n) move(n,s)
s stob(mes(m,s),n)Lift3(n,m,nos,s,nos)
eg(getstate(mes),s) eq(count,2)
s_stob(mes(m,s),n)Lift3(n,m,nos,s,nos)))
eqg(getaddress(mes)ip(m))
(Lift3(n,m,nos,s,pe(count))
eg(getstate(mes),s)
Lift3(n,m,nos,s,count)))

After these four problems were all repaired, no more problems have been
found. We showed by meansof model cheding that that this modi ed speci -
cation meetsthe requiremerts in the next section. The speci cation that was
model cheded is given at http://www.cwi.n |/ ~pangju n/l if t/ .

6.6 Verication with CADP

6.6.1 Expressing the requiremen ts

There are v e requiremerts for the lift system. The rst property is a universal
one: deadlock freeness In the regular alternation-free -calculus syntax (see
Section 2.4) this is speci ed as follows:

PL[T]HTI T

stating that every reachable state has at least one successor.

The secondproperty is that of Livenessl, which meansthat buttons on the
stations can eventually be pressed.The regular alternation-free -calculus code
is given below,® where *?' is universally quantied on the sort Address

P2.1 [(: up()) 1hC up(:)) up(?)i T
P2.2 [(: down(:))] h(: down(:)) down(?)i T

3\." is used to match any character in regular expressions.

6.6 Verication with CADP 131

It statesthat all fair execution sequenceseadingto an up or down action after
zero or more transitions.

The property of Livenessll is expressedbelon. We use™?' to indicate the
addressof the lift on which the up (or down) button is pressed,it is universally
qguanti ed on the sort Address

P3.1 [(: (up(:)jdown(:))) up(?)]
Y :hTi T~ [(: (up(:)jdown(:)jrelease@?)jmove:; up)))] Y

P3.2 [(: (up(:)jdown(:))) down(?)]

Y :hTi T~ [(; (up(;)jdown(:)jrelease@?)jmove:;down)))] Y
It saysthat in any executionsequencesontaining only onebutton-pressedaction,
and containing no button-released action of the pressedbutton, the system
always beginsto move.

The fourth property of our specication is Safety |. It says that if one of
the lifts moves, all the other lifts should not move in the opposite direction.
What is more, to keepthe trucks in balance, all lifts have to move in the same
direction. Note that Safety| alsorequiresthat all lifts should move at (almost)
the samemomert, the CAN bus can guarantee that a sync messageon the bus
is immediately received by all other stations connectedto the sending station
via closedrelays, we did not take this into accourt. To formalize this property,
any order of the lifts' movemerts must be dealt with carefully. This meansthat
the size of the formula grows in a factorial fashion with respect to the number
of lifts. To solve this problem, we split the formula into pieceswhich can be
chededby the model cheder Evaluator. Taking alift systemwith three stations
as an example, one piece of this property is speci ed as follows:

P4 [: (movegl; up)jmove?2; up)jmove3; up))
moveg1; up)
: (move(1; up)jmove2; up)jmove3; up))
moveg2; up)
: (move1; up)jmovd2; up)jmove3; up))
(movg 3; down)jmovg 3; standby))] F
The above code says that in all paths, lift 1isthe rst to move up, after that,
no movemert of the other stations, and then lift 2 movesup, alsono movemerts
of other stations following; moreover, the action of lift 3 moving down (or not
moving) always results in a state where F holds. Equivalertly, aslong aslift 1
and lift 2 move up, lift 3 cannot move down or remain at the sameheight. The
other possibilities of the movemert of stations can be speci ed similarly.
The fth property of Safetyll statesthat if noup or down button is pressed,
then the systemcannot move up or down. The following shows the code in the
regular alternation-free -calculus.

P5.1 [(: up(:)) move:;up)] F
P5.2 [(: down(:)) move:;down)] F

This should beread asfollows: if an executionsequencaloesnot contain button-
pressedaction, then in the resulting state the stations cannot move up or down.

132 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

Number of lifts States | Transitions
2 383 636
3 7,282 18,957
4 128,901 390,948
5 2,155,576| 8,287,715

Table 6.1: Labeled transition systemdimensions

6.6.2 Verifying the modied specication

All v e requiremerts stated in Section 6.3 were shaovn to be satis ed by our
modied CRL specication of the lift systemwith respectively 2, 3, 4 and 5
lifts. The dimensionsof the generatedLTSs are summarizedin Table 6.1. For
ead of the lift systems,the numbers of states and transitions of the generated
LTS are given. The sizeof the generatedLTS quickly increaseswith the number
of the lifts. This is due to the fact that buttons on ead lift can be pressedin
any arbitrary order. Generation and model chedking were performed on a 1.4
GHz AMD Athlon™ Processorwith 512 Mb memory.

Owing to adistributed state spacegenerationalgorithm [22], we cangenerate
the LTS for a systemwith six lifts on a cluster at CWI. The generatedLTS has
around 33; 900, 000 states and 165, 000, 000 transitions, which is too large to
serne as an input to the model cheder. Hence,the v e requiremerts were not
cheded on this LTS.

6.7 UPP AAL Mo del of the Redesign

The dewvelopersof the original designin CRL decidednot to wait for the results
of the formal analysis and redesignedtheir implementation basedon their own
solutions.

The dewvelopersexperienceda new problem in the redesign. Again the reason
wasunclear. Sincethe error tracesdisplayeda regular pattern in time, the devel-
opers thought modeling exact timing might reveal the reasonfor this problem.
In the CRL speci cation, time is abstracted away. We could extendthe CRL
model with exact timing information, but there is no automated veri cation
tool set for timed processalgebras. Therefore it was decidedto use UPPAAL
[111], which is a tool set for validation and model cheding of real-time systems.

UPPAAL is atool setfor validation and model chedking of real-time systems,
which are modeled as networks of timed automata [3] extended with global
sharedvariables. It consistsof a number of tools including a graphic editor for
systemdescription, a simulator and a model cheder. The idea of the UPPAAL
tool setis to model a systemusing timed automata, simulate it and then verify
properties of the system. During the designphase,the graphic simulator is used
intensively to validate the dynamic behavior of ead designsketch, in particular
for fault detection, and later on for debuggingthe generateddiagnostic traces.
The veri er mainly cheds for invariants and reachability properties. It doesso

6.7 UPPAAL Model of the Redesign 133

by exploring the state spaceof a systemusing “on-the-y' searding techniques.
It usessymbolic techniquesto reducethe veri cation of modal logic formulas to
solving simple reachability constraints. Somenotable recert casestudies with
UPPAAL are [84, 114, 15].

The UPPAAL model preseried in this section is the result of a few steps.
First the CRL model of the original designwastranslated into UPPAAL. This
model was then changed into a represenation of the redesign by adding the
dewelopers' solutions to the problems, that were found in the original design.
The UPPAAL model of the redesignis also more specic, since interactions
between the ervironment and the lift system are added that were abstracted
away in the CRL model of the original design. Furthermore, the model was
extended with exact timing information. With respect to the explanation of
the original designin Section 6.2, the redesigncan be viewed as a re nement
of the CRL model. However, the desired behavior of the lift is basically the
sameas explained in Section 6.2. The redesignshould therefore meet the same
requiremerts as the original design.

The UPPAAL model cortains four componerts. They are automata: Sta-
tion, Bus, Interface and Timer. In UPPAAL, an automaton can be instantiated
an arbitrary number of times. As explainedin Section 6.2, the lift systemcon-
sists of one bus and an arbitrary number of lifts. The automaton Bus models
the can bus. For ead lift in the system, we create two automata: Station and
Interface. The automaton Station models the micro cortroller. In automaton
Interface, the pressingand releasingof buttons on the lift is modeled. The au-
tomaton Timer is usedto model time delay. In this section we walk through
the model. Pictures of theseautomata are preserted with only necessaryexpla-
nation.

6.7.1 Transforming the CRL model

To analyze the redesignof this system, we rst transformed the CRL model
into UPPAAL. In this section, we discusssomemodel choicesthat were made.

Value passing

In CRL, two actions can only synchronize if they occur in parallel, and if their
data parameters are semairically the same,which meansthat communication
can be usedto represert data transfer from one processto another. The com-
munication function was usedheavily in the CRL speci cation of the original
design,to model the communications betweenthe bus and stations. However,
in UPPAAL, data transfer (or value passing) betweenprocesseqor automata)
cannot be modeledin this way.

We de ne two channelsbetweenthe bus and stations: bustolift and lifttobus,
and declareseeral global variables for data transfer when communication hap-
pens. When a station wants to senda messageo the bus, it hasto instantiate
the valuesfor someglobal variablesin the messagefor instancethe state and the
sender'sposition. When communication takesplace, the values of those global

134 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

closedrelay[relaypointer]==0

closedrelay[relaypointer]==1

figthbroadcasting
closedrelay[sender==1

iver:=(relaypointer==N?
ter+1)

relaypointer:=relaypointer-1

closedrelay[relaypointer]==1

receiver:=relaypointer

lefta1 lefta2

Figure 6.3: The automaton Bus

variablesare savedto the variablesusedby the bus. After communication, those
global variables are provided with default values. In a similar fashion, messages
are sert from the bus to stations. Detailed information can be found in the
automata Station and Bus (seeFigure 6.3, Figure 6.5 and Figure 6.6).

Messages broadcasting

In CRL, summation P 4-p P(d) providesthe possiblyin nite choiceover a data
typeD. In the CRL speci cation of the bus, whenthe bus getsa messagdrom
a station, it can compute the set of stations who can get this messagevia closed
relays. Then the bus can chooseone station from the set nondeterministically,
and send it the message. In this way, we can model the broadcasting of a
messageln UPPAAL, the summation operator is absen. We setakind of xed
order for the bus to broadcast a message.The relay controlled by a station is
modeledasa ag. When the relay is closed,the ag is setto 1; otherwiseit is 0.
When a bus broadcastsa messagejt starts to chek the ag at the position of
the messagesender. If the ag is 1, it sendsa messagdo the station connected
by this relay, and cortinuesto chedk the ag of this station. As soon as it
reachesa ag with value O, it continues at the station precedingthe message
sender. If the ag at this station is 1, the messages sert to the station, and
the bus corntinuesto ched the ag at the preceding station. This procedure
moveson until the bus reachesanother ag with value 0. Recall that in both
phasesof the lift system,there is at least one open relay, which guaranteesthat
the broadcasting procedureterminates. In the automaton Bus (seeFigure 6.3),
when a bus getsa messageat the initial node, it starts broadcastingthe message
from the left part of the picture, then corntinuesat the right part, and nally

6.7 UPPAAL Model of the Redesign 135

released[myid]<2,

cyclecounter[myid]<CYCLES,

buttonstate[myid]==Up

buttonstate[myid]:=Standby,

released[myid]:=released[myid]+1 cyclecounter[myid]==CYCLES

cyclecounter[myid]==CYCLES

mainloop!
pressed[myid]:=1,
released[myid]:=0
mainloop!
pressed[myid]:=0,

pressed[myid]<2, released[myid]:=0

cyclecounter[myid]<CYCLES,
buttonstate[myid]==Standby
buttonstate[myid]:=Up,
pressed[myid]:=pressed[myid]+1

onesetref>0
buttonstate[myid]:=Standby
onlyonesetref

pressed[myid]<2,
cyclecounter[myid]<CYCLES,
buttonstate[myid]==Standby
buttonstate[myid]:=Down,
pressed[myid]:=pressed[myid]+1

onesetref==0

setref!

onesetref:=1,
buttonstate[myid]:=Standby

cyclecounter[myid]==CYCLES
mainloop!

pressed[myid]:=1,
released[myid]:=0

released[myid]<2,
cyclecounter[myid]<CYCLES,
inDown buttonstate[myid]==Down
buttonstate[myid]:=Standby,
released[myid]:=released[myid]+1

Figure 6.4: The automaton Interface

goesback to the initial node.

One SETREF button pressed

In Section 6.5, the secondproblem of the original designwas found during the
startup phase. It occurs if the setref buttons at two lifts are pressed. The
result of the problem is that after the startup phasethere will betwo lift systems
instead of one. The situation may lead to the violation of all the requiremerts.
Given the chosenbus it seemsimpossibleto solve this problem satisfactorily.
The developers choseto emphasizein the manual that it is important to make
surethat in the startup phasethe setref button of only onelift is pressed.We
also take this assumptioninto our analysis of the redesign.

In the UPPAAL model it is impossible to press another setref button
after oneis pressed.We use guards on transitions to block pressingof setref
buttons after onesetref button hasbeenpressed.In the automaton Interface
(see Figure 6.4), a variable onesetef is used as a guard on both transitions
from the initial state. Initially the variable is zero, so one Interface can take
the transition with the guard onesetref==0, if the setref button on the lift is
pressed. The variable onesetef is now setto 1. In order to leave their initial
state, the other Interface automata have to take the other transition with the
guard onesetret 0. Therefore it is simply made impossibleto pressmore than
onesetref button in our UPPAAL model.

6.7.2 Adding the solutions

In the automaton Station, the two phasesof the lift system as explained in
Section 6.2 are clearly distinguishable.

136

closerelay!

inital closedrelay[myid]:=1,

Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

x==25
openrelay!
closedrelay[myid]:=0

setref? x:=0 ==24 lifttobus! *x==30
@ waitforturn
sendstartul i
. P waittoopen relayopened myid==receiver
myid==receiver X<=24 tobesender:=myid, x<=25 x<=30 bustolift?
bustolift? tobemessagestate:=Startup,
x=0 position[myid:=1, initialise
receivestartup currentstate[myid]:=Startup,
. x<=24 number[myid]:=1, 0
P
messagestate==Startup, " number[myid]:
tobemessagestate==0, x==24 currentstate[myid]:= Standby,
position[myid]:=messageposition+1, tobesender := my\d,_
number{myid]:=messageposition+1, tobemessagestate:=Standby,
currentstate[myid]:=Startup, tohemessagepugtmn =position[myidf],
tobesender:=myid, cyclecounter[myid]:=0,)
tobemessagestate:=Startup, CAN[myid]:=0,FCHA[myid]:=0, ECHD[myid]:=0
tobemessageposition:=number[myid]
close
position2 tob tate==0 j
obemessagestate==
closerelay! C \5

tobesender:=myid,
tobemessagestate:=Standby,

closedrelay[myid]{=1

tobemessageposition:=position[myid]

broadcaststartup
x<=29
lifttopus!
positionfmyid]>=2, x==29 (lastsender[ryid]+1)==position[myid]
lifttobus|
x:=0
myid==receiver,
messagestate==Standby
(lastsender[myid]+1)!=position[myid] endofSTARTUP
waitforbus j
<
bustolift? whatposition

myid==receiver, currentstate[myid]:=Standby,
==t id):= endofST:=endofST+1

bustolift? x:=0 (messageposition==number[myid]?
b) dl:= 0:messageposition),
number(myid]:= cyclecounter[myid]:=0,
;"_:Zsage”"s“"’"' CAN[myid]:=0,FCHA[myid]:=0, ECHO[myid]:=0 NormalOperation
’ receivestartup2 x<=1
Figure 6.5: The automaton Station: Startup phase
Startup

Until all the stations have reached the node normaloperation, they are in the
startup phase. The main role of the startup phaseisto nd out which position
a lift hasin the network and how many lifts there are in the network. The
variables position and numkber are assignedto ead lift to store this information.

The station where the setref button is pressedwill move clockwise in Fig-
ure 6.5 from the initial node. It gets position 1, closesits relay, and sendsa
startup messageto the bus. After that it opensits relay and waits for a
startup message.When it getsthe startup messagejt adopts the value of
the variable number in this messagejy this way it getsto know how many lifts
there are in the system. Then, it sendsa standby messageand reachesthe
normaloperationnode. The other stations will move anti-clo ckwise in Figure 6.5
from the initial node. They rst getastartup messagejncreasethe senderof
the messagéy one,and saveit astheir own position. They closetheir own relay
and senda star tup message.There is a small loop in Figure 6.5, to indicate

6.7 UPPAAL Model of the Redesign 137

endofSTARTUP. @

CAN[myid]==1,
CAN[myid]==0, cyclecounter{myidj==CYCLES
cyclecounter[myid]==CYCLES mainloop?
S1 ECHO[myid]==0 S2 mainloop? cyclecounter[myid]:=0
T C
P number{myid]-coutermyid]
C ECHO[myid]
CAN[myid]:1). FCHA[myid]
currentstate[myid]~messagestate currentstate[myid]:=butipnstate[m:
CAmyidj=1, cyclecounterfmyid]:=0

move[myid]:=currentstate{myid]
myid==receiver,

urréqtstate[myid]=Standby

ECHO[myid}==1
myid==receiver, messagestate==Sync
messagestate<Sync, bustolift?

. » decidevalues getmessage CYclecounterlmyid|<CYCLES
currentstate[myid]==Standby o bustolift? normaloperation
© C passivemovement ()
messagestate==Standby
0:messageposition), o
messagestate!=Standby CAN[myid]==0, cyclecounter] p=cyclecounter[myid]+1
CAN[myid|:=0,FCHA[myid]:=0, currgntstate[myid]'=Standby move[myid]:=0
ECHO[my|d]:=(lastsender{myid}+1 ot
==positionfmyid|20-ECHO[myid]) cgunterimyid]:counter]
waitforbus2
Sh (lastsender[myid]+1)!=position[myid]
@/ S5
currentstate{myid]:=
(ECHO[myid]==1?currentstate[myid]:messagestate),
C HO[myid]==1 1 lifttobus!
(lastsender[myid]+1)==position[myid]
wait2
countenough sendingstatemes. 2ot
counter[myidj==1 S - tobemessagestate==0
tobemessagestate==0 myturn counter[myid]i=1 tobesender:=myid,
tobemessagestate:=currentstate[myid],
tobesender:=niyid, tobemessageposition:=positionfmyid],

tobemessagesfate:=Sync, =0
tobemessageppsition:=position[myid]

sendingsyncmes

lifttobus! o us! move[myid]:=currentstate[myid]

waitforbus1 waitl startmoving activemovement

Figure 6.6: The automaton Station: Normal operation

that the stations keepgetting star tup messagesind changing the knowledgeof
the number of lifts in the system. In the end, they will geta standby message,
and end up in the normaloperation node. When all the stations have reached
the normaloperation node, all the stations are standby . They all have a unique
value for position, and the value of number of all the lifts is equal to the total
number of lifts in the network.

Sometime delays are added into the startup phaseto solve one problem
found during testing. The timing information will be discussedn Section6.7.3.

Normal operation

At node normaloperation a station enters the normal operation phase,which is
depicted in Figure 6.6. In the normal operation phase, a distinction is made
between two loops which a station can perform. One is the main loop, which
takesplace at the node normaloperationin Figure 6.6; and the other one we will
call internal loop, which is the other part of Figure 6.6. The di erence between
the main loop and the internal loop can be stated as follows: in a main loop
the station receives state messagedrom its Interface and can changeits state
accordingly, and in an internal loop the station exchangesstate messagewith
Bus and changesits state accordingly.

The main loop is a short loop in which the automaton Station syndronizes
with its Interface. Executing the main loop is the only way the station can get

138 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

information about which button on the lift (if any) is pressedor released. This
main loop takes place after a xed number of internal loops, which is modeled
as a constart CYCLES in the UPPAAL model. And a counter cyclecounter
is used to record the number of internal loops that have happened after the
last main loop. When cyclecounter==CYCLES the main loop takes place and
cyclecounter is resetto 0. If the station detectsa di erence betweenits current
state (modeled by variable currentstate) and the state of the Interface (modeled
by variable buttonstate), the station may changeits state and adopt the one
from the Interface. The main loop is also part of the original design,but it was
abstracted away in the CRL model in Section 6.4. In the UPPAAL model of
the redesignit could not be left out, becauseas we will seethe solutions from
the dewelopersinteract in a critical way with the main loop.

In an internal loop, a station can do sewral things. First a station can
get messagedrom the bus. Second,a station can senda messageo the other
stations, if it getsthe turn to usethe bus. Third, the active station can court
state messagesand initiate a movemert of the whole system. In that case
the active station will enter the node activemovementwhile the other stations
get a sync messageand enter the node passivemovementA variable move is
assaiated to ead station to indicate the direction of the current movemert.

Flags

Problem three and four found in Section 6.5 occur in the normal operation
phase. The third problem happens when an up or down button is pressed
and releasedat an inappropriate momert. The lift systemwill end up in the
situation that all stations arein up or down state, but there is no active station.
This meansthat all the lifts will remain in that state until the systemis shut
down. This problem violates property Livenessll in Section 6.3. The reason
for this problem is that in the original systema station becomespassive as soon
as the pressedbutton on this lift is released. This problem was discovered by
the dewvelopers when testing the system, and they solved it by meansof ags.

The fourth problem occurs when two up or down buttons on di erent lifts
are pressedat the sametime and one of them is releasedat an inappropriate
momert. As a result, some lifts will move, and one lift (where the button
is released)remains at the same height. This violates property Safety | in
Section6.3. The reasonfor this problem is that a station becomesactive assoon
asa button on this lift is pressed.This problem was unknown to the developers
and found its way into the nal implementation of the original system. The
detailed description of ead problem can be found in Section 6.5. We proposed
to solve this problem by allowing a station to decideto be active or passive only
whenit isits turn to usethe bus. In the analysisof the redesign,we focuson the
solutions from the dewelopers, and explain how they fail to solvethe problemsin
Section6.8. Furthermore, in Section6.9 we re ne our solution from Section 6.5,
and show that it doessolve the problems.

The dewelopers attempted to solve the third problem with ags. When they
are settheir valueis 1, and whenthey areresettheir valueis 0. The ags serweas

6.7 UPPAAL Model of the Redesign 139

blocks: they can prevent state changeswhenthey are set. Two type of ags are
usedin the redesign,i.e. Can, Echo . Every station hasits own ags. Initially
all ags are 0. The Can ag is set when a station receives a state message
from the bus. An exception is the standby message.If a station receivesthis
messagethe opposite happens: Can is reset, but only whenthe current state of
the station is also standby ; otherwise Can is left unchanged. The idea of the
deweloperswasto usethe Can ag to block state changesby the main loop. If
Can is set, the main loop cannot changethe state of the station. In Figure 6.6,
we have two main loops with dierent guards. One is CAN==1, and the other
CAN==0. If CAN==0 the main loop is taken. The current state of the station
is comparedwith the Interface. In Figure 6.4, Interface can communicate with
Station when it is in the nodesinUp (the up button is pressed),inDown (the
down button is pressed)or inShy (no button is pressed). If CAN==1, some
counters such as cyclecounter are reset, but nothing elsehappens.

The Echo ag can only be set via the main loop with guard CAN==0.
When the station detects a di erence betweenits current state and the state
of the button, Echo is set. When Echo is set, the state of the station cannot
changeby messaged receivesfrom the bus. Like Can, Echo canonly be reset
when the state of the station is standby and a standby messageis received
from the bus. But for Echo, there is an extra requiremert that has to be
fullled beforeit canbe reset: it hasto be the station's turn to usethe bus.

6.7.3 Adding timing information

The time model in UPPAAL is continuousor dense. Clocks are usedto capture
time in UPPAAL. They can be assaiated with a transition or a node. In a
transition, clock variables can be reset or used as a guard. In a node, clock
variables can be used as a hold up to let the processstay in that node for a
certain amourt of time. Sud nodesare said to be labeled with an invariant.
The way we modeledthe time information of the lift systemis in uenced by
the dewelopers' solution to solve one problem found in the startup phase. It is
alsoin uenced by the fact that during normal operation the stations take xed
turns to usethe bus. During the startup phasethere is no suc order. This
di erence hasled to a dierent treatment of the timing information in the two
phases.We rst discussthe startup phaseand then normal operation.

Startup

The rst problem found in Section 6.5 occurs in the startup phase. It hasto
do with the re-opening of the relay betweenthe rst and secondlift at the
wrong momert. Consider Figure 6.1 in Section 6.2 again. The setref button
is pressedon station B, which closesits relay and sendsa startup message
to station C. If station C sendsa startup messagebefore the relay between
station B and station C is opened,this messagds received by station B, which
draws the incorrect conclusionthat there are only two lifts in the network.

The solution to this problem is to let station C (or in generalthe station

140 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

back k==20

k==5

Figure 6.7: The automaton Timer

with position 2) wait until the relay betweenthe rst station and the second
station is opened, before sendingthe star tup message.The dewvelopers added
delays to the original designto make sure this happens.

In the redesign,during the startup phase,a local clock x is assignedto eat
station. The local clock is reset when a station gets a startup messagepr a
setref button is pressed.This is usedto capture the momert whenthe stations
join the network. Receivinga messagdrom the bus or sendinga messageo the
bus costs 1 millisecond. The opening and closing of a relay cost 5 milliseconds.
There is a delay of 24 milliseconds before sendinga star tup message.This is
all the timing information in the startup phase.

Normal op eration

During normal operation, the local clocks usedduring the startup phaseare not
usedanymore. Instead we use one global clock. We create an extra automaton
Timer depicted in Figure 6.7.

Transitions normally don't take time in UPPAAL, but this doeshappen in
the lift system. Each main loop consumesl millisecond. After ead main loop,
the station waits 0.5 millisecond to get messagedrom the bus. During the
internal loop, the receiving and sending messagedake 1 millisecond. Before
sendinga sync messagestations delay 1.5 milliseconds. Before sendinga state
message,stations delay 2 milliseconds. This is all the timing information in
the normal operation phase. We use Timer to expresstime consumption by
transitions; this idea is borrowed from [84]. The guard endofST==N makes
surethat the Timer is only usedin normal operation, whereN is the number of
lifts in the system. In node go, time is constrained to not progressat all. This
meansthat in order for time to progress,one of the edgestn? must be taken;
wheren 2 f5;10; 15; 20g expresseghe amount time of delay. These edgesthen
lead to nodeswhere time can progresswith the corresponding number of time
units, where after control returns immediately to the go node.

6.8 Analysis of the Redesign 141

6.8 Analysis of the Redesign

Sincethe redesigndoesnot changethe desiredexternal behavior of lifts, the UP-
PAAL model of the redesignshould satisfy all the requiremerts in Section 6.3.
We formulate thoserequiremerts in the UPPAAL requiremert speci cation lan-
guage, and verify them, sometimeswith the help of test automata, to ched
whether the redesignsolves problems 3 and 4. We give the de nition and ex-
planation of the UPPAAL requiremert speci cation language[11]] briey as
follows:

A[] P: for all paths p always holds;

Ehi P: there exists a path where p eventually hold;
Ahi P: for all paths p will evertually hold;

E[] P: there exists a path where p always holds;

p! g: whenewer p holds g will evertually hold.

where p and q are state formulas.

6.8.1 Expressing the requiremen ts

We rst chedk deadlock freeness. This can be translated into the UPPAAL
requiremert speci cation languagedirectly:

A[] not deadlak

The redesignsatis es this property, which indicates that the solution from the
developers solvesthe rst problem found in Section 6.5. In the implementation
of the lift system,the delay for eacth star tup messages 24 milliseconds. In the
UPPAAL model, a delay of 6 millisecondsfor eac star tup messagds already
enoughto solve this problem.

Liveness| says that buttons on a lift can be pressedand releasedwheneer
the user wants, and that the systemwill respond to this. After implementing
the main loop in the UPPAAL model, it is always possibleto pressor release
buttons. Sofor the redesign,Liveness| becomestrivial.

Livenessll says that if an up or down button is pressedand not released
and no other button is pressed,all lifts will move. In the UPPAAL requiremert
speci cation language, it is impossibleto expressthis property. Fortunately,
accordingto [2], we can transform this property into a test automaton, in which
an approac is developed to model-chedking of timed automata via reachability
testing. The idea is to create a bad state in the test automaton and let the
veri er chedk whether the system can reacd this state. If it does, the system
violates a certain property.

The test automaton may need some extra decorations for the veri cation
purpose. In principle, with the test automaton we can expressall scenarioswe

142 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

wait3

release? nomore<NOMORE
nomore:=nomore+1 press?

press?
initial waitl Visitmovement:=0, visitmovement<N,
enoughcycles==NCYCLE

@ endofST==N e enoughtcycles:=0

wait2 bad

nomore<NOMORE release? nomore:=nomore+1

Figure 6.8: The test automaton for Livenessl|

want to chedk. As this would lead to a possibly in nite state space,somesce-
narios which are not interesting can be abstracted away. For example,in the lift

system, the buttons can be pressedand releasedmany times. We consideronly
those scenarioswhere a button on onelift is pressedand releasedat most once.
The test automaton for the requiremert Livenessll is depicted in Figure 6.8
below.

We add new syndhronizations betweenthe Interface automata and the test
automaton via pressand release channels,to model the number of pressingand
releasing actions. In the test automaton only one pressing and releasing per
lift can take place. nomore is a variable that is usedto block more pressing
and releasingactions. This test automaton is usedto expressthat if a button
is pressedand not releasedany more, after some period of time (modeled by
variable enoughcycle} all the lifts will move. We now chedk whether the test
automaton can reach the node bad If the test automaton reaches the node
bad it meansthat not all the lifts have moved and the systemviolates property
LivenesslI .

A[] not testautomaton.bad

Testautomata are alsousedto model and ched the other two safety properties.

With Livenessll, we could ched that if one button is pressed,all the lifts
reach their activemovementor passivemovementode within a certain amourt
of time. What we do not ched is whether they move in the samedirection.

Safety| demandsthat whenewer a lift moves,all the other lifts move simulta-
neouslyin the samedirection. The corresponding test automaton is depicted in
Figure 6.9. This test automaton waits for onelift to read the activemovement
node, which is detected by a syndironization on channel go? between Station
and this test automaton. The test automaton then cheds whether the other
lifts move in the samedirection (modeled by guard visitmovement N) within a
certain amourt of time (modeled by enoughcycles==NCYCLE}p

Safety Il states that there will be no movemen when no button has been
pressed. The corresponding test automaton is depicted in Figure 6.10. The
variable noupdown (meaning no up or down button pressed)is usedto block

6.8 Analysis of the Redesign 143

initial wait

@ go?

enoughcycles:=0 visitmovement!=N,

enoughcycles==NCYLES
bad

Figure 6.9: The test automaton for Safety |

initial wait

©

noupdown==0
visitmovement>=1

bad

Figure 6.10: The test automaton for Safety Il

all pressingsof buttons in the Interfaces. Now we can chedk whether it is still
possiblefor the lifts to reach movemert nodes(modeled by visitmovement =1).

The redesignsatis es requiremert Safety |l , and violates requiremerts Live-
nessll and Safety |. We will discussthe diagnostic traces and the reasonsin
the next section.

6.8.2 Problems

The dewelopersinverted ags to solve the third problem found in Section 6.5.
These ags seemto solvethe error scenariodescribed in Section6.5. But during
the testing phase,the developers encourtered a new error; again the causefor
this error was not clear to them. We have built a UPPAAL model (see Sec-
tion 6.7) for the redesignand chedkedit. Livenessll turned out to be violated.
We rst investigatedthe diagnostic trace generatedby the model chederin UP-
PAAL, and then gave the reasonwhy the solution from the dewvelopers failed.
The generated diagnostic trace cortains 256 transitions; we used the graphic
simulation tool in UPPAAL to analyzeit.

Initially all the ags are 0. When an up button is pressedon one station
(A), Echo will be set and the state of station A will changeto up. Station
A sendsan up message.The other stations will setthe Can ag and change
their state to up. Supposethe button is releasedagain. The ag of station
A does not change, but its state will changeto standby (seethe main loop
in Figure 6.6). Station A will senda standby messagewhich the others will
adopt. When they have adopted this state, and if they receive another st andby
messagethe Can ags of the other stations will be reset. After a short while
all Can ags in the network are 0, Echo of station A is 1, and all the states of

144 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

the stations are standby . Supposenow that an up button of another station
(B) is pressed. Station B will sendan up message.Station A will receiwe this
but cannot changeits state becauseEcho is set. When it is station A's turn
to usethe busit will therefore senda standby message.Station B will receivwe
this standby messageand it will not count enoughup messages.The whole
counting procedurehasto start over again. Station B will sendan up message.
The other stations will adopt this state and senda up message But whenit is
station A's turn, again sinceEcho is set, it will senda standby messageand
station B will again not count enoughup messagesilt is clearthat the Echo of
station A should be resetto get out of this situation, but that can only happen
when the state of the station is standby , a standby messagés received, and
it is this station's turn to usethe bus. For station A this never happens. As a
result, the whole systemwill never move, even when an up button is pressed.

The test automaton detects this problem. Even though the solution of the
dewelopers has some virtue, they seemnot to have taken into account that
the main reasonfor the third problem lies in the fact that the active station
immediately changesits state to standby after a button is released. Their
solution was directed to block state changesto the active station after its state
has changedto standby . This is not the heart of the problem and therefore
the problem remainsin the redesign.

The fourth problem found in Section 6.5 is also still in the redesign. The
redesignviolates property Safety |. The reasonresenbles what is already ex-
plained in Section6.5. This is not very surprising, sincethe fourth problem was
unknown to the developers at the time of the redesign.

6.9 A New Solution

In this section,we re ne the solution proposedin Section6.5in suc a way that
it correspondswith UPPAAL and resenble to the solution from the developers.
The key point why our solution diers from the ags added into the redesign
is that our solution createsa link betweenthe state change of a station and
the turn of the station to usethe bus. This idea was already mertioned in the

CRL model in Section 6.5, but it was not further specied. With the more
exact model of the redesign,including the main loop, and using the idea of the
ags the dewelopers cameup with, now we work out the ideain detail.

The new ags are called Change and Active . They are assignedto ead
station. Can and Echo are no longer a part of the new solution. When
Active is 1, the corresponding station is active; otherwise, the station is passiwe.
Change of a station is set when there is a button pressedor releasedat this
station (through the main loop). This is usedto remenber that the Active ag
at this station must change from active to passiw, or vice versa. Only when
the station getsits turn to usethe bus, this change will actually happen. If
one station wants to becomeactive, it hasto make sure that there are no other
active stations in the system, by cheding whether the state of the messagdrom
the bus is standby . If the Change of a station is set, this station does not

6.10 Conclusions 145

changeits state until it is its turn to usethe busto make a decision. Change
is resettogether with a setting or resetting of Active .

Changing the new ags has no e ect on the automata Interface, Bus and
Timer. They are exactly the sameas in the redesign. Only the automaton
Station has undergone crucial changes. We will not explain the new Station
automaton in detail, more information can be found in [100. All requiremerts
have been cheded successfullyon the model with this new solution. In partic-
ular, problem three and four are resolved.

Remarks. Sincemore details of the lift systemare takeninto accourt in the
UPPAAL model, the state spaceof the redesignincreasesdramatically. For the
UPPAAL model of the redesign,we could only managethe analysisfor systems
with three lifts (UPPAAL version 3.2.4). The requiremerts were chedked on a
1.4 GHz AMD Athlon™ Processomwith 512 Mb memory. When it turned out
that the error tracesthat were discovered by the developers had nothing to do
with exacttiming properties, we made a translation of the UPPAAL model into
CRL, and repeatedthe veri cation with CRL and CADP.

6.10 Conclusions

In this chapter, we have reported an industrial casestudy on applying formal
techniquesfor the designand analysis of a distributed systemfor lifting trucks.
Our work can be consideredas one piece of evidencethat formal veri cation
techniques are mature enoughto be applied in industrial projects.

First, we have described a model of the original designof a distributed lift
systemin CRL. Our primary nding is that such a model is an e cien t tool
to understand the behavior of embeddeddistributed systems,in the sensethat
it helpedusto nd errors and understand their nature using the available tech-
nology. We also nd con rmation of our previous ndings that the possibility
to describe interactions in a processalgebraic way, and data using equational
abstract data typesprovide exactly the required meansfor this speci cation and
its validation. The four problems found in the original designare summarized
as follows:

1. During the startup phase,the relay betweenthe rst and secondlift is re-
openedat the wrong momert; it results in a deadlock in the lift system.

2. During the startup phase,the setref buttons at two lifts are pressedithe
systemwill have two independert networks instead of one.

3. During normal operation, an up or down button is pressedand released
at an inappropriate momert; this problem violates property Livenessll .

4. During normal operation, two up or down buttons at dierent lifts are
pressedat almost the sametime, and one s releasedat an inappropriate
momert; this problem violates property Safety|.

146 Chapter 6 Analysis of a Distributed Systemfor Lifting Trucks

The rst three problemswere alsofound by the dewelopers, and the fourth was
new and unknown to them.

Second, the redesignwas then modeled in UPPAAL. The analysisin Sec-
tion 6.8 has produced someinteresting results. It shows that the redesigndoes
not satisfy all the requiremerts, meaning that the redesignby the dewelopers
doesnot solve all the problems found in the original design. Only one problem
is solved by adding time delays. The third problem, for which those ags were
deweloped, and the fourth problem are not solved.

We could analyzethe CRL model of the original designwith up to v elifts.
For increasedcertainty, it would be niceto increasethis number, preferably up to
32, asthis is the maximal allowed con guration. It is clear that more advanced
techniques are needed,and much work into theseis going on. It leadstoo far
to mention all of them but work on parametric reduction of state spaces[70],
con uence reduction [78] and parametric composition of parallel processe481]
are all activities striving to enablethe analysis of systemswith many more up
to possibly unbounded parallel componerts.

The dewelopers of the system have fully acknowledgedthat thesetechniques
have increasedtheir understanding and are planning to releasea new version of
the product including the improvemerts we suggest.

Chapter 7

Mo del Checking a Cache Coherence
Proto col for Jackal

7.1 Intro duction

Sharedmemory is an attractiv e programming model for interprocesscommuni-
cation and synchronization in multipro cesscomputations. In the past decade,a
popular researt topic hasbeenthe designof systemsto provide a sharedmem-
ory abstraction of physically distributed memory machines. This abstraction,
known as Distributed Shared Memory (DSM), has beenimplemented both in
software (e.g., to provide the sharedmemory programming model on networks of
workstations) and in hardware (e.g., using cache coherenceprotocolsto support
shared memory acrossphysically distributed main memories).

Multithreading is a programming paradigm for implemerting parallel appli-
cations on sharedmemory multipro cessors.The Java memory model (JMM) [67]
prescribescertain abstract rulesthat any implementation of Java multithreading
must follow. Jackal [174] is a ne-grained DSM implemertation of the Java pro-
gramming language. It aimsto implement the JMM and allows multithreaded
Java programsto run unmodi ed on DSM. It employs a self-invalidation based,
multiple-writer cade coherenceprotocol, which allows processorsto cace a
region (which is either an object or a xed-size partition of an array) created
on another processor(i.e., the region's home). All threads on one processshare
one copy of a cached region. The home node and the cacding processorsstore
this copy at the samevirtual address.A caded region copy remainsvalid for a
particular thread until that thread reachesa syndronization point. In Jackal,
seweral optimizations [173 174 improve both sequetial and parallel applica-
tion performance. Among them, the automatic home node migration reduces
the amount of synchronization, by automatically appointing the processorthat
is likely to accessa region most often as the region's home.

In this chapter, we present our formal analysis of a cache coherencepro-
tocol for Jackal using the CRL toolset and CADP. A CRL speci cation of
the protocol (including automatic home node migration) was extracted from an
informal (C language-like) description of the protocol. To avoid state explosion,

147

148 Chapter 7 Model Cheding a Cache CoherenceProto col for Jadkal

we made certain abstractionswith respectto the protocol'simplementation. Re-
quirements wereveri ed by the CRL toolsettogether with CADP. Our analysis
revealedmany inconsistenciesbetweenthe description and the implemenrtation.

We found two errors were in the description. The dewvelopers of the protocol
cheded the two errors and found their way in the implemertation. Both errors
can happenwhen a thread is writing a region from remote (i.e., the thread does
not run on the home of the region). During the thread's waiting for a proper
protocol lock or an up-to-date copy of the region, the homenode may migrate to
the thread's processor,sothat the thread actually accesseshe region at home.
The rst error resulted into a deadlock. The seconderror was found when
model cheding the property of only one home for eac region. After updating
our formal speci cation, the requiremerts were successfullycheded on several
con gurations. Our solutions to the errors were adapted in the implemertation

of the protocol.

Outline of the chapter. The remainder of this chapter is structured as fol-
lows. In Section 7.2, we discussrelated work on analyzing the JMM or its
replacemen proposaland verifying cache coherenceprotocolsusing formal tech-
nigues. An informal description of the JMM is givenin Section7.3. Section7.4
preseris the Jackal systemand its cache coherenceprotocol. Section 7.5 focuses
on our formal analysisin CRL. The CRL speci cations for each component
of the protocol and the veri cation results are given. Discussionsand future
work are mertioned in Section 7.6.

7.2 Related Work

The use of formal methods to analyze the JMM is an active researt topic.
In [151], the authors dewveloped a formal executable speci cation of the JMM
[67]. Their speci cation is operational and usesguardedcommands. This model
can be usedto verify popular software construction idioms for multithreaded
Java. In [177], the Mur veri cation system[43] was applied to study the CRF
memory mode [120. A suite of test programs was designedto reveal pivotal
properties of the model. This approach wasalso applied to Manson and Pugh's
proposal [12]] by the same authors [178. Two proofs of the correctnessfor
Cadhet [158, an adaptive cache coherenceprotocol, were preseried in [164].
Each proof demonstratessoundness(conformanceto the CRF memory model)
and liveness.One proof is manual, basedon a term-rewriting systemde nition;
the other is machine-assisted,basedon a TLA [11Q formulation and using the
theorem prover PVS. Similar to [177, 178, we useformal speci cation and model
cheding techniques. A major di erence is that we analyzed a cache coherence
protocol within a Java DSM systemthat is already implemented and far more
complicated than the abstract memory models analyzedin [151, 164, 177, 17§
Our analysis helped to improve the actual design and implemenrtation of the
protocol.

Our work is also related to the veri cation of cache coherenceprotocols.

7.3 Java Memory Model 149

Thread#1] : [Thread#2 } Thread#n
Working Memory Working Memory Working Memory

Shared Main Memory

Figure 7.1: JMM memory system

Formal methods have been successfullyapplied in the automatic veri cation
of cache coherenceon sequettially consistert systems[109, e.g. [24, 38, 87].
Coherencein shared memory multipro cessorsis much more dicult to verify.
Recerly, Pong and Dubois [143 usedtheir state-basedtool for the veri cation
of a delayed protocol [45], which is an aggressie protocol for relaxed memory
models. We encourtered the samedi culties as[143, such asthat the hard-
ware to model is complex, and that the properties of the protocol are hard to
formulate. Di erences betweenour work and [143 are: we analyzed a protocol
designedfor distributed shared memory machines; and the protocol supports
multithr eaded Java programs, which makes matters more complicated.

7.3 Java Memory Mo del

The Java language supports multithreaded programming, where threads can
interact among themselhesvia read/write of shareddata. The JMM prescribes
certain abstract rules that any implementation of Java multithreading must
follow. We briey presen the current JMM as given in [67].

The JMM allows eadh thread to cache variablesin its working memory, which
keepsits own working copy of the variables. A thread can only manipulate
the valuesin its working memory, which is inaccessibleto other threads. The
working memoriesare cades of a single main memory, which is shared by all
threads. Main memory keepsthe main copy of every variable. A thread's
working memory must be ushed to main memory at eac synchronization point.
A syndhronization point is alock or unlock operation corresponding to the entry
or exit of a synchronized block. The memory structure is depictedin Figure 7.1.

The JMM de nes a set of actions that threads may use to interact with
memory. A thread invokesfour actions: use assign lock and unlock. The other
actions: read, load, store and write, are invoked by a multithreaded implemen-
tation following the temporal ordering constraints in the current JMM ([67,

150 Chapter 7 Model Cheding a Cache CoherenceProto col for Jadkal

Chapter 17]). The meaning of eat action is as follows:
1. use: Read from the working memory of a variable by a thread.
2. assign Write into the working memory of a variable by a thread.
3. read: Initiate reading from the main memory of a variable by a thread.
4. load: Complete reading from the main memory of a variable by a thread.
5

. store: Initiate writing the working memory into the main memory of a
variable by a thread.

6. write: Complete writing the working memory into the main memory of a
variable by a thread.

7. lock: Get the valuesin the main memory transferred to a thread's working
memory through read and load action.

8. unlock: Put the valuesa thread holds in its working memory back to the
main memory through store and write action.

There are many problemsin the current JMM [67], such as that semartics
for nal variable operations is omitted and that Volatile variable operations
do not have syndironization e ects for normal variable operations. In view of
theseproblems, the Java Speci cation Request(JSR) 133is under developmert.
Two replacemert semartics have been proposedto improve the JMM, one by
Mansonand Pugh [121], the other by MaessenArind and Shen[12(. A detailed
discussionof the various problemsin the current JIMM can be found at http://
www.cs.umd.edu/~pugh/ ja va/ menayModel/ . Jadkal is intended to implement
the memory model in JSR, which will be releasedsoon.

7.4 Jackal DSM System

Jackal [174] is a ne-grained DSM implementation of the Java programming
language. Its runtime system implements a self-invalidation based, multiple-
writer cade coherenceprotocol for regions.

The Jackal memory model allows processorsto cache a region created on
another processor(i.e., the region's home). All threads on one processorshare
onecopy of a cachedregion. The homenode and the caching processorsall store
this copy at the samevirtual address. The protocol is basedon self-invalidation,
which meansthe caded copy of a region remains valid until the thread itself
invalidates the copy, which occurs whenewer it reachesa syndcironization point.
Jackal combines features of HLRC [179 and TreadMarks [10]]. As in HLRC,
modi cations are ushed to a homenode; asin TreadMarks, twinning and di ng
are usedto allow concurrent writes to shareddata. Unlike TreadMarks, Jackal
usessoftware accesscheds inserted before ead object usageto detect non-local
or stable data.

7.4 Jackal DSM System 151

The implemenrtation of the Jackal memory model cortains three compo-
nents: addressspacemanagemen, accesschedks and synchronization. Seweral
optimizations were made to improve both sequettial and parallel application
performance[173 174.

7.4.1 Address space managemen t

Jackal storesall regionsin a single, shared virtual addressspace. Each region
occupiesthe samevirtual addressrange on all processorsthat store a copy of
the region. Regionsare namedand accessedhrough their virtual address.Each
processorowns part of the physical memory and createsobjects and arraysin its
own part. In this way, eat processorcan allocate objects without syndironizing
with other processors. When a thread wishesto accessa region created by
another processor,it must potentially allocate physical memory for the virtual
memory pagesin which the object is stored, and retrieve an up-to-date copy of
the region from its home node. If a processorruns out of free physical memory,
it initiates a global garbagecollection that freesboth Java objects and physical
memory pages.

To implement self-invalidation, ead thread keepstrack of the regions it
accessedand cadhed since its last syndhronization point. The data structure
storing this information is called the ush list. At synchronization points, all
regionson the thread's ush list are invalidated for that thread, by writing di s
back to their home nodes. A di contains the dierence between a region's
object data and its twin data.

7.4.2 Access check

Jackal's compiler generatesa software accessched for every use of a region.
The accessched determines whether the region referencedby a given pointer
cortains a valid local copy. Whenewer an accessched detects an invalid local
copy, the runtime systemcontacts the region's home. It asksthe home node for
a copy of the region and storesthis copy at the samevirtual addressas at the
home node. The thread requesting the region receivesa pointer to that region
and addsit to its ush list. This ush list is similar to the working memory in
the current JMM [67].

7.4.3 Synchronization

Logically, eath Java object contains an object lock and a condition variable.
Since threads can accessobjects from di erent processorsJackal provides dis-
tributed syndhronization protocols. Briey , an object's home node acts as the
object's object lock manager. lock, unlock, wait and notify calls are imple-
mented as control messageso the lock's homenode. To acquire an object lock,
a thread sendsa lock request messageto the object lock manager and waits.
When the lock is available, the manager replies with a notify message;other-
wise, the thread needsto wait for the lock to be released. To unlock, the lock

152 Chapter 7 Model Cheding a Cache CoherenceProto col for Jadkal

holder sendsan unlock messageto the home node. We did not model object
locks, sincethey are not relevant to the requiremerts that we formulated for the
protocol (seeSection 7.5.2).

7.4.4 Automatic home node migration

Java programs do not indicate which object locks protect which data items.
This make it dicult to combine data and synchronization trac. Jackal may
have to communicate multiple times to acquire an object lock, to accessthe
data protected by the lock and to releasethe lock. Recall that the home of
a region acts as the manager of the object lock. To decreasesynchronization
trac, automatic home node migration has been implemented in Jackal. It
meansthat Jackal may automatically appoint the processorthat is likely to
accessa region most often asthe region's home. This optimization is triggered
during the following two cases.

1. A thread writes to a region, and an accessched detects an invalid local
copy; the runtime system cortacts the region's home, and nds that the
thread's processoris the only one from which threads are writing to this
region. Then the home of this region migrates to the thread's processor.

2. A thread ushes at a syndhronization point, and there is only oneprocessor
left from which threads are writing to someregion. Then the home of this
region migrates to this processor.

Jacdkal can detect these situations at runtime, and thus reduce syndhronization
trac. Automatic home node migration complicates meeting the requiremerts
in Section7.5.2.

7.45 Other features

To improve performance, a source-leel global optimization object-graph aggie-
gation, and runtime optimization adaptive lazy ushing, are implemented in
Jackal.

The Jackal compiler can detect situations where an accessto some object
(called root object) is always followed by accesse$o subobjects. In that case,
the systemviews the root object and the subobjects as an object graph. Jacdkal
attempts to aggregateall accesscheds on objects in such a graph into a single
accessched on the graph's root object. If this ched fails, the ertire object
graph is fetched, which can reduce the number of network round-trips. We
did not model object-graph aggregation since we modeled memory at a rather
abstract level.

The Jackal cache coherenceproto col invalidates all data in a thread's working
memory at eac syndchronization point. That is, the protocol exactly follows
the speci cation of the JMM, which potentially leadsto much interprocessor
communication. Due to adaptive lazy ushing, it is not necessaryto invalidate
and ush aregionthat is accessedy only a single processoror that is only read

7.5 Specication and Analysisin CRL 153

Y T4| P2

————————————————— -]

T3

)
HomeQueue

1u:amaﬁeuew)1:):01

SUOIEDIUNWWOD SNOUOIYIUAS

e e PR
™ T
T ! — \ J | Agess Check!
| Acess Check RemoteQueue RemoteQueue ™ T -- 77‘7 -
ooy
List of visited regions List of visited regions

Shared Virtual Address Space

,,

Figure 7.2: Componerts in the Jackal architecture

by its accessingthreads. We did not model adaptive lazy ushing, sinceit is
not relevant to the requiremerts that we formulated.

7.5 Specication and Analysis in CRL

In this section, we present a formal speci cation of Jackal's cache coherence
protocol in CRL and verify somerequiremerts at the behavioral level.

7.5.1 Specication of the proto col

The cacde coherenceprotocol in Jackal is more complex than an interleaved
execution of the threads, where ead thread executesin program order. The
permitted setof executiontracesis a supersetof the simpleinterleaved execution
of the individual threads. Furthermore, the CRL speci cation is an exhaustive
nondeterministic description of the cache coherenceprotocol. This may lead to
state explosion To deal with this problem, we made someabstractions of eat
componert. In the following discussion, we presert the CRL speci cation
for eadh componert, together with the abstractions we made. For the sake of
preseration, we only give parts of the speci cation to illuminate the crucial
points, and omit the speci cation of data types. The complete speci cation
can be found at Appendix A (also available at http://www.cwi.n |/ ~pangjun/
ccp/).

Our model of the cade coherenceprotocol is a parallel composition of
threads, processorsregions,protocol lock managersand messagejueuesupon a
set of communication actions. Fig. 7.2 shows the various componerts and their
interactions in the CRL specication. P; are identities of processors,and T;
identities of threads. By means of these communications, data can be trans-
ferred betweentwo processesThe complete CRL speci cation of this protocol
consistsof around 1000lines.

154 Chapter 7 Model Cheding a Cache CoherenceProto col for Jadkal

proc Thread(tid:Threadld,pid:Praessld,FlushList:RegionldSet)=
write(tid). ThreadWrite(tid, pid, FlushList)
+
ush(tid). ThreadInvalidate(tid,pid,FlushList)
not(empty(FlushList))

Table 7.1: Speci cation of a thread

% Synchmonization betwes=n actions.
comm s.refreshj r_refresh= c_refresh

s_norefreshj r_norefresh= c_norefresh

s_.sendbaclj r_sendback= c_sendback

proc ThreadWite(tid: Threadld,pid:Pracessld,FlushList:RegionldSet)=
% The thread has written the region (rid1) before.
Thread(tid,pid,FlushList)
Ptest(ridl,FIushList)
r:Region [-Se€ndback(tid, pid,r).
% Write the region at home, if pid=gethome(r).
(s-norefresh(tid, pid). WiteHome(tid, pid,insert(rid1,FlushList))
eq(gethome(r),pid)
% Otherwise, write the region from remote.
s_norefresh(tid,pid). WiteRemote(tid,pid,insert(rid1,FlushList)))

Table 7.2: Speci cation of a thread writing

Threads

Each thread runs on a processor,and can perform a number of actions: read,
write and invalidate. It maintains two lists: ReadList contains the identities
of regionsthat it is reading or recertly read from, and WriteList contains the
identities of regionsthat it iswriting or recertly wrote to.! When athread starts
reading from or writing to a region, the corresponding accessched determines
whether there is a valid local copy of this region at the thread's processor.The
serverlock is neededif the thread runs on the region's home (i.e., if the thread
reads or writes at home); otherwise, the fault_lock of the thread's processoris
acquired (i.e., if the thread reads or writes from remote). When a fault lock
is granted, the thread retrievesan up-to-date copy of the region from its home
node. The thread continuesreading from or writing to the region and nally
releasesthe lock by sending an unlock messageto the protocol lock manager
(seeTable 7.2 and Table 7.3).

When a thread invalidates, it empties both its ReadList and WriteList. If

1We only model threads with a FlushList in CRL. Seelater discussion.

7.5 Specication and Analysisin CRL 155

% Synchionization betwes=n actions.

comm s_requirefaultlock j r_requirefaultlock = c_requirefaultiock
s no_faultwait j r_no_faultwait = c_no_faultwait
s_signalfaultwait j r_signalfaultwait = c_signalfaultwait
s_data requirej r_i_datarequire= c_i_data_.require
s_signalj r_signal= c_signal
s freefaultlock j r_freefaultlock = c_freefaultlock

% Thread writes from remote, requires a fault lock,
% and asksfor a freshcopy of the region.
proc WriteRemote(tid: Threadld,pid:Proessld,FlushList:RegionldSet)
s_requirefaultlock(pid).
(bno_faultwait(pid)+r _signalfaultwait(pid)).
(' r:Region -sendback(tid, pid,r).
% Ask for a fresh copy of the region.
s_data_require(tid,pid,gethome(r)).snorefresh(tid, pid).
% opy arrives, the thread is noti e d.
(Fpido:Procesle—Signal(tid'pidb'
newr:Regionl -S€Nndback(tid, pid,newr).
s_refresh(tid,pid,setloalthreads(newr,S(getlcalthreads(newr)))).
s freefaultlock(pid). Thread(tid,pid,wl))))

Table 7.3: Speci cation of a thread writing to a region from remote

the thread invalidates a regionin its WriteList at home,and it may nd out that
there is only one processorleft from which threads are writing to the region,
then the home of the region migrates to this processor.If the thread invalidates
a region in its WriteList from remote, it sendsa Flush messageo the home of
the region, the Flush messagealso cortains a di with the di erence between
the region's object and twin data. The home processorof the region will take
charge of automatic home migration. The ush _Jock of the home of eac region
is acquired beforeinvalidating, and releasedafter invalidating (seeTable 7.4 and
Table 7.5).

In the CRL speci cation, ead thread is modeledasa separateprocesswith
a unique identity (see Table 7.1). It cortains one parameter pid to indicate
on which processorthe corresponding thread executes. Since the behavior of
reading from a region is part of the behavior of writing to a region, and since
writing is far more critical for the correctnessof the protocol than reading, we
abstracted away from the read action of threads. As a result, a thread only
maintains a FlushList and ushes the regionsin this FlushList.

156

Chapter 7 Model Cheding a Cache CoherenceProto col for Jadkal

% Synchmonization betwes=n actions.

comm s_require ushlock j r_require ushlock = c_require ushlock

proc

s_no_ ushwait j r_.no_ushwait = c_no_ ushwait
s_signal ushwait j r_signal ushwait = c_signal ushwait

ThreadInvalidate(tid: Threadld,pid:Preessld,FlushList:RegionldSet)
% Thread requiresa ush lock.
s_require ushlock(pid).
g_no_ ushwait(pid)+r _signal ushwait(pid)).
r:Region [-Se€ndback(tid, pid,r).
% Invalidate at home, we only model one region: rid1.
(FlushHome(tid,pid,remove(rid1,FlushList),r)
eq(gethome(r),pid)
% Otherwise, invalidate from remote.
FlushRemote(tid,pid,remove(rid1,FlushList),r)))

Table 7.4: Speci cation of a thread invalidating

% Synchmnization between actions.

comm s_ush j rii_ush = c.i_ush

proc

s free. ushlockj r_free. ushlock = c_free. ushlock

FlushRemote(tid: Threadld,pid:Preessld,FlushList:RegionldSet,
r:Region)=

% No thread is using this region. Setthe last parameter as true.

s_ush(tid,pid,gethome(r),r,T).

% Refreshthe region's information.

% We use *new-information-of-the-r egion* to indicate the updating.

s_refresh(tid,pid,*new-infomation-of-the-region*).

s free. ushlock(pid).

§ This invalidation is nished, the thread is noti e d.
pideProcessid -Signal(tid,pid’). Thread(tid,pid, FlusList)
eq(subl(getl@althreads(r)),0)

% Otherwise, set the last parameter as false.

s_ush(tid,pid,gethome(r),r,F).

% Refreshthe region's information.

s_refresh(tid,pid,*new-infomation-of-the-region*).

s free. ushlock(pid).

(24 This invalidation is nished, the thread is noti e d.
pideProcessid -Signal(tid, pid’). Thread(tid,pid, FlusList)

Table 7.5: Speci cation of a thread ushing a region from remote

7.5 Specication and Analysisin CRL 157

% pid indicates where the region is;
% r contains the regions information.

proc Region(pid:Praesslds:Region)=

¥ Communication with threads.
tid: Threadia S-S€ndback(tid,pid,r).
(rfmorefresh(tid,pid).Region(pid,r)
+ 1oRegion r_refresh(tid,pid,r').Region(pid,r"))
% Communication with processors.
+ s.sendback(pid,r).
(rﬁlorefresh(pid).Region(pid,r)
+ r_refresh(pid,r').Region(pid,r")))

r%:Region

Table 7.6: Speci cation of a region

Regions

Jackal usesa single sharedvirtual addressspace.Each region occupiesthe same
virtual addressrange on all processorsthat store a copy of it. When a region
is created on one processor,a copy of this region is also created on every other
processor.A region contains the following information:

1.

Location: A processor'sidentit y, denoting at which node the region (or a
copy) is.

. Home: A processor'sidentit y, denoting the home node for this region.

. State: A region can ewlve into four kinds of states. When no thread uses

this region, the state of the region is Unused; if a region is only used by
threads on its home node, its state is Homeonly; if all accessesf a region
are read actions, the state of this region is Readonly; in all other cases,
the state of a region is Shared.

. ReaderList: A list of processors'identities containing threads that are

reading or recertly read from this region. It is only maintained at the
home node.

. WriterList: A list of processors'identities cortaining threads that are

writing or recertly wrote to this region. It is only maintained at the home
node.

. Object data: An array of bytes.

. Twin data: An array of bytes. It is a copy of the object data for di ng

at non-homenodes;initially it is null.

. Localthreads: A natural number, the number of threads accessingthis

region at the location of the region.

158 Chapter 7 Model Cheding a Cache CoherenceProto col for Jadkal

In CRL, ead regionis modeledasa separatecomponert. As aresult of our
abstraction of the behavior of threads, we madesomecorresponding abstractions
for regions. Each region has only two states; we kept the Unused state, while
the other three states are mapped to a state Used. The region only needsto
maintain the WriterList . Furthermore, we did not model object and twin data,
sincethey are not relevant to our requiremerts for the protocol. Soin our model
athread cannot write any valueto aregion. Still, whenathread ushes a region
from remote, a messaggwithout a di) is sert badk to the home of this region
to unlock its fault _lock.

We use a set of syndironized actions to ensure that during an accessto
a region, no other processescan change the information of this region (see
Table 7.2). For example,athread getsthe information of a region by performing
a synchronized action r_sendlack and the accessedo this region are blocked
until this thread executesanother syncironized action s_norefresh (if it has
changednothing) or s_refresh (if it haschangedsomeinformation of the region).
The syndironized actions on a region are preserned in Table 7.6, together with
the speci cation for regionsin CRL. To avoid state explosion,we only analyzed
con gurations cortaining one region with identity rid1.

Messages to pro cessors

Four kinds of messagesan be deliveredto a processor.

1. Data_Request This messageis sert when a thread starts writing to a
region from remote. When a processorgets this message,and it is the
home of the region, it adds the thread's processorinto the WriterList of
the region and sendsback an up-to-date copy of the regionto the thread's
processorby a Data_Return message.If it is not the home of the region
(meaning that the region migrated its homein the meartime), it forwards
the Data_Requestmessageo the region's new home.

2. Data_Return: This messagés received by a processomwhen an up-to-date
copy of a region has arrived. The processorupdates the object and twin
data of the region. Moreover, if the messages a home node migration
messagethen the processorbecomesthe home of this region, and starts
maintaining the WriterList and the state of the region.

3. Flush: This messageds sert when a thread ushes from remote. When a
processorgets this messageand it is the home of the region, it removes
the thread's processorfrom the WriterList of the region; moreover, it may
senda home node migration messageo a new home of this region (by a
Region_Sponmigrate message).When it is not the home of the region, it
forwards the Flush messagdo the region's new home.

4. Region_Spnmigrate; When a processorgets this messagejt becomesthe
home of the region in question.

7.5 Specication and Analysisin CRL 159

% Synchionization betwes=n actions.

comm s.i_data requirej r_data require= c_o_data require
s_freehomequeuelok j r_free homequeuelok = c_free homequeuelok
s_datareturn j r_o_data_return = c_i_data_return
s.i_regionsponmigratej r_regionsponmigrate= c_o_regionsponmigrate

proc Processo(pid:Processld)=

¥ Processgsgetsa Data_Requestmessage(forwarded) from processor pid'.
tid : Threadld pidO:Procesle-dataJeqUire(tid'pidl'pid)'

% We only model one region: ridl. Check the current state of the region.

% If the processoris not the home of the region,

% then the messages forwarded to the real home.

r_sendback(pid,rid1).

(s-data_require(tid,pid',gethome(rid1)).

s_norefresh(pid).sfree homequeuelok(pid).Processo(pid)
not(eq(gethome(rid1),pid))

% Refreshthe region's information, and sendthe region back.

% If the region is UNUSED, then the Data_Return message

% is also a home migration message.Set the last parameter as true.
(s_data_return(tid,pid',pid,*new-infomation-of-the-region*,T).
s_refresh(pid,*new-infomation-of-the-region*).
s_freehomequeuelok(pid).Processo(pid)

eq(getstate(rid1),UNUSED)

% It is not a home migration message.Set the last parameter as false.
s_data_return(tid,pid',pid,*new-infomation-of-the-region*,F).
s_refresh(pid,*new-infomation-of-the-region*).
s_freehomequeuelok(pid).Processo(pid)))

+

% Processorgetsa Region_Spnmigrate message.

% It becomesthe regions home node by refreshing

¥ the regioF_t,s parametefs.
f@:Threadld pid®:Processld r°:Regionr-region-smnmigrate(tid'pid"pid'rl)'

r:Region’ -Sendback(pid,r).

% Set the home by itself; maintain the state and writerlist.

s_refresh(pid,*new-infomation-of-the-region*).
s freehomequeuelok(pid).Processo(pid))
+ ..

Table 7.7: Speci cation of a processordealing with a message

160

Chapter 7 Model Cheding a Cache CoherenceProto col for Jadkal

% Synchmonization betwes=n actions.

comm s_requirehomequeuelok j r_requirehomequeuelok

proc

= c_requirehomequeuelok
s_.no_homequeuewait j r_.no_homequeuewait

= c_no_homequeuewait
s sighalhomequeuewait j r_signalhomequeuewait

= c_signalhomequeuewait
s_regionsponmigratej r_i_regionsponmigrate

= c.i_regionsponmigrate

HomeQueue(pid:Proessld)=

% Home queuegetsa Data_Requestmessage.

¥ To deal wl'gh it, the homeagueuelock is needed.
tid : Threadld pid%:Processld

% Put a messagdnto the queue.
r_i_data_require(tid,pid',pid).srequire homequeuelok(pid).
(r_.no_homequeuewit(pid)+r _signalhomequeuewait(pid)).

% The processortakesthis message.
s.i_data require(tid,pid’,pid).HomeQueue(pid)

+

% Home queuegetsa Region_Sponmigrate message.

¥ To deal wigh it, the hggrequeuelock is needed.
tid: Threadld pid%Processld r:Region

% Put a messagdnto the queue.
r_i_regionsponmigrate(tid,pid’,pid,r).srequirehomequeuelok(pid).
(r_.no_homequeuewit(pid)+r _signalhomequeuewait(pid)).

% The processortakesthis message.
s.i_regionsponmigrate(tid,pid’,pid,r).HomeQueue(pid)

+ ..

Table 7.8: Part of the speci cation of a home queue

7.5 Specication and Analysisin CRL 161

% Synchionization betwes=n actions.
comm s_requireremotequeuelok j r_requireremotequeuelok
= c_requireremotequeuelok
s_no_remotequeuewit j r_.no_remotequeuewait
= c_no_remotequeuewait
s_signhalremotequeuewit j r_signalremotequeuewait
= c_signalremotequeuewait
s.o_datareturn j r_datareturn
= c_o_datareturn

proc RemoteQueue(pid:Preessld)=
% Remote queuegetsa Data_Return message.
p To deal yith it, the resotequgsielock is needed.
tid:Threadld pid%Processld r:Region b:Bool
% Put a messagento the queue.
r_o_data return(tid,pid’,pid,r,b).s_requireremotequeuelok(pid).
(r_no_remotequeuewit(pid)+r _signalremotequeuewait(pid)).
% The processortakesthis message.
s o_data return(tid,pid',pid,r,b). RemoteQueue(pid)

Table 7.9: Speci cation of a remote queue

In CRL, ead processolis modeled asa separatecomponert (with a unique
identit y). How a processordeals with Region. Sponmigrate and Data_Request
messagess speci ed in Table 7.7.

Each processormaintains two messagegueuesto store incoming messages.
The HomeQueueis designedto bu er messagegontaining a request, while the
RemoteQueuebu ers messagesontaining a reply. For example,when a thread
tries to get an up-to-date data copy from a region's home, rst a Data_Request
messages put into the homenode'sHomeQueue.When a Data_Return message
arrives, it is put into the RemoteQueueof the thread's processor. The CRL
processfor a messagequeue corntains one parameter pid to indicate to which
processorthis messageajueuebelongsto (seeTable 7.8 and Table 7.9). To avoid
state explosion, we only modeled queuesthat can contain one message.

Proto col locks

As already explained in the speci cation of threads, protocol locks guarantee
exclusivity when threads write to or ush a region. Each processoracts as the
protocol lock manager of its regions and region copies. To acquire a protocol
lock, a protocol lock requestmessages sert to the region's home. If the lock is
available, the managerreplies with a grant message.Otherwise, the requester
needsto wait for the lock to bereleased,and the protocol lock manageraddsthe
requesterinto the lock's waiting list. To unlock, the current lock owner sends

162 Chapter 7 Model Cheding a Cache CoherenceProto col for Jadkal

% We only presentthose parameters whosevaluesare changel.
proc Locker(pid:Processld,faulters:Bal, ushers:Bwl,
homequeue:Bol,remotequeue:Bol,wait_faulters:Natural,

wait_ ushers:Natural,vait_homequeue:Natural,

wait_remotequeue:Natural)=

% Get a requestfor the fault lock. If this lock can be granted,
% senda no-wait message.

r_requirefaultlock(pid).

(s_no_faultwait(pid).Locker(t/faulters)

and(faulters, ushers)

% Otherwise, increasethe number of threads waiting for this lock.
% Later on, the thread waiting on fault lock will be signaled.
Locker(S(wait_faulters)/wait_faulters))

% The fault lock is releasal, if a thread can be noti e d,

% senda signal. wait messageand decrease the waiting number.
+ r_freefaultlock(pid).

((s_signalhomequeuewait(pid).

Locker(f/faulters,t/homequeue,
subl(wait_homequeue)/vait_homequeue)
and(not(eq(wait_homequeue,0)),homequeue)..)

and(not(and(eq(vait_homequeue,0),

eg(wait_remotequeue,0))), ushers) ...)
+ ..

Table 7.10: Part of the speci cation of a protocol lock managemen

an unlock messageto the protocol lock manager. When the manager gets an
unlock messageit cheds whether a thread waiting for this lock can be noti ed,
under some constraints. For instance, a fault_lock can be granted only if this
fault_lock and the ush _lock are not held by other threads.

There are v e protocol locks for eat processor: homejueuelock, remote-
gueuelock, serverlock, fault_lock and ush _lock. The homequeuelock and re-
motequeuelock are neededto make surethat the handling of a popped message
from a HomeQueueor a RemoteQueueby its processoris completed before
the next messageis popped from the queue. The cadce coherenceprotocol
allows writes to a region at home and from remote to happen concurrertly.
The senerlock, fault lock and ush _lock ensureexclusivity betweenthreads at
a processor. The sernerlock and ush _lock must be mutually exclusive for the
homeof aregion, to protect the integrity of region data valuesand other region's
information; likewise,the fault lock and ush _lock must be mutually exclusive
for non-homenodesof a region. When a thread writes at home or from remote,
the sener_lock or the fault _lock of the thread's processoris needed,respectively.
When a thread ushes, the ush _lock of its processoris needed.

Protocol lock managemern of a processoris modeledin CRL as a separate

7.5 Specication and Analysisin CRL 163

componert (seeTable7.10). Each protocollock is modeledasa booleanvariable,
sincea protocol lock can be held by at most one thread at a time. The waiting
list of alock is modeledasa natural number, represening the number of threads
in the waiting list, to enablechedking for emptiness;waiting lists do not needto
cortain thread identities, sincewaiting and noti cation are speci ed by means
of a pair of synchronized actions, carrying the identity of the waiting thread
as a parameter. When a protocol lock is available, the protocol lock manager
randomly selectsa waiting thread to notify.

Assertions from the developers

The dewvelopers added many assertionsinto the description and required that
the protocol should not violate any of them. The assertionsare modeled as a
part of the CRL specication. They can be divided into two classes:order
assertions and preconditions.

Order assertions: This classof assertionsimposesa certain order on the
usageof the system's resources. For example, when a thread performs
an action on a region, the corresponding protocol lock should already be
held by the thread. Order assertionsare modeledin CRL by imposinga
certain order on the execution of actions. In the aforemerioned example,
in the CRL speci cation, the behavior of a thread is modeled lik e this:
only after execution of the action r_no_serverwait or r_signal_serverwait,
the thread can accessa region at home.

Preconditions: This classof assertionsrequiresthat only when a certain
precondition is satis ed, the description after it can be executed. For
example,only under certain conditions (seeSection 7.4.4) the home of the
region automatically migrates. Preconditions are modeled in the CRL
speci cation as booleanterms in conditional expressions.

7.5.2 Requiremen ts

We formulated three requiremerts for the cache coherenceprotocol.

1. Deadlock freeness:The protocol never endsup in a state whereit cannot
perform any action.

2. Relaxed cache coherence: For ead region, at any time there exists one
home node.

3. Liveness:Requestsfor writing to or ushing a region cannot be bounced
around the network forever.
7.5.3 Validation of the requiremen ts

The CRL toolset was usedto ched the syntax and the static semartics of
the speci cation, and also to transform it into a linear form. The linear form

164 Chapter 7 Model Cheding a Cache CoherenceProto col for Jadkal

was usedto generateLTSs for various con gurations of processorsand threads.
Next, we validated the three requiremerts with respect to thesecon gurations.

Requiremen t 1

We usedthe CRL toolsetto ched for deadlocks. This deadlock cheding exer-
ciseled to the detection of many mistakesboth in the informal description and
in the CRL speci cation of the protocol. For the rst case,whenthe develop-
ers extracted a C-like description of the protocol from its implemertation, they
abstracted away from certain implementation details; someof thesedetails were
actually crucial for the correctnessof the CRL speci cation. For the second
case,at somepoints the analyzersunderstood the description di erently from
what the developersreally meart. Whenewer a deadlock trace wasfound, it was
simulated to understand the reasonfor the deadlock. This analysistook us a
lot of time, since many of the traces were quite long (typically more than 300
transitions) and dicult to comprehend. Whenewer a mistake was found, the
CRL speci cation was adapted and cheded for deadlocks again.

One deadlock found by the analyzers,on a con guration of two processors
ead containing one thread, was a real problem in the implementation. When
a thread wants to write to a region from remote, it acquiresthe fault lock of
its home node by sendinga lock message.f the lock is unavailable, the thread
waits for the lock to be released. Whenewer it is noti ed, it corntinueswith its
accesdo the region and holds the fault _lock until it sendsan unlock messageo
the home node. In the deadlock trace, we found that while a thread is waiting
for a fault _lock, the home of the region may migrate to the thread's processor.
Then in fact the thread writes to the region at home, it needsto acquire the
sener_lock instead of the fault_lock. This error resulted in a deadlock in the
implemertation. The chosensolution is that after a thread obtains a fault _lock,
it chedks whether it still writes from remote. If this is not the case,it sends
an unlock messageto releasethe held fault _lock, and then sendsa message
to acquire the serwerlock. After xing this problem as proposed, no more
deadlocks were found.

Requiremen t 2

Due to automatic home node migration, it needsto be chedkedthat at any time
there exists at most onehomenode for eat region. We divided this requiremert
into two parts.

2.1 Each region has at most one home node.

2.2 If the systemis stable, ead region hasno more than n 1 copies,where
n is the number of processors.

To verify thesetwo parts, actions s_home and r_home were addedto the speci-
cation of a region, when a region nds that its location equalsits home node;
s_copy and r_copy were added, when a region nds that its location does not

7.5 Specication and Analysisin CRL 165

% Synchionization betwes=n actions.
comm s.homej r-home= c_home
S.copy j rcopy = c_copy

proc Region(pid:Pra@essldr:Region)=
% This part remains the sameas before.
I
% s_home, r_home indicate pid is the home.
r_home.Region(pid,r) eq(pid,gethome(r))
+ s_home.Region(pid,r) eq(pid,gethome(r))
% s_copy, r_copy indicate pid hasa copy.
+ eq(pid,gethome(r)) r_copy.Region(pid,r)
+ eq(pid,gethome(r)) s.copy.Region(pid,r)

Table 7.11: Modi ed speci cation of a region

equal its home node. We synchronized s.home and r_home into c_.home s_copy
and r_copy into c_copy (seeTable 7.11). Furthermore, we encapsulateds_home,
r_home, s_copy and r_copy, sothat theseactions are forced to syndironize.

We veried requiremert 2.1 by cheding the absenceof c_homein the gen-
erated LTSs. This is formulated in the regular alternation-free -calculus (see
Section 2.4) as follows:

21 [T c.homqg F

It saysthat if an executionsequencecontains c_.home,then in the resulting state
false holds. This formula was cheded to be true by Evaluator, a model cheder
from the CADP toolset.

For requiremert 2.2, a stable state of a system meansthat no protocol lock
is held, and that the messagequeuesare empty. We added actions home-
gueueempty and remotequeueempty to the CRL specication of queuesto
indicate that queuesare empty, and added an action lock.empty to the spec-
i cation of the protocol lock managerto indicate that no lock is held. Then
for a model with two processorswe cheded that the generatedLTS does not
cortain a state which can perform c_copy, lock_empty, homequeueempty and re-
motequeueempty. This requiremert is presered in the regular alternation-free

-calculus as follows:

22 :hT i (hc_copyi T “hlock_emptyi T “hhomequeueemptyi T #
hremotequeusemptyi T)

Note that the above two formulas only work for con gurations with two proces-
sors, meaningthat there are two copiesfor ead region.

A seconderror in the implemertation of the protocol was found while model
cheding this property on a con guration of two processors,with two threads
running on one processorand a third thread on the other processor.The error

166 Chapter 7 Model Cheding a Cache CoherenceProto col for Jadkal

can happenwhenathread is writing to a regionfrom remote. During its waiting

for an up-to-date copy of the region from the region'shome, the homenode may

migrate (by a Region.Sponmigrate message)o the processorwhere the thread

resides. When the Data_Return messagewith an up-to-date copy of the region

arrives, the thread refreshesthe region's home by the sender of the answer

message. In the resulting state of the protocol, neither of the two processors
is the home of the region. So c_copy may happen even in a stable state. The

chosensolution is that when a processorgets a Region. Sponmigrate messagejt

informs those local threads that are writing to the region at the previous home
node, so that these threads will behave as writing at home. After xing this

problem as proposed,property 2.2 was successfullymodel cheded.

Requiremen t 3

The third requiremert, that requestsof writing to or ushing aregioncannot be
bounced around the network forever, is a livenessproperty. Actions writeover
and ushover wereaddedto the CRL speci cation of a thread to indicate that
a thread completed its pending actions. The following shows the code in the
regular alternation-free -calculusfor this requiremert.

3.1 A thread evertually nishes writing to a region:
[T write(?)] Y :hTi T~ [: writeove(?)] Y

3.2 A thread evertually nishes its ush of a region:
[T ush(?)] Y:RTi T~ [: ushover(?)]Y

We use™?' to indicate any identit y of a thread. Thesetwo formulas expressthat
after a thread initiates its action (writer(?) or ush(?)), the end of this action
(writeover(?) or ushover(?)) is inevitable. This requiremert was successfully
model chedked on two con gurations.

7.5.4 Verication results

We applied advancedtechniquesfor generating LTSs on a cluster at CWI, con-
sisting of eight nodes. Each node is a dual AMD Athlon MP 1600+ system,
with 1.4Ghz processors2GB RAM and 40GB disk. The nodes are connected
by a private ethernet network (100baseTswitch) and by a public fast ethernet
network (1000baseTswitch). Our casestudy beneted a lot from the CRL
distributed LTS generationtool [22], and also pushedforward its developmert.
The sizesof the generatedLTSs and the veri cation results are summarized
in Table 7.12. Due to the complexity of this protocol, the sizeof the LTS grows
very rapidly with respect to the number of threads and processors. With the
current CRL toolset, we could generateLTSs for the following three con gura-
tions: 1) two processorsead with onethread; 2) two processorspne with one
thread, the other with two threads; 3) three processors,eah with one thread.
For the third con guration, we could only ched the rst requiremert, because

7.6 Conclusions 167

Con guration States Transitions | Requiremerts Cheded
1 65,234 460,162 1,2, 3
2 5,424,848| 40,476,069| 1, 2,3
3 82,371,105| 893,181,444/ 1

Table 7.12: Veri cation results

the generatedLTS was too large to sene asinput to the model chedker. The
shortest error tracesfor the two a wsin the original implemertation of the pro-
tocol that were detected during the model chedking phase (see Section 7.5.3)
both consistedof more than 100 transitions.

7.6 Conclusions

In this chapter, we usedformal speci cation and model cheding techniquesto
analyze a cache coherenceprotocol for a Java DSM implementation. We spec-
ied the protocol in CRL and analyzedit. Somegeneral requiremerts were
formulated and veri ed for seweral con gurations. Our analysisuncovereda lot
of inconsistenciesbetweenthe description and the implementation of this pro-
tocol. Two errors werefound and xed in the implemertation, which improved
the designand implementation of this protocol.

During the speci cation and analysis phase, we encourtered quite a few
di culties. First, it took a relatively long time to obtain a CRL speci cation
of the protocol. During this period, the developers made important changesto
the protocol, so that the CRL specication had to be updated a number of
times. Sud gaps between an implemertation and its formal model could be
avoided if formal methods were used at an earlier design phase. Second,both
the dewelopersand analyzersmade mistakesin their work. In our analysis,many
deadlocks were due to the inconsistenciesand misunderstandings. Third, more
advanced techniques for distributed/parallel state spacegeneration, reduction,
and model cheding are highly needed. Our future work will mainly focus on
verifying whether the cace coherenceprotocol implements the JMM in [67,
Chapter 17], and cheding the requiremerts on more con gurations.

168 Chapter 7 Model Cheding a Cache CoherenceProto col for Jadkal

Chapter 8

Simplifying Itai-Ro deh Leader Election
for Anon ymous Rings

8.1 Intro duction

Leader election is the problem of electing a unique leader in a network, in the
sensethat the leader (process)knowsthat it hasbeenelectedand the other pro-
cesseknow that they have not beenelected. Leaderelection algorithms require
that all processeshave the same local algorithm and that ead computation
terminates, with one processelected as leader. This is a fundamental problem
in distributed computing and has numerousapplications. For example, it is an
important tool for breaking symmetry in a distributed system. By choosing a
processas the leaderit is possibleto executecertralized protocolsin a decen-
tralized ervironment. Leader election can also be usedto recover from token
lossfor token-basedprotocols, by making the leader responsible for generating
a new token when the current oneis lost.

There existsa broad range of leaderelection algorithms; seee.g.the summary
in the text books [167, 116. Thesealgorithms have di erent messagecomplex-
ity in worst and/or averagecase. Furthermore, they vary in communication
mechanism (asynchionous vs. synchronous), processnames (unique identities
vs. anonymousg, and network topology (e.g. ring, tree, complete graph).

A rst leaderelectionalgorithm for unidirectional rings wasgivenby Le Lann
[113. It requiresthat ead processhasa unique identity, with a total ordering
on identities; the processwith the largest identity becomesthe leader. The
basicidea of Le Lann's algorithm is that ead processsendsa messagearound
the ring bearing its identity. Thus it requires a total of n? messageswhere n
is the number of processesn the ring. Chang and Roberts [32] improved Le
Lann's algorithm by letting only the messagewith the largestidentit y complete
the round trip; their algorithm still requiresin the order of n> messagesn the
worst case,but only nlogn on average. Franklin [58] developed an leader elec-
tion algorithm for bidirectional rings with a worst-casemessagecomplexity of
O(nlogn). Peterson[138 and Dolev, Klawe, and Rodeh [44] independertly
adapted Franklin's algorithm sothat it alsoworks for unidirectional rings. All

169

170 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

the above algorithms work both for asyndronous and for synchronous commu-
nication, and do not require a priori knowledgeabout the number of processes.

Sometimesthe processesn a network cannot be distinguished by meansof
uniqueidentities. First, asthe number of processe a network increasesjt may
becomedi cult to keepthe identities of all processedlistinct; or a network may
accidertally assignthe sameidentity to di erent processes.Second,identities
cannot always be sert around the network, for instance for reasonsof e ciency .
An example of the latter is FireWire, the IEEE 1394 high performance serial
bus (seeSection8.2for a more detailed description). A leaderelection algorithm
that works in the absenceof unique processidentities is also desirablefrom the
standpoint of fault tolerance. In an anonymousnetwork, processeslo not carry
anidentit y. Angluin [5] shavedthat there doesnot exist a terminating algorithm
for electing a leaderin an asyncronous anonymous network. According to this
result, a Las Vegasalgorithm (meaning that the probability that the algorithm
terminates is greater than zero, and all terminal con gurations are correct) is
the best possibleoption.

Itai and Rodeh[95, 96] proposeda probabilistic leaderelection algorithm for
anonymous unidirectional rings, basedon the Chang-Roberts algorithm. Each
processselectsa random identit y from a nite domain, and processeswith the
largest identity start a new election round if they detect a name clash. It is
assumedthat the sizeof the ring is known to all processessothat ead process
can recognizeits own message(by meansof a hop courter that is part of the
message).The lItai-Ro deh algorithm is a Las Vegasalgorithm that terminates
with probability one;it takesnlogn message®n average.

The Itai-Ro deh algorithm makes no assumptions about channel behavior,
except fair scheduling. An old messagethat hasbeenovertaken by other mes-
sagedn the ring, could in principle result in a situation whereno leaderis elected
(seeFigure 8.1in Section8.3.2). In order to avoid this problem, the algorithm
proceedsin successie rounds, and ead processand messageis supplied with
a round number. Thus an old messagecan be recognizedand ignored. Due to
the useof round numbers, the Itai-Ro deh algorithm hasan in nite state space.

In this chapter, we make the assumptionthat channelsare FIFO. We show
that in this caseround numbers can be omitted from the Itai-Ro deh algorithm.
We presen two adaptations of the Itai-Ro deh algorithm, that are correct in the
presenceof FIFO channels. In the rst algorithm, a processmay only choose
a new identity when its messagehas completed the round trip, asis the case
in the Itai-Ro deh algorithm. In the secondalgorithm, a processselectsa new
identit y as soon asit detectsthat another processin the ring carries the same
identit y (eventhough this identit y may not be the largestonein the ring). Since
both algorithms do not use round numbers, they are nite-state. This means
that we can apply model cheding [35] to automatically verify properties of an
algorithm, specied in sometemporal logic. These properties can be cheded
against the explicit (nite) state spaceof the algorithm, for specic ring sizes.
We used PRISM [107], a model cheder that can be usedto model and analyze
systemscontaining probabilistic aspects. We speci ed both algorithms in the
PRISM language,and for rings up to sizefour we veried the property: \with

8.2 Related Work 171

probability one, evertually exactly one leader is elected". Furthermore, we
presert a manual correctnessproof for both algorithms, for arbitrary ring size.

PRISM o ers the possibility to calculate the probability that our algorithms
have terminated after somenumber of messagesThesestatistics show that the
rst algorithm on averagerequires more messageso terminate than the second
algorithm.

Finally, we show that if processegan selectidentities from a set of only two
elemerts, then our algorithms also work correctly for non-FIFO channels.

Outline of the chapter. Related work is summarized in Section 8.2. Sec-
tion 8.3 contains the original Itai-Ro deh algorithm. In Sections8.4 and 8.5, we
presernt two probabilistic leader election algorithms for anonymous rings with
FIFO channels. We explain our veri cation results with PRISM, and give a
manual correctnessproof for ead algorithm. Section 8.6 reveals some experi-
mental results using PRISM on the number of messagesqieededto terminate.
In Section 8.7, we prove that if the domain of identities contains only two ele-
ments, the requirement that channelsare FIFO can be dropped. We conclude
this chapter in Section 8.8.

8.2 Related Work

On the web page of PRISM (http://www.cs.bh am.ac.u k/~dxp/pri sni), the
Itai-Ro deh algorithm for asyndronousrings was adapted for synchronousrings.
In PRISM, processessyndhironize on action labels, so a syndironous ring can
simply be modeled by excluding channelsfrom the speci cation. Processesre
syndironized in the sameround, thus round numbers are not needed(similar to
our Algorithm A). The state spacetherefore becomesnite, and PRISM could
be usedto verify the property \with probability one, eventually a unique leader
is elected", for rings up to sizeeight. Also the probability of electing a leader
in one round was calculated.

Garavel and Mounier [62] described both the Chang-Roberts algorithm and
Le Lann's algorithm using the processalgebraic languageLOTOS. They stud-
ied thesetwo algorithms in the presenceof unreliable communication network
and/or unreliable processesand suggestedsomeimprovemerts. Their veri ca-
tion was performed using the model chedker CADP. Fredlund et al. [60] gave
a manual correctnessproof of the Dolev-Klawe-Rodeh algorithm in the process
algebraiclanguage CRL, for arbitrary ring size. Brunekreefet al. [26] designed
a number of leaderelection algorithms for a broadcastnetwork, where processes
may participate and crash spontaneously. They usedlinear-time temporal logic
to manually prove that the algorithms satisfy their requiremernts.

The IEEE 1394 high performance serial bus (called \FireWire") is usedto
transport video and audio signals within a network of multimedia devices. In
the tree identify phase of IEEE 1394, which takes place after a bus reset in
the network, a leader is elected. For the sake of performance, identities of
nodes cannot be sert around the network, sothat it is basically an anonymous

172 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

network. The leader election algorithm in the IEEE 1394 standard works for
acyclic, connectednetworks. If a cycle is presen, it producesa timeout. The
algorithm has been specied and veried with a number of dierent formal
techniques. We give an overview of these casestudies.

Shankland and van der Zwaag [157] manually veried the leader election
algorithm in CRL, at three dierent levels of detail. Shankland and Verdejo
[156 usedE-LOTOS to manually verify the algorithm. Abrial et al. [1] usedan
evert-driv en approach with the B Method to develop mathematical models of
the algorithm; the internal consistencyof eac model aswell asits correctness
with regard to its previous abstraction were proved medanically. Verdejo et
al. [175 described the algorithm at di erent abstract levels, using the language
Maude basedon rewriting logic; they veri ed the algorithm by an exhaustive ex-
ploration of the state spacethat always exactly oneleaderis chosen. Moreover,
they gave a manual correctnessproof for general acyclic networks. Devillers
et al. [39] veri ed the algorithm using an I/O automata model; the main part
of their proof has been cheded with the theorem prover PVS. Romijn [150
extended their 1/0O automata model with timing parameters from the IEEE
1394 standard, and manually proved that under certain timing restrictions the
algorithm behavescorrectly. Calder and Miller [28] veri ed someproperties of
the algorithm using the model chedker Spin, for networks with up to six nodes.
Scuppan and Biere [155 usedthe model chedker SMV to ched the correctness
of the algorithm for networks with up to ten nodes.

8.3 Itai-Ro deh Leader Election

We consideran asynchionous anonymous unidir ectional ring consisting of n

receivingmessagesver channels,which are assumedo bereliable. Channelsare
unidirectional: amessagesert by p; is addedto the messageueueof p(i+1) modn -
The messagajueuesare guided by a fair schealuler, meaningthat in ead in nite
execution sequence,every sert messageeventually arrives at its destination.
Processesre anornymous, sothey do not have unique identities. The challenge
is to presert a uniform local algorithm for ead process,suc that oneleaderis
electedamongthe processes.

8.3.1 The Itai-Ro deh algorithm

Itai and Rodeh [95, 96] studied how to break the symmetry in anonymous net-
works using probabilistic algorithms. They preseried a probabilistic algorithm
to elect a leader in the above network model, under the assumption that pro-
cesseknow that the size of the ring is n. It is a Las Vegasalgorithm that
terminates with probability one. The Itai-Rodeh algorithm is based on the
Chang-Roberts algorithm [32], where processesare assumedto have unique
identities, and eadh processsendsout a messagecarrying its identity. Only the
messagewith the largest identity completesthe round trip and returns to its
originator, which becomesthe leader.

8.3 ltai-Ro deh Leader Election 173

In the Itai-Rodeh algorithm, ead processselectsa random identity from
a nite set. Sodierent processesmay carry the sameidentity. Again eadh
processsendsout a messagecarrying its identity. Messagesare supplied with
a hop counter, so that a processcan recognizeits own message(by cheding
whether the hop counter equalsthe ring sizen). Moreover, a processwith the
largestidentit y present in the ring must be ableto detect whether there are other
processesn the ring with the sameidentity. Therefore eadh messages supplied
with a bit, which is dirtied when it passesa processthat is not its originator
but sharesthe sameidentity. When a processreceivesits own messagegither
it becomesthe leader (if the bit is clean), or it selectsa new identity and
starts the next election round (if the bit is dirty). In this next election round,
only processeghat sharedthe largestidentity in the ring are active. All other
processedave been made passiveby the receipt of a messagewith an identity
larger than their own. The active processegmaintain a round numkber, which
initially starts at zero and is augmerted at ead new election round. Thus
messagedrom earlier election rounds can be recognizedand ignored.

We proceedto presert a detailed description of the Itai-Ro deh algorithm.

The Itai-Ro deh algorithm.

Initially , all processesare active, and ead processp; randomly selects

Upon receipt of a message(id;round; hop;bit), a passiwe processp;
(state; = passive) passeson the message,increasing the courter hop
by one; an active processp; (state; = active) behavesaccordingto one
of the following steps:

{ if hop = n and bit = true, then p; becomesthe leader (state? =
leader);

{ if hop = n and bit = false, then p; selectsa new random identit y
id? 2 f1;:::;kg, movesto the next round (round? = round; + 1),
and sendsthe messageg(id %, round?; 1; true);

{ if (round;id) = (round;;id;) and hop < n, then p; passeson the
messag€(id ; round; hop + 1; false);

{ if (round;id) > (round;;id;),? then p; becomespassiwe (state? =
passive) and passeson the messagg(id ; round; hop + 1; bit);

{ if (round;id) < (round;;id;), then p; purgesthe message.

@We compare (round;id) and (round;;id;) lexicographically .

Each processp; maintains three parameters:
-id; 2 f1;:::; kg, for somek 2, is its identity;

- state; rangesover f active; passive leaderg;

174 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

- round; 2 N* represerts the number of the current election round.

Only active processesnay becomethe leader; passive processesimply passon
messages. At the start of a new election round, ead active processsendsa
messageof the form (id; round; hop; bit), where:

- the values of id and round are taken from the processthat sendsthe
message;

- hopis a courter that initially hasthe value one,and which is increasedby
one ewvery time it is passedon by a process;

- bit is a bit that initially is true, and which is setto false when it visits a
processthat hasthe sameidentity but that is not its originator.

We say that an execution sequenceof the Itai-Ro deh algorithm has termi-
nated if ead processis either passiwe or elected as leader, and there are no
remaining messagesn the channels.

Theorem 8.3.1 [95 The Itai-Rodeh algorithm terminates with probability
one, and upon termination a unique leader has beenelected.

8.3.2 Round numbers are needed

(u; 1;true) (w; 1; true)
u u w X w X
(u; 1;true) (x; 1;true) (v; 3;true)
(v; 1;true) (v; 1; true)
\'% \' \'%
u>yv V> W; X V> W;X

Figure 8.1: Round numbers are essetial if channelsare not FIFO

Figure 8.1 presens a scenarioto shaw that if round numbers were omitted,
the ltai-Ro deh algorithm could produce an execution sequencein which all
processedecomepassiwe, so that no leaderis elected. This example usesthe
fact that channelsare not FIFO. Let k 3. Figure 8.1 depicts a ring of size
three; black processesare active and white processesare passiwe. Initially , all
processesare active, and the two processesabove selectthe sameidentity u,
while the one below selectsan identity v < u. (Seethe left side of Figure 8.1.)
The three processessend a messagewith their identity, and at the receipt of
a messagewith identity u, processv becomespassive. Since channels are not
FIF O, the messagdv; 1; true) can be overtaken by the other two messagesvith
identity u. The latter two messageseturn to their originators with a dirty bit.
Sothe processewvith identit y u detect a nameclash, selectnew identities w < v
and x < v, and send message<arrying theseidentities. (Seethe middle part

8.4 Leader Election without Round Numbers 175

of Figure 8.1.) Finally, the messagewith identity v makesthe processeswith
identities w and x passiwe. The three messagesn the ring are passedon forever
by the three passiwe processes(Seethe right side of Figure 8.1.)

8.4 Leader Election without Round Num bers

We obsene that if channelsare FIFO, round numbers are redundant. Thus we
obtain a simpli cation of the Itai-Ro deh algorithm. Algorithm A is obtained
by considering only those casesin the Itai-Ro deh algorithm where the active
processp; and the incoming messagéhave the sameround number. Correctness
of Algorithm A follows from the proposition below.

Algorithm A.

Initially , all processesare active, and ead processp; randomly selects

Upon receipt of a message(id; hop; bit), a passiwe processp; (state; =
passive) passen the messageincreasingthe counter hopby one;an ac-
tive processp; (state; = active) behavesaccordingto one of the following
steps:

{ if hop = n and bit = true, then p; becomesthe leader (state? =
leader);
{ if hop = n and bit = false, then p; selectsa new random identit y

{ ifid = id; and hop < n, then p; passeson the messagg(id; hop +
1; false);

{ if id > id;, then p; becomespassiwe (state? = passive) and passes
on the messagqid ; hop+ 1; bit);

{ ifid < id;, then p; purgesthe message.

Prop osition 8.4.1 Consider the Itai-Ro deh algorithm where all channels are
FIFO. When an active processreceives a messagethen the round number of
the processand of the messageare always the same.

Pro of. Let messagem = (id;;round ; hop; bit), which originates from process
pj, arrive at active processp;. Supposethat up to this momert, messages
never arrived at active processewith a di erent round number. We prove that
round; = round;. We derive the desired equality in two steps.

round; round;.

Let round; > 1, for elsewe are done. Then a messagem® with round
number round; 1 originated at p; and completed the round trip, where
all the active processeshat it visited had round number round; 1. FIFO

176 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

behavior guaranteesthat after m° returned to p;, no other messagewith
round number round; 1 canhavearrivedat p;. Soround; round;.

round; round;.

Let round; > 1, for elsewe are done. Then a messagem®with round
number round; 1 originated at p; and completed the round trip, where
all the active processesthat it visited (so in particular p;) had round
number round;, 1. Since m® completed the round trip and passedp;
while this processremained active, it follows that both p; and p; had the
maximal identity in round round; 1. Sothe messagen®%hat originated
at p; with round number round; 1 also completed the round trip. FIFO
behavior guaranteesthat m®arrived at p; before m® sothat m®%assed
p; beforem wascreatedat p;. FIFO behavior guaranteesthat m®arrived
at p; beforem. Soround; round;.

Hence,round; = round; .

Theorem 8.4.2 Let channels be FIFO. Then Algorithm A terminates with
probability one, and upon termination exactly one leaderis elected.

Pro of. By Theorem 8.3.1 together with Proposition 8.4.1, upon termination
exactly one leader is elected. Namely, the execution traces are a subset of the
execution traces of the Itai-Ro deh algorithm.

We have to redo the probability analysis, since a probabilistic result for a
set of execution traces s not always inherited by subsetsof execution traces.

When there are™ 2 active processesn the ring, theseprocessesll remain
active if and only if they all the time choosethe sameidentity. Otherwise, at
least one active processwill becomepassive. The probability that all active
processesselectthe sameidentity in one\round" is (%)‘ 1. Sothe probabil-
ity for all = active processedo choosethe sameidentity m times in a row is
(H)™C V. Sincek 2, the probability that the number of active processes
evertually decreasess one.

Clearly, when there is only one active processin the ring, it will be elected
as the leader. After the round trip of its nal messagehere are no remaining
messagesbecausechannelsare FIFO.

8.4.1 Automated verication with PRISM

Owing to the elimination of round numbers, Algorithm A is nite-state, cortrary
to the Itai-Ro deh algorithm. Hencewe can apply explicit state spacegeneration
and model chedking to establish the correctnessof Algorithm A for xed ring
sizes. This analysis of Algorithm A wasactually performed before constructing
the manual correctnessproof of Algorithm A from the previous section, as a
meansto conrm our intuition that Algorithm A works correctly in case of
FIFO channels. Moreover, this model chedking exercisehas some additional
value comparedto Theorem 8.4.2. Namely, sincethe manual proofs of Theorem
8.3.1,Proposition 8.4.1and Theorem 8.4.2werenot formalized and chedked with
a theorem prover, there is no absolute guarantee that they are free of aws.

8.4 Leader Election without Round Numbers 177

A short intro duction to PRISM

PRISM [107] is a probabilistic model cheder. It allows oneto model and ana-
lyze systemsand algorithms containing probabilistic aspects. PRISM supports
three kinds of probabilistic models: contin uous-time Markov chains (CTMCs),
discrete-time Markov chains (DTMCs) and Markov decisionprocessegMDPS).
Analysis is performed through model chedking such systemsagainst speci ca-
tions written in the probabilistic temporal logic PCTL [83, 11] if the model is a
DTMC or an MDP, or CSL [1Q] in the caseof a CTMC.

In order to model ched probabilistic properties of Algorithm A, we rst
encaded the algorithm as a DTMC model using the PRISM language, which
is a simple, state-basedlanguage,basedon the Reactive Modules formalism of
Alur and Henzinger [4]. A systemis composedof a number of modules that
cortain local variables, and that can interact with ead other. The behavior of
a DTMC is described by a set of commandsof the form:

[Alg! 1:up+:i:+ - uw

a is an action label in the style of processalgebras, which intro ducessyndro-
nization into the model. It canonly be performed simultaneously by all modules
that have an occurrenceof action label a in their speci cation. If a transition

doesnot have to synchronize with other transitions, then no action label needs
to be provided for this transition. The symbol g is a predicate over all the vari-

ablesin the system. Each u; describesa transition which the module can make
if gis true. A transition updatesthe value of the variables by giving their new
primed value with respect to their unprimed value. The ; are usedto assign
probabilistic information to the transition. It isrequiredthat ;+ + - = 1.
This probabilistic information can be omitted if * = 1 (and so 1 = 1). PRISM

considersstates without outgoing transitions as error states; terminating states
can be modeled by adding a self-loop. A more detailed description of PRISM

can be found in [107.

Verifying Algorithm A with PRISM

We used PRISM to verify that Algorithm A satis es the probabilistic property
\with probability 1, evertually exactly oneleaderis elected". We modeled eath
FIF O channel and eath processas a separatemodule in PRISM. The following
code in the PRISM language givesthe speci cation for a channel of size two.
The channel channellreceivesa messagdmeslid,meslcounter,meslbit) from
processp; (synchronized on action label rec_from_pl) and sendsit to process
p2 (synchronized on action label sendto_p2). Each position i 2 f1;2g in the
channelis represerted by atriple of natural numbers: onefor the processidentit y
contained in a messaggb_1_2_i1), one for the hop counter (b-1.2.i2), and one
for the bit (b.1-2.i3). If the natural numbers for a position in a channel are
greater than zero, it meansthis position is occupied by a message.Otherwise,
the position is empty.

We present the channel between processeg; and p,. Both the number of
processesand the sizeof the identity setaretwo (N = 2; K = 2).

178 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

module channell
b.1211:[0..K]; b.1.2.12:[0..N]; b_1.2.13:[0..1];
b_1.221:[0..K]; b.1.2.22:[0..N]; b_1.2.13:[0..1];
[recfrom_pl] b.1.2.11=0
I' (b-1.2.11'=meslid) & (b-1-2_12'=meslcounter) &
(b_1_-2_13'=mes1bit);
[recfrom_pl] (b_.1.2.11>0) & (b_1.2.21=0)
I (b.1.2.21'=meslid) & (b_1_2_22'=mesl counter) &
(b_1_2_23'=mes1 bit);
[sendto_p2] b.1.2.11>0
' (b.1211'=b 1221)& (b-1212'=b 1222)&
(b.1213=b 1223)& (b 1221'=0) &
(b.1.2.22'=0) & (b_1.2.23'=0);
endmalule

meslid, meslcounter and meslbit are shared variables. They are used in
the module processlbelow for receiving and sending messages.Only in that
module values can be assignedto these variables. meslid carries the identity
of a messagemeslcounter its hop counter, and mesLlbit the clean (1) or dirty
(0) bit. If no messageis presen, all three variables have the value zero. (So
meslbit = 0 can have two meanings: either there is no messagepr the bit is
dirty.)

Each processp; is speci ed by meansof a variable processiid:[0::K] for its
identit y (where 0 meansthat the processis passiwe or selectinga new identit y),
a variable si:[0::5] for its local state (this is explained below), and a variable
leaderi:[0::1] (where in state 0 meansthat the processis passiwe, and 1 that it
is the leader). The following PRISM code is the speci cation for processp;.

module processl
processlid:[0..K]; s1:[0..5];leaderl:[0..1];
mes1id:[0..K]; meslcounter:[0..N];meslbit:[0..1];

When a processis in state 0, it is active and can randomly (modeled by the
probability rate R = 1=K) selectits identity, build a new messagewith this
identit y, and set its state to 1.

[]1s1=0
I R:(sl'=1) & (processlid'=1) & (meslid'=1) &
(meslcounter'=1) & (meslbit'=1)
+ R:(s1l'=1) & (processlid'=2) & (meslid'=2) &
(meslcounter'=1) & (meslbit'=1);

When sl = 1, the processsendsthe new messageinto channel 1 (modeled by
a syndhronization with module channellon action rec_from_p1), and movesto
state 2.

[recfrom_pl] s1=1
I (s1'=2) & (meslid'=0) & (meslcounter'=0) &
(meslbit'=0);

8.4 Leader Election without Round Numbers 179

In state 2 the processcan receive a messagefrom channel 2 (modeled by a
syndhronization with module channel2 on action sendto_pl), and go to state
3. Note that b.2_1.11, b.2_.1.12 and b_2_1_31 are shared variables, represerting
the rst position in the module channel2

[sendto_pl1] s1=2
I (s1'=3) & (meslid=b 2111) &
(meslcounter=b_2_1.12) & (meslbit'=b 2_1_13);

When a processis in state 3, it hasreceived a messageand takesa decision. If
the processgot its own messageback (mesl.counter = N) and the bit of the
messagds clean (mes1.bit = 1), the processis electedasthe leader (leader1° =
1), and movesto state 4.

[1(s1=3) & (meslcounter=N) & (meslbit=1)
I (s1'=4) & (processlid'=0) & (meslid'=0) &
(meslcounter'=0) & (meslbit'=0) & (leaderl'=1);

If mesl counter = N and meslbit = 0O, the processchangesits state to 0 and
will selecta new random identit y.

[]1(s1=3) & (meslcounter=N) & (meslhit=0)
I (s1'=0) & (processlid'=0) & (meslid'=0) &
(meslcounter'=0) & (meslbit'=0);

If meslid = processlid and meslcounter < N, the processhas received a
messagewith the sameidentity, but the messagedoesnot originate from itself.
It increasesthe hop courter in the messageby one, makes the bit dirty, and
movesto state 5 to passon the message.

[1(s1=3) & (meslid=processlid) & (meslcountex N)
I (s1'=5) & (meslcounter=meslcounter+1) &
(meslbit'=0);

If meslid < processlid, the processpurgesthe messageand movesback to
state 2 to receive another message.

[1(s1=3) & (mesLlid< processlid)
I (s1'=2) & (meslid'=0) & (meslcounter'=0) &
(mes1bit'=0);

If meslid > processlid, the processincreasesthe hop courter in the message
by one, and goesto state 4 where it becomespassiwe (i.e., the value of leaderl
remains zero).

[1(s1=3) & (meslid> processlid)
I (s1'=4) & (processlid'=0) &
(meslcounter'=meslcounter+1);

In state 5, a processpasseson a messageand movesto state 2.

180 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

[recfrom_p1] (s1=5)
I (s1'=2) & (meslid=0) & (meslcounter'=0) &
(meslbit'=0);

In state 4, a passiwe process(leaderl = 0) canonly passon messagesvith their
hop courter increasedby one.

[sendto_pl] (s1=4) & (leaderl=0) & (meslid=0)
I (meslid'=b _2.1.11) & (meslcounter'=b_2.1.12+1) &
(meslbit'=b 2.1 13);
[recfrom_pl] (s1=4) & (leaderl=0) & (meslid>0)
I (meslid'=0) & (meslcounter'=0) & (meslbit'=0);

We added the conjunct leaderl = 0 to the predicate in order to emphasize
that the leaderdoesnot have to deal with incoming messagesNamely, when a
processis elected as the leader there are no remaining messagespwing to the
fact that channelsare FIFO.

A self-loop with synchronization on an action label doneis addedto processes
in state 4, to avoid deadlock states.

[done](s1=4) ! (s1'=sl);
endmalule

Other channelsand processegan be constructed by carefully module renaming
moduleschannelland processl The initial value of eat variable is the minimal
value in its range.

Below we specify the property \with probability 1, evertually exactly one
leader is elected" for a ring with two processesasa PCTL formula:

Property: P>=1 [true U (s1=4 & s2=4 & leaderl+leader2=1&
b1211+b_2.1.11=0)]

It statesthat the probability that eventually both p; and p, get into state 4
(s1 = 4~ s2 = 4), with exactly one processelected as the leader (leaderl +
leader2 = 1), isat leastone. In addition, we ched that the algorithm terminates
with no messageén the ring (b.1.2_ 11+ b2_1.11 = 0).

To model ched this property, the algorithmic description (in the module-
basedlanguage) was parsed and converted into an MTBDD [61]. In PRISM,
reachability is performed to identify non-readable states and the MTBDD is
Itered accordingly. Table 8.1 shows statistics for each model we have built.
The rst part givesthe parametersfor each model: the ring size n, the size
of the identity set, and the size of the channel. It is not hard to seethat at
any time there are at most n messagesn the ring, so channel sizen su ces;
and having n di erent possibleidentities meansthat in eact \round", all active
processescan selecta di erent identity. The secondpart givesthe number of
states and transitions in the MTBDD represerting the model.

Property was successfullycheded on all the ring networks in Table 8.1 (we
used the model chedker PRISM 2.0 with its default options). Note that for

8.5 Leader Election without Bits 181

Processes ldentities | Channelsize | FIFO || States | Transitions
Ex.1 2 2 2 yes 127 216
Ex.2 3 3 3 yes 5,467 12,360
Ex.3 4 3 4 yes || 99,329 283,872

Table 8.1: Model cheding result for Algorithm A with FIFO channels

n = 4, we could only ched the property for an identity set of size three. For
n = 4 and an identit y set of sizefour, and in generalfor n 5, PRISM fails to
build a model due to the lack of memory.

8.5 Leader Election without Bits

In this section, we presert another leaderelection algorithm, which is a variation
of Algorithm A. Again channelsare assumedto be FIFO. We obsenethat when
an active processp; detects a name clash, meaning that it receivesa message
with its own identity and hop courter smaller than n, it is not necessaryfor p;
to wait for its own messageo return. Instead p; canimmediately selecta new
random identit y and senda new message Algorithm B is obtained by adapting
Algorithm A accordingto this obsenation. In particular all occurrencesof bits
are omitted.

Algorithm B.

Initially , all processesare active, and ead processp; randomly selects

Upon receipt of a message(id; hop), a passiwe processp; (state; =
passive) passe®n the messageincreasingthe counter hop by one;an ac-
tive processp; (state; = active) behavesaccordingto one of the following
steps:

{ if hop= n, then p; becomesthe leader (state? = leader);

{ if id = id; and hop < n, then p; selectsa new random identity

{ if id > id;, then p; becomespassi\e (state? = passive) and passes
on the messagg(id; hop + 1);

{ ifid < idj, then p; purgesthe message.

We rst discussthe automatic veri cation of Algorithm B with PRISM in
Section 8.5.1. Then we give a manual correctnessproof for Algorithm B, for
arbitrary ring size,in Section 8.5.2.

182 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

8.5.1 Automated verication with PRISM

Channelsare modeledin the sameway asin Section8.4. We presen ead process
pi with a variable processi_id:[0::K] for its identity, a variable si:[0::4] for its

local state, and a variable leaderi:[0::1]. We present only part of the PRISM

speci cation for processp;. The parts when a processis in state 0;1;2 or 4
are omitted, asthis behavior is very similar to Algorithm A (seeSection8.4.1).
State 5 is redundart here, becausea processselectsa new identit y assoon asit

detects a name clash.

module process1
processlid:[0..K]; s1:[0..4];leader1:[0..1]mes1lid:[0..K];
meslcounter:[0..N];

When a processin state 3, it hasreceived a messagerom the channel and
takes a decision. If mesl.counter = N, the processis elected as the leader
(leader1®= 1), and movesto state 4.

[](s1=3) & (meslcounter=N)
I (s1'=4) & (processlid'=0) & (meslid'=0) &
(meslcounter'=0) & (leaderl'=1);

If meslid = processlid and mesl counter < N, the processgoesback to state
0 and will selecta new identity.

[1(s1=3) & (meslid=processlid) & (meslcountex N)
I (s1'=0) & (meslid=0) & (meslcounter'=0) &
(process1id'=0);

If meslid < processlid, the processpurgesthe messageand movesbadk to
state 2 to receive another message.

[1(s1=3) & (meslid< processlid)
I (s1'=2) & (meslid'=0) & (meslcounter'=0);

If meslid > processlid, the processhecomegassiwe,increaseshe hop counter
of the messageby one, and goesto state 4.

[1(s1=3) & (meslid> processlid)
I (s1'=4) & (processlid'=0) &
(meslcounter'=meslcounter+1);

endmalule

Other channelsand processesan be constructed by module renaming.

Property was successfullymodel chedked with respect to Algorithm B, in a
setting with FIFO channels, for rings up to size v e. For any larger ring size,
and in caseof ring size v e and an identity domain containing three elemers,
PRISM fails to produce an MTBDD. Table 8.2 summarizesthe veri cation
results for Algorithm B with PRISM.

8.5 Leader Election without Bits 183

Processes| Identities | Channelsize | FIFO || States | Transitions
Ex.1 2 2 2 yes 97 168
Ex.2 3 3 3 yes 6,019 14,115
Ex.3 4 3 4 yes | 176,068 521,452
Ex.4 4 4 4 yes | 537,467 1,615,408
Ex.5 5 2 5 yes | 752,047 2,626,405

Table 8.2: Model cheding result for Algorithm B with FIFO channels

8.5.2 The correctness pro of

In this section we give a correctnessproof for Algorithm B, in caseof FIFO
channels,with respect to ring networks of arbitrary size.

Denition 8.5.1 The processesaand messagedetwesn a processp and a mes-
sagem are the onesthat are encourtered when traveling in the ring from p to
m.

Lemma 8.5.2 Let active processp have identity id, and messagen haveiden-
tity idm. If id, 6 idy, then there is an active processor messagebetween p
and m with anidentity — minfid,;idmg.

Pro of. We apply induction on execution sequences.

Basis: Prior to the rst arrival of a messageevery processis active and has
generateda messageawith its own identit y; thus the lemmatrivially holds.
Induction step: When a messagearrivesat a passiwe process,it is simply for-
warded. Assumea messagem = (id; hop) arrivesat an active processp; with
identity id;j. If hop = n, then p; is elected as the leader. Since channels are
FIF O, in this casethe round trip of the nal messagef p; guaranteesthat there
are no remaining messagesthus the lemma trivially holds. Now supposethat
hop < n. We considerthree cases.In eat casewe only consideread pair of
an active processand a messagehat could violate the condition of the lemma
due to the arrival of m at p;.

idj > id. Then m is purged by p;.

Let p; be an active processwith identity id; and m®a messagewith iden-
tity id® such that p; and m arebetweenp; andm® andid minfid;;id%.
The active processp; betweenp; and m®hasidentity id; > minfid;;id %.

idi < id. Then p; becomespassiwe and sendsthe messagg(id; hop+ 1).

Let pj be an active processwith identity id; and m® a messagewith
identity id® such that p; and m are between p; and m% and id;
minfidj;idog. The message(id; hop + 1) between p; and m° has iden-
tity id > minfid;;id%.

184 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

id; = id. Then p; selectsa newidentity id? and sendsthe messageid ’; 1).

We consider three cases,covering ead pair of an active processand a
messagewith di erent identities that is either newly created (the rst two
cases)or that could violate the condition of the lemma due to the new
identity of p; (the third case).

Case 1: For any messagem®with identity id°6 id?, (id%; 1) is a message
betweenp; and m°with identity id? minfid?;id%.
Case 2: For any active processp; with identity id; 6 id io, pi is an active
processbetweenp; and (id?; 1) with identity id? minfid;;id2.
Case 3: Let p; be an active processwith identity id; and m®a message
with identity id° 6 idj, such that pi and m are betweenp; and m® and
idi minfid;;id%. Sinceid®6 id;, either id; 6 id; or id; 6 id° Soby
induction there is an active processor messageeither betweenp; and m
with anidentity — minfid;;id;g, or betweenp; and m®with an identity
minfid;; idog. Sinceid; minfid;;id 0g, in either casethere is an active
processor messagebetweenp; and m°with anidentity — minfid; ;id %.

De nition 8.5.3 An active processp is related to a messagen if they have the
sameidentity id, and all active processesand messagedetweenp and m have
an identit y smaller than id.

Lemma 8.5.4 Let active processp be related to messagem. Let be the
maximum of all identities of active processesand messagesetweenp and m
(= Oif there are none).

1. Between p and m, there is an equal number of active processesand of
messagesvith identity ; and

2. if pis not the originator of m, then there is an active processor message
betweenp and m.

Pro of. We apply induction on execution sequences.

Basis: Prior to the rst arrival of a messagegevery processis active and has
generateda messagewith its own identit y; thus the lemma trivially holds.
Induction step: When a messagearrivesat a passiwe process,it is simply for-
warded. Assumea messagem = (id; hop) arrivesat an active processp; with
identity id;. If hop = n, then p; is elected as the leader. Since channels are
FIFO, in this casethe round trip of the nal messageof p; guarantees that
there are no remaining messagesthus the lemma trivially holds. Now suppose
that hop < n. We considerthree cases.In ead of these caseswe only consider
related pairs that were either created or a ected by the arrival of m at p;.

id; > id. Then m is purged by p;.

8.5 Leader Election without Bits 185

Let pi be between an active processp; and a messagem® Clearly, id
is not the maximal identity of active processesand messagedbetween p
and m% Soif pj and m° are related after the purging of m, they were
alsorelated before this momert. Hence, by induction, the pair p; and m°
satis es condition 1 of the lemma. Furthermore, p; is an active process
betweenp, and m® sothe pair also satis es condition 2.

idj < id. Then p becomespassiwe and sendsthe messagg(id; hop+ 1).

If an active processpPis related to (id; hop+ 1), then clearly it wasalsore-
lated to m. Soby induction the pair p®and (id ; hop+ 1) satis es conditions
1 and 2.

Let pi and (id; hop+ 1) be betweenan active processp; and a messagem’.
Clearly, id; is not the maximal identity of active processesaand messages
betweenp; and m®. Soif p; and m®arerelated after p; hasbecomepassiwe,
they were also related before this momert. Hence, by induction, the pair
p; and m satis es condition 1 of the lemma. Furthermore, (id; hop+ 1)
is a messagebetweenp; and m% sothe pair also satis es condition 2.

id; = id. Then p; selectsa newidentity id ? and sendsthe messaggid?; 1).

Note that p; is the only active processrelated to (id io; 1), and vice versa.
Clearly, conditions 1 and 2 of the lemma are satis ed by this pair.

Let an active processp; with identity id; be related to a messagem®, suc
that p; and (id io; 1) are betweenp; and m% Sincep; is betweenp; and m¢,
condition 2 is satis ed by this pair. We proceedto prove condition 1 for
this pair. We considerthree cases.

Case 1: id; > idj. Then by Lemma 8.5.2 there is an active processor
messagebetween p; and m® with identity id;. This active processor
messageis also betweenp; and m® which contradicts the fact that p; is
related to m©.

Case 2: id; < idj. Then p; and m®werealready related beforem reached
pi, soby induction this pair satis ed condition 1 beforem reachedp;. Let
denotethe maximum of all identities of active processegand of messages)
between p; and m° before m reached p;; and let # denote the number
of active processeqand of messagespetweenp; and m®with identity
before m reached p;. Moreover, let ° and ° denote the maximum of all
identities of active processesand messagesrespectively, betweenp; and
m° after m reached p;; and let #° and #° denote the number of active
processesand messagesrespectively, betweenp; and m°with identity ©

and ©, respectively, after m reached p;. Clearly id; . We consider v e
cases.

Ifid?> ,then °=id’= Cand#%= 1= #°.

Ifid°= andid; = ,then °= = Oand#0=# = #°,

If id°= andid; < ,then 9= = Oand#%=# + 1= #°.

186 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

Ifid>< andid; = ,then ©= = Cand#° = # 1= #0,
Namely, sinceid; < id;, by Lemma 8.5.2 there must be an active process
or messagebetween p; and m°® with identity id;. Sinceid; = , this
identit y must be equal to id;.

Ifid°< andidi < ,then 9= = Cand#0=# = #0.

Case 3: id; = id;. Then before m reached p;, p; was related to m and
p; was related to m® So by induction, before m reached p;, these pairs
satis ed condition 1. Let ; and , denote the maximum of all identities
of active processeqand of messagespetweenp; and m and betweenp;
and m% respectively, before m reached p;; and let #, and # , denote
the number of active processegand of messagespetweenp; and m and
betweenp; and m® respectively, beforem reached p;. Moreover,let °, ©,
#0 and #° have the samemeaning asin the previous case. We consider
se\en cases.

If id?> maxf 1; »g,then °=id’= Cand#°=1=#°.
Cand#9=#,=#0.

Oand#9 = #,=#9.

Ifid?= 1> ,,then 9= id%= Oand#0=#,+ 1= #°.

Ifid?= ,> ;,then °=id?= Oand#0=#,+ 1= #°,

If 1= 2,>id)then °= ;= Oand#%=#,+#,=#0,

Ifid?= 1= 5 then °=id’= Cand#%=#,+#,+ 1= #°.

If 1> maxfid® ,g,then %= ;

If > maxfid% ;g ,then %= ,

We say that an active processor messages maximal if its identit y is maximal
amongthe active processe®r message the ring, respectively. In the following
proposition wewrite and for the identit y of maximal active processesand
messagesrespectively. The number of active processesaand messagewith the
sameidentity id is denotedby #'9 and # ¢, respectively. We write # and #
for the number of maximal active processesind messagestespectively.

Prop osition 8.5.5 Until a leaderis elected, there exist active processesand
messagesn thering, and = and# =#

Pro of. We apply induction on execution sequences.
Basis: Prior to the rst arrival of a messagegevery processis active and has
generateda messageawith its own identit y; thus the proposition trivially holds.
Induction step: By induction, = and # = # ; wewrite for and
,and # for# and# . When a messagearrivesat a passiwe process,it is
simply forwarded. Assumea messagam = (id; hop) arrivesat an active process
pi with identity id;. If hop = n, then p; is electedas the leader. Now suppose
that hop < n. We considerfour cases.

8.5 Leader Election without Bits 187
idi > id. Since = , misnot a maximal message.lt is purged by p;.
The valuesof and remain unchanged.

idi < id. Since = , p; is not a maximal process.It becomespassiwe.
The valuesof and remain unchanged.

idi = id < . Then p; selectsa new identity id io, and sendsthe message
(id%1). Ifid?> ,then ©=id’= %and#%=1=#° Ifid’= ,then

0= = Oand#%=@# +1)=#° Ifid’< ,then = = ©and
#0=# =#0,
idi = id = . Then p; selectsa new identity id io, and sendsthe message

(id % 1). We distinguish two cases.

Case 1: # > 1. If id?> ,then °=id0= Oand#°= 1= #° If
id’= ,then °= = Oand#%=# =#° Ifid’< ,then °= = ©
and#°%=@# 1)=#0.

Case 2: # = 1. Then clearly p; is related to m, and all other active
processesand messagesre betweenthem. Sincehop < n, p; is not the
originator of m, soby Lemma 8.5.4.2there is someactive processor mes-
sagebetweenthem. Let o > 0 bethe maximum of all identities of active
processess p; and messages m. By Lemma 85.4.1,# ° = # o, If
id?> o, then = id0= %and#° = 1= #° Ifid°= o, then
0= 5= %and#%=(# o+ 1)= #° Ifid°< o, then = o= ©
and#0 =# o= #0,

Theorem 8.5.6 Let channels be FIFO. Then Algorithm B terminates with
probability one, and upon termination exactly one leaderis elected.

Pro of. By Proposition 8.5.5, some processesemain active until a leader is
elected. A processcan be electedasthe leaderonly if it receivesa messagewith
a hop counter equalto n, which meansthe messagéhas passedthrough all other
processesand made them passive. Hence,we have uniquenessof the leader.

It remainsto show that the algorithm terminates with probability one. When
there are © 2 active processedn the ring, these processesall remain active
if and only if they all the time choosethe sameidentity. Otherwise, at least
oneactive processwill becomepassive. The probability that all active processes
selectthe sameidentity in one\round" is () *. Sothe probability for all *
active processeso choosethe sameidentity m timesin arowis ()™ Y. Since
k 2, the probability that the number of active processe®vertually decreases
is one.

Clearly, when there is only one active processin the ring, it will be elected
as the leader. After the round trip of its nal messagehere are no remaining
messagesbecausechannelsare FIFO.

188 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

8.6 Performance Analysis

A probabilistic analysisin [95] revealsthat if k = n, the expected number of
rounds required for the Itai-Ro deh algorithm to elect a leader in a ring with
sizen is bounded by e 5. The expected number of messagedor ead round
is O(nlogn). Hence,the average messagecomplexity of the Itai-Ro deh algo-
rithm is O(nlogn). Likewise, Algorithms A and B have an average message
complexity of O(nlogn).

The probabilistic temporal logic PCTL [83, 11] can be usedto expresssoft
deadlines, such as \the probability of electing a leader within t discrete time
stepsis at most 0.5".1 A PCTL formula to calculate the probability of electing
a leader within t discrete time stepsfor a ring with two processess

P=? [true U<=t (s1=4 & s2=4 & leaderl+leader2=1)]

We used PRISM to calculate the probability that Algorithms A and B termi-
nate within a given number of transitions, for rings of sizetwo and three. The
experimental results preseried in Figure 8.2 and Figure 8.3 indicate that Al-
gorithm B seemsto have a better performancethan Algorithm A. Note that
when t movesto in nit y, both algorithms elect a leader with probability one.

2 processes, 2 identities

1 T T T U e o
-

S fthm
= algorithm B ---x---
09 F i

08 | E

0.6 | i
o5/ E

o4t E

probability of electing a leader

03} |/ |

0.1) B

10 20 30 40 50 60 70 80 90 100
number of discrete time steps

Figure 8.2: The probability of electing a leader with deadlines.

8.7 Leader Election with Tw o lden tities

In this section we show that when k = 2, both Algorithm A and Algorithm B
(with somesmall adaptations) are correct even if channelsare not FIFO. Note

1Each discrete time step corresponds to one transition in the algorithm.

8.7 Leader Election with Two Identities 189

3 processes, 3 identities

1 T T T T s x £5
T ——

ithm
- algorithm B ---x-—-
09 [e i

08 | E
0.7 | / ,
06 | |
05 E

04 4

probability of electing a leader

03| i
02 g

01| 1

0 L L L L L L L L
10 20 30 40 50 60 70 80 90 100
number of discrete time steps

Figure 8.3: The probability of electing a leaderwith deadlines.

that if k = 2, then in Figure 8.1 we cannot nd identities u;v;w;Xx sud that
u>v> W,X.

We rst explain the changesthat needto be made to Algorithms A and
B. If channelsare not FIFO, then when a leader is elected, there may still be
messagesn the ring. Soto guarantee that the algorithms terminate with no
messagen the ring, the leader must be able to purge incoming messages.

vV u (u; 1; true) u u
<:>(V; Litrue)<:>(v; 2; false) <;>(v; 2; false) <;>
(v; 1; true) (u; 2; true) (u; 2;true)
\' \' \'%

(v; 3; false) v

Figure 8.4: Algorithm A if channelsare not FIF O, hop counters can be greater
than n.

We needto make one more minor adaptation to the PRISM model of Algo-
rithm A. Namely, the domain of hop counters hasto be enlargedfrom [0::N] to
[0::2N 1]. Figure 8.4 preseris a scenarioto show that a messagecan continue
after completing a round trip. It depicts a ring of sizetwo; black processesare
active and white processesre passiwe. Initially , both processesre active, select
the smaller of the two identities v, and senda messagewith their identity. (See
the left side of Figure 8.4.) The messaggrom the top node arrivesback at its
originator, which selectsas new identity u > v and sendsa messagewith its

190 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

Processes

Channel size

FIFO

States

Transitions

Ex.1

2

2

no

533

898

Table 8.3: Model cheding result for Algorithm A with k= 2

Processes Channelsize | FIFO || States | Transitions
Ex.1 2 2 no 391 666
Ex.2 3 3 no 63,433 147,660

Table 8.4: Model cheding result for Algorithm B with k = 2

identity. (Seethe secondpart of Figure 8.4.) Sincechannelsare not FIFO, the
messagewith identity v can be overtaken by the messagewith identity u, and
the latter messagemakesthe bottom node passiwe. (Seethe third part of Fig-
ure 8.4.) Finally, the messagdgv; 2; false) is passedon by its passiwe originator
to become(v; 3; false). (Seethe right side of Figure 8.4.)

Weveri ed Algorithms A and B (with the aforemertioned adaptations) using
PRISM in the setting that k = 2 and channels are not FIFO. Here, we omit
the PRISM speci cation, and only presen the veri cation results in Table 8.3
and Table 8.4. We successfullyanalyzed Algorithm A for a ring of sizetwo, and
Algorithm B for rings up to sizethree. For any larger ring size, PRISM fails to
build a model.

Theorem 8.7.1 Let k = 2. Algorithm A terminates with probability one,and
upon termination exactly one leader has beenelected.

Pro of. Sincek = 2, the identity set contains only two elemens. Let u denote
the largest elemen. First, we presen a proposition.

Prop osition 8.7.2 Until a leader is elected, there exist active processesand
messagesn the ring.

We apply induction on execution sequences.
Basis: Prior to the rst arrival of a messagegevery processis active and has
generateda messagewith its own identit y; thus the proposition trivially holds.
Induction step: When a messagearrivesat a passiwe process,it is simply for-
warded. Assumethat messagem = (id;hop; bit) arrivesat active processp;
with identity id;. We distinguish two cases.

id; = id.
If hop= n and bit = true, then p; is electedasthe leader.

If hop = n and bit = false, then p; remains active, selectsa new identit y
id{ and sendsthe message(id?; 1; true).

8.7 Leader Election with Two Identities 191

If hop < n, then p; remains active and sendsthe message(id; hop +
1; false).

id; 6 id.
If id; = u, then p; is the originator of a messagewith identity u. This
messagewill complete the round trip, since no processhas an identity

larger than u; so this messagés still in the ring. p; remains active and
purgesm.

If id = u, then m originates from a processp; with identity u. p; remains
active untii m has completed the round trip, since no messagecan have
an identity larger than u. p; becomespassive and sendsthe message
(id; hop+ 1;bit).

It follows from Proposition 8.7.2 that someprocessegsemain active until a
leaderis elected. An active processcan be electedasthe leaderonly if it receives
a messagevith hop counter n and bit true, which meansthe messagéaspassed
through all other processesand made them passive. Hence,we have uniqueness
of the leader.

The proof that the algorithm terminates with probability one is similar to
the probability analysisin the proof of Theorem 8.4.2. When a leaderis elected,
it purgesthe remaining messagesn the ring.

Theorem 8.7.3 Let k = 2. Algorithm B terminates with probability one, and
upon termination exactly one leader has beenelected.

Pro of. Sincek = 2, the identity set cortains only two elemens. Let u denote
the larger elemen. First, we present a proposition. We write # and # for
the number of active processesand messagesvith identity u, respectively.

Prop osition 8.7.4 Until a leader is elected, there exist active processesand
messagesn the ring, and # = #

We apply induction on execution sequences.

Basis: Prior to the rst arrival of a messagegevery processis active and has
generateda messagewith its own identit y; thus the proposition trivially holds.
Induction step: By induction, # = # ; we write # for # and# . When
a messagearrives at a passive process,it is simply forwarded. Assume that
messagan = (id; hop) arrivesat active processp; with identity id;. If hop= n,
then p; is electedasthe leader. Let hop < n. We distinguish two cases.

id; = id.

Then p; remains active, selectsa new identit y id io, and sendsthe message
(id%1). Ifid; = id?, then #° = # = #°. If id; = u and id° 6 u, then
#0=# 1=#° Ifid;6 uandid’= u,then#° = # + 1= #0,

192 Chapter 8 Simplifying Itai-Ro deh Leader Election for Anonymous Rings

id; 6 id.
Then clearly # > 0.

If id = u, then pj becomespassiwe and sendsthe message(id; hop + 1).
#O0=# =#0,
If id; = u, then p; remains active and purgesm. #° = # = #0,

By Proposition 8.7.4, someprocessesemain active until a leaderis elected.
An active processcan be electedasthe leaderonly if it receivesa messagewith
a hop courter equalto n, which meansthe messagéhas passedthrough all other
processesand made them passive. Hence,we have uniquenessof the leader.

The proof that the algorithm terminates with probability one is similar to
the probability analysisin the proof of Theorem 8.5.6. When a leaderis elected,
it purgesthe remaining messagesn the ring.

8.8 Conclusions

In this chapter, we preseried two probabilistic leader election algorithms for
anonymous unidirectional rings with FIFO channels. Both algorithms were
speci ed and successfullymodel cheded with PRISM. They satisfy the prop-
erty \with probability 1, eventually exactly one leader is elected". The com-
plete speci cations in PRISM can be found at http://www.cwi.nl /~pangj un/
leader/ . The generation of state spacesand the veri cations were performed
on a 1.4 GHz AMD Athlon™ Processorwith 512 Mb memory. We also gave
a manual correctnessproof for ead algorithm. Future work is to formalize and
ched theseproofs by meansof a theorem prover such as PVS.
Itai and Rodeh [95] stated:

\W e could have usedany of the improved algorithms [27], [44], [89],
[138."

Following this direction, we developed two more probabilistic leader election
algorithms, basedon the Dolev-Klawe-Rodeh algorithm [44, 58]. Both of them
are nite-state, and we model chedkedthem successfullyin CRL [21] up to ring
size six. The adaptations of the Dolev-Klawe-Rodeh algorithm are very simi-
lar to our adaptations (Algorithms A and B) of the Chang-Roberts algorithm;
i.e., processesagain selectrandom identities, and name clashesare resolved in
exactly the sameway. Therefore our adaptations of the Dolev-Klawe-Rodeh al-
gorithm are not presenied here. The interestedreadercan nd the speci cations
of all our algorithms at http://www.cwi. nl/ ~pangju n/lea der/ . Thesespeci -
cationsarein the language CRL, which wasusedfor an initial non-probabilistic
model cheding exercise.

Chapter 9

Conclusions

Conclusionshave beendrawn for Chapters 3 to 8 separately In this chapter, |
will give someconcluding remarks, from the perspective of the ertire project.
Recall that the generalgoal of the project is:

\to establishwhether it is possibleto achieve reliable quality of soft-
ware for medium size embedded systems,and to better utilize the
formal methods in industry."

and that the major questionto be answeredis:

\whether the current technology developed in the past by the for-
mal methods researdy community can indeed becomean e ective
practical tool within a developmert environment."

The researt proposal argued that most of the published case studies of
formal veri cation in the literature were quite remote from the actual product
designprocessand generally only dealt with fractions of a system, as the total
systemtends to be too complex. The situation at Weidmelller/Add-Con trols is
quite di erent. The products they design,embedded cortrollers, are relatively
not very complex. Moreover, direct communication with the developmen de-
partment is possible, which provides an ideal platform for experiments on the
trajectory from formal designtowards real products.

However, the project progressedin an unexpected way. This project was
initially proposedby Jan Friso Groote and Jos van Wamel at CWI. Not long
after the project started in August of 2000, both Jan Friso and Jos left CWI,
and Wan Fokkink succeededas the project leader at CWI. In 2001, the divi-
sion of Weidmeiller supporting this project decidedto set up a new compary
{ Add-Controls. During the initial phaseof Add-Controls, there was no new
dewvelopmen of embeddedsystems. The distributed lift system (seeChapter 6)
becameits main commercial product.

Nevertheless, we have tried to stick to the spirit of the project. The dis-
tributed lift systemwas rst analyzedin 2000and 2001,and then wasredesigned
at Add-Controls. The analysis of the redesigntook placein 2002and 2003. In

193

194 Chapter 9 Conclusions

order to perform another real-life casestudy during the designphase,in 2001
and 2002, we analyzed the cache coherenceprotocol for Jackal system, which
is a distributed shared memory implementation of the Java language. In 2003
and the beginning of 2004, we usedformal veri cation techniquesto designnew
distributed algorithms and show their correctness.In the meartime, somethe-
oretical researt has been carried out for the project. A protocol veri cation

method was developed and supplied with mechanical support (seeChapter 3).
The usefulnessof this method was illustrated by a challenging casestudy (see
Chapter 4).

To summarize,in this project:

Di erent formal veri cation techniquessuc asmanual proof, model ched-
ing and theorem proving have beenapplied for the analysis of distributed
system. Theorem proving was applied in Chapter 5. The combination
of manual proof and theorem proving was applied in Chapters 3 and 4.
Model chedking was applied in Chapters 6 and 7. The combination of
manual proof and model chedking was applied in Chapter 8.

We have tried di erent tools for the veri cation of di erent aspects of dis-
tributed systems. The theorem prover PVS [131] wasusedin Chapters 3,
4 and 5. The CRL tool set[21] and the model cheker CADP [49, 63]
were used in Chapters 6 and 7. The real-time model chedker UPPAAL
[117] was usedin Chapter 6. The probabilistic model chedker PRISM
[107] was usedin Chapter 8. The tool for conformancetesting TorX [14]
and the model cheder for hybrid systemsHyTed [86] were usedin two
abandonedcasestudies.

Formal veri cation hasbeenappliedin di erent phasesof systemdevelop-
mert. The implementation of original designof the distributed lift system
wasanalyzedin Chapters 6, while the redesignof the systemwasanalyzed
before implemerting. During its formal veri cation, the cacde coherence
protocol in Chapters 7 wasstill under implementation, and someewolution

of its designtook place. In Chapters 8, formal veri cation was usedto

dewvelop new distributed algorithms for leader election.

The casestudiescover a wide range of distributed systems;namely an em-
beddedcontroller (Chapters 6), a communication protocol (Chapter 4), a
cache coherenceprotocol (Chapter 7), and distributed algorithms (Chap-
ters 5 and 8).

Within this project, we have achieved certain positive results. Formal veri-
cation can nd problemsin real-life distributed systems,and suggestpossible
solutions. Formal veri cation can also be usedto prove protocols and algo-
rithms correct. Therefore, the proper use of formal methods doeslead to more
reliable, dependable systems. Using formal methods in the industrial system
developmert can be e ectiv e, at least for embedded cortrollers.

On the other hand, the situation of using formal methods in the industrial
systemdevelopmert described in the thesis of Judi Romijn [149 Chapter 8] has

195

not improved dramatically in the last v eyears. Thus, to make formal methods
an e ectiv e practical tool within anindustrial developmen ervironment, signif-
icant developmerts in formal methods still have to be made. For example, the
conesand foci method developed in this thesisis still far from a practical tool,
which can be useddirectly in industry. How to integrate formal methods into
the whole developmen processof industrial systemspartly remains an open
guestion.

I draw someconclusionson what | have learned from the project:

Model cheding is useful for detecting errors in real-life systemsand for
gaining more con dence about the designof a system. Theorem proving
is useful for giving correctnessproofs.

Both researters of formal methods and their industrial partners needto
speak eath other's language. Researtiers needto understand the system
designedand implemerted by the industry in order to perform better
formal analysis. On the other hand, dewelopers from industry needsome
knowledge of formal speci cation languagesand veri cation methods in
order to give feedbak and appreciate the result of the formal analysis.

Researtiers must take the input from dewvelopers seriously Analyzing a
formal model that deviatestoo much from the actual systemor hasa very
high level of abstraction is not usefulin practice (seee.g., Chapter 6). De-
velopersof industrial systemsmust takethe input from the formal analysis
of researtersseriously As shown in Chapter 6, the formal analysisof the
original designof the lift systemin CRL would have savedthe developers
considerablee ort in the redesign.

The dewvelopers of the lift system stressthat formal methods should be
applied in the early designphasesto save testing e ort and cost.

It isimportant that experiments within the formal analysisprocesscan be
reproducedeasily When a systemis under formal analysis, its designand
implemenrtation can still be modi ed by the dewelopers (seee.g., Chap-
ter 7). After somechangestook place, the experiments that had been
done before neededto be repeatedin order to chedk whether the changes
have e ect on the correctnessof the system.

It is necessaryfor researters to have the ability of using dierent for-
malisms and tools in order to verify di erent aspects of systems. In my
experience,the translation of a formal model of a systeminto another for-
malism is in generalnot very di cult (seee.g.,Chapter 6 and Chapter 8).

Not all system errors can be detected with formal methods, which is a
lessonl learned from an abandonedcasestudy.

From my personal viewpoint, | give someremarks on improving the e ec-

tivenessof using formal methods in industry.

196 Chapter 9 Conclusions

First, for researdhersto improve formal methods, we must: 1) reduce the
learning curve of formal methods such that they are easyto learn, and quick
to use; 2) increasethe expressivenessof formal methods such that they can
be usedto specify and verify more systems; 3) develop new e cient and ef-
fective veri cation techniques suc that they can deal with large and complex
systems;4) integrate di erent formal veri cation techniquesin a uniform frame-
work such that within averi cation task we canbene t from di erent techniques
and switch among di erent methods smoothly; 5) transfer formal methods to
potential usersby educating under-graduate studerts in formal methods and
performing more casestudies for industry; 6) invest more time and manpower
in project, like the onein this thesis.

Second,to apply formal methods in a industrial system developmert, it is
important for industry: 1) to know in which projects using formal methods can
be bene cial; 2) to recognizewhen and where to apply formal methods in such
projects; 3) to educate their designersin formal methods; 4) to support more
researd project, like the onein this thesis.

App endix A

CRL Code of the Cache Coherence
Proto col

%%%%6%%6%6%6% %% % % % % Yo% Yo YW /0% % ¥8%0
% For data types, equality function defintions are all omitted.
% Sort: Bool
%%%%%% %% %% %% %% %%
sort Bool
func T,F:->Bool
map if:Bool#Bool#Bool->Bool
not:Bool->Bool
and,or,eq:Bool#Bool->Bool
var b,b:Bool
rew if(T,b,b")=b if(F,b,b")=b'
not(T)=F not(F)=T not(not(b))=b
and(T,b)=b and(F,b)=F and(b,T)=b and(b,F)=F
or(T,b)=T or(F,b)=b or(b,T)=T or(b,F)=b
%%%6%6%6%6%%% %% %% % % Yo%V Vi
% Sort: Natural.
%%%%%%%%% %% %% %% %0
sort Natural
func 0:->Natural
S:Natural->Natural
map subl: Natural->Natural
eq,gt: Natural#Natural->Bool
var n,m:Natural
rew subl(0)=0 subl(S(n))=n
gt(0, n)=F gt(S(n),0)=T gt(S(n),S(m))=gt(n,m)
%%%%%%%%% %% %% %% %0
% Sort: Threadld
%%6%6%6%%6%%6%0%%% % % % YWYV
sort Threadld
func tid1,tid2,tid3:->Threadld
map eq,le:Threadld#Threadld->Bool
var t:Threadld

%Y

hio%0% % %8%0

7 (R0
Yo Y

YoV Yo% Y %8%0

)7

197

198 Appendix A CRL Code of the Cache CoherenceProtocol

rew le(t,)=T le(tid1,0)=T le(tid2,tid1)=F le(tid2,tid3)=T
le(tid3,tid1)=F le(tid3,tid2)=F
%%%6%6%6%%%% %% %% %% %% 8%8%8%8%0 %% %0 %
% Sort: Processorld
%%%6%%%%6 %% %% % % % %% Yo 8%%%8%0 B0 %0 %
sort Processorld
func pid1,pid2 :->Processorld
map eq,le:Processorld#Processorld ->Bool
var p:Processorld
rew le(pidl,p)=T le(pid2,pidl)=F le(pid2,pid2)=T
%%%6%%%% %% %% % % % % Y% Yo 8%88%0 B0 %0 %
% Sort: Regionld, only one region with identity ridl
%%%%%% %6 %% %% % % % %% Yo 8%%88%0 B0 %0 %
sort Regionld
func ridl :->Regionld
map eq:Regionld#Regionld->Bool
%%%6%6%6%%% % %% %% %% % Y0 8%8%8%8%0 %0 %0 %
% This sort is used for a region, which maintains a list of processors
% which have written to the region recently.
%%%6%6%6%%% % %% %% % % %% 8%8%8%8%0 %0 %0 %
sort ProcessorldSet
func ema:->ProcessorldSet
in:Processorld#ProcessorldSet ->Processorld Set
map remove:Processorld#Processorl dSet->ProcessorldS et
test:Processorld#ProcessorldS et-> Bool
empty:ProcessorldSet->Bool
if:Bool#ProcessorldSet#Proces sorl dSet- >ProcessorldS et
eq:ProcessorldSet#Processorld Set- >Bool
count:ProcessorldSet->Natural
% Get the identity whenthere is only one processor.
getlden:ProcessorldSet->Proce ssorId
insert:Processorld#Processorl dSet->Pro cessorldS et
var a,a':Processorld A,A":ProcessorldSet
rew remove(a,ema)=ema
remove(a,in(a',A))=if(eq(a,a'),re move@,A) ,in(a '\re movda,A)))
test(a,ema)=F test(a,in(a',A))=if(eq(a,a’) ,Tte st(a ,A))
empty(ema)=T empty(in(a,A))=F
if(T,A,A)=A if(F,AA)=A'
count(ema)=0 count(in(a,A))=S(count(remove (a,in (a,A))))
getlden(in(a,A))=a
insert(a,ema)=in(a,ema)
insert(a,in(a',A"))=if(eq(a,a i n@', A),
if(le(a,a’),in(a,in(a’,A")) ,in(a\in sert (,A"))))
%%%6%6%6%%% % %% %% %% % %Y 848%8%8%0 %80 %0 %
%This sort is used for a thread, which maintians a list of regions
% where the thread has written recently.
%%%6%6%6%%% % %% %% %% %% 8%8%8%8%0 %80 %0 %
sort RegionldSet
func ridema:->RegionldSet
in:Regionld#RegionldSet->Regi onld Set

% These functions are defined similarly as in ProcessorldSet. Omitted.

map remove:Regionld#RegionldSet->Re gion IdSet
test:Regionld#RegionldSet->Bool
empty:RegionldSet->Bool
if:Bool#RegionldSet#RegionldSet ->Regionl dSet
eg:RegionldSet#RegionldSet->Boo |
count:RegionldSet->Natural
getlden:RegionldSet->Regionld
insert:Regionld#RegionldSet->Re gion IdSet

%%%6%6%%6%6%6% %% % % % % Yo% Yo YW Y 0% % ¥8%0

% State of regions, initially, the region is UNUSED.

%%%6%6%6%% %% %% %% % % Yo% Y% /0% % ¥%8%0

sort State

func UNUSED,USED:->State

map eq: State#State->Bool
if:Bool#State#State->State

var sl1,s2:State

rew if(T,s1,s2)=s1 if(F,s1,s2)=s2

%%%%%%% %% %% %% % %%

% Sort: Region

VA7
oYY

%% % %%

199

%Ild, Home, State, accessorlist, Data, Twin, the number of local threads

%Y

%%%%%%% %% %0%%%% %%
sort Region
func reg:Regionld#Processorld#State# ProcessorldSet#Natural ->Region
map getid:Region->Regionid
gethome:Region->Processorld
getstate:Region->State
getaccessorlist:Region->Process orld Set
getlocalt:Region->Natural
sethome:Region#Processorld->Reg ion
setstate:Region#State->Region
setaccessorlist:Region#Processo rldS et->Region
setlocalt:Region#Natural->Regio n
eq:Region#Region->Bool
var id,id" Regionld h,h":Processorld w,w':ProcessorldSet
s,s":State It,It":Natural region:Region
rew getid(reg(id,h,s,w,lt))=id
gethome(reg(id,h,s,w,It))=h
getstate(reg(id,h,s,w,It))=s

W% 0% % %8%o

getaccessorlist(reg(id,h,s,w, |t))=w
getlocalt(reg(id,h,s,w,It))=It

sethome(reg(id,h,s,w,It),h")=re g(id ,h's ,w,l t)
setstate(reg(id,h,s,w,t),s")=r eg(i d,h,s "w, It)
setaccessorlist(reg(id,h,s,w; It),w')=reg (id, h,s, w'lt)
setlocalt(reg(id,h,s,w,It),It") =reg(id,h ,s,w ,It'")

%%6%6%%%% %% %% %% % % YWY Y 0% % %0%0

% Actions: Wesynchronize s_* and r_* into an action c_*
% The communication functions will be omitted.
%%6%6%%%% %% %0%% %% % YWY Y 0% % %0%0

act

200 Appendix A CRL Code of the Cache CoherenceProtocol

s_require_faultlock,r_require_ faul tloc k,c_r equire_fa ultl ock: Processorld
s_require_flushlock,r_require_ flus hloc k,c_r equire_fl ushl ock: Processorld
s_require_serverlock,r_require _serverl ock,

c_require_serverlock: Processorld
s_require_homequeuelock,r_requ ire_ homeueudock ,
c_require_homequeuelock: Processorld
s_require_remotequeuelock,r_re quir e_remotequeuelock,
c_require_remotequeuelock: Processorld
s_free_faultlock,r_free_faultl ock, c_fr ee_faultl ock: Processorld
s_free_flushlock,r_free_flushl ock, c_fr ee_fl ushl ock: Processorld
s_free_serverlock,r_free_serve rloc k,c_free_ serverloc k: Processorld
s_free_homequeuelock,r_free_ho meqeuel ock,
c_free_homequeuelock: Processorld
s_free_remotequeuelock,r_free_ remdequeuelo ck,
c_free_remotequeuelock: Processorld
s_no_faultwait,r_no_faultwait, c_no_faultwai t: Processorld
s_no_flushwait,r_no_flushwait, c_no_flu shwait: Processorld
S_no_serverwait,r_no_serverwai t,c_ no_server wait : Processorld
s_no_homequeuewait,r_no_homeqgauevait,
¢_no_homequeuewait: Processorld
S_Nno_remotequeuewait,r_no_remo tequ euevait,
c_no_remotequeuewait: Processorld
s_signal_faultwait,r_signal_fa ultw ait, c_sig nal_fault wait: Processorld
s_signal_flushwait,r_signal_fl ushwait, c_sig nal_flush wait : Processorld
s_signal_serverwait,r_signal_s erverwait,c_s ignal_ser verwait: Processorld
s_signal_homequeuewait,r_signa |_ho meqeuewat,
c_signal_homequeuewait: Processorld
s_signal_remotequeuewait,r_sig nal_remaeque uewat,
c_signal_remotequeuewait: Processorld
s_data_require,r_i_data_requir e,c_i_data_re quir e,
s_i_data_require,r_data_requir e,c_o_data_re quir e:
Threadld#Processorld#Processo rld
s_data_return,r_o_data_return, c_i_data_retu rn,
s_0_data_return,r_data_return, c_o_data_retu rn:
Threadld#Processorld#Processo rld# Region#Bml
s_flush,r_i_flush,c_i_flush, s_i_flush,r_flush,c_o_flush
Threadld#Processorld#Processo rld# Region#Bml
S_region_sponmigrate,r_i_regio n_sponmigrate ,c_i _regi on_sponnigrat e,
S_i_region_sponmigrate,r_regio n_sponmigrate ,c_0 _regi on_sponnigrat e:
Threadld#Processorld#Processo rld# Region
s_sendback,r_sendback,c_sendba ck:T hreadld#Proce ssorl d#Region
s_refresh,r_refresh,c_refresh: Threadld #Processorld#R egio n
s_norefresh,r_norefresh,c_nore fres h:Threadl d#Processorld
s_sendback,r_sendback,c_sendba ck: Processorld#Region

s_refresh,r_refresh,c_refresh: Processorld#Region
s_norefresh,r_norefresh,c_nore fres h: Processorld
s_signal,r_signal,c_signal: Threadld#Processorld
write,writeover,flush,flushove r:Th readld

r_home s_homec_homer_copy s_copy c_copy
lockempty,homequeueempty,remotequeueenpty:P roce ssorl d

201

VA7 207
YV

%%%%%% %% %% %% %% %%
% Process: Thread
%%%%%%%%% %% %% %% %0
proc Thread(tid:Threadld,pid:Process orld ,Flus hLis t:Re gionl dSet)=
write(tid). ThreadWrite(tid, pid, FlushList) +
flush(tid). ThreadInvalidate(tid ,pid ,Flus hLis t)
<| not(eq(FlushList, ridema)) |>delta
%%%%%%% %% %% %% % %%
% Process: ThreadWrite
%%%%%%% %% %% %% % %%
proc ThreadWrite(tid: Threadld,pid:Pr ocessorld ,Flu shLi st:Re gion IdSet)=
Thread(tid,pid,FlushList)
<| test(rid1, FlushList) |>
sum(r:Region,r_sendback(tid,pid).
(s_norefresh(tid,pid).
WriteHome(tid,pid,insert(rid1,F lushL ist))
<| eq(gethome(r), pid) |>
s_norefresh(tid,pid).
WriteRemote(tid,pid,insert(rid1 ,Flus hLis t))
))
%%%%%%%%% %% %% %% Y6y i
% Process: WriteHome, thread writes at home.
%%%%6%%%%% %% %% %% %0
proc WriteHome(tid: Threadld,pid:Proc essorld,F lush List :Regi onld Set)=
s_require_serverlock(pid).

Yo W

VA7
%Yl

VA7
YoY% Yo

7 O
(‘1“)'40”‘,, 70

0
A0

A2,
Yo W

(r_no_serverwait(pid)+r_signal_ serv erwai t(pi d)).
sum(r:Region,r_sendback(tid,pid r).
((s_refresh(tid,pid,setlocalt(setst ate(setaccessorli st(
r.insert(pid,getaccessorlist(r))),U SED)S(ge tloc alt(r)))) .
s_free_serverlock(pid).
writeover(tid). Thread(tid,pi d,Flu shLi st)
<| eq(getstate(r), UNUSED}>
s_refresh(tid,pid,setlocalt(setac cessorli st(
r.insert(pid,getaccessorlist(r))), S(getloca lt(r)))).
s_free_serverlock(pid).
writeover(tid). Thread(tid,pi d,Flu shLi st)

)
<| eq(gethome(r), pid) |>
s_norefresh(tid,pid).
s_free_serverlock(pid).
WriteRemote(tid,pid,FlushList)
))
%%%%%%% %% %% %% % %% %% %%8%b0
% Process: WriteRemote, thread writes from remote.
%%%%6%%%%% %% %% %% %0
proc WriteRemote(tid: Threadld,pid:Pr ocessorld ,Flu shLi st:Re gion IdSet)=
s_require_faultlock(pid).
(r_no_faultwait(pid)+r_signal_f ault wait(pid)).
sum(r:Region,r_sendback(tid,pid).
(s_data_require(tid,pid,geth omef()).

VA7
YoY% Yo

)Y

0

W00
VoYW

202 Appendix A CRL Code of the Cache CoherenceProtocol

s_norefresh(tid,pid).
sum(pid':Processorld,r_signal (tid, pid').
sum(newr:Region,r_sendback(tid, pid, newr).

s_refresh(tid,pid,setlocalt(new r,S(g etlo calt (newr)))) .
s_free_faultlock(pid).
writeover(tid). Thread(tid,pid,F lushL ist)

))
<| not(eq(gethome(r),pid)) |>
s_norefresh(tid,pid).
s_free_faultlock(pid).
WriteHome(tid,pid,FlushList)
))
%%6%%%%% %% % %% %% %% % 84000 %840 %0 %o
% Process: Threadlnvalidate
%%6%%%%%6%6%%0%%% %% % %Y 8%0H8%8%0 W% % %o
proc ThreadInvalidate(tid: Threadld ,pid :Proc essorld,
FlushList:RegionldSet)=
Thread(tid,pid,FlushList)
<| eq(FlushList, ridema) |>
s_require_flushlock(pid).
(r_no_flushwait(pid)+r_signal _flu shwait(pi d)).
sum(r:Region,r_sendback(tid,p id,r).
(FlushHome(tid,pid,remove(ridl ,Flus hLis t),r)
<| eq(gethome(r),pid) |>
FlushRemote(tid,pid,remove(ri ~ d1,Fl ushList), r)
))
%%6%%%%%%6%%%%% %% % %Y 8H0H8%8%0 W% % %o
% Process: FlushHome, thread invalidates at home.
%%6%%%%%6%6%%0%%% %% % %Y 840H8%8%0 W% % %o
proc FlushHome(tid:Threadld,pid:Pr ocessorld ,Flu shLis t:Re gion IdSet ,
r:Region)=
(s_refresh(tid,pid,setlocalt(se tstat e(setacce ssorlist (
r,remove(pid,getaccessorlist (N)) ,UNLWBED),subl(get local t(r)))).
s_free_flushlock(pid).
flushover(tid). Thread(tid,pid, FlushList)
<| empty(remove(pid,getaccesso trlist (r))) |>
((s_region_sponmigrate(tid,p id,
getlden(remove(pid,getaccesso rlis t(r))),
setaccessorlist(r,remove(pid, getaccessorli st(r)))).
s_refresh(tid,pid,sethome(setlo calt (sets tate (
setaccessorlist(r,ema),UNUSED),su bl(getloc alt(r))),
getlden(remove(pid,getaccesso rlis t(r))))).
s_free_flushlock(pid).

flushover(tid). Thread(tid,pid,F lush List)

<| not(eq(getlden(remove(pid,ge tacc essorlist (r))), pid))|>

s_refresh(tid,pid,setlocalt(set accessorl ist(
r,remove(pid,getaccessorlist(r)) ,subl(get localt(r)))).

s_free_flushlock(pid).

flushover(tid). Thread(tid,pid,F lush List)

203

<| eq(count(remove(pid,getaccessor list (r))),S(0)) |>

s_refresh(tid,pid,setlocalt(set accessor list(
r,remove(pid,getaccessorlist(r))) ,sub1(getlocalt(r)))).
s_free_flushlock(pid).
flushover(tid). Thread(tid,pid,F lush List)
))
<| eq(subl(getlocalt(r)),0) |>
s_refresh(tid,pid,setlocalt(r,s ubl(getlo calt ())).
s_free_flushlock(pid).
flushover(tid). Thread(tid,pid,F lush List)

Y

%%%%%%% %% %% %% % %% Wi 0% Y% W%
% Process: FlushRemote, threads invalidates from remote.
%%%%%% %% %% %% %% %% Wi 0% Y% W%
proc FlushRemote(tid:Threadld,pid:Pr ocessorld ,Flu shLi st:Re gion IdSet ,
r:Region)=
s_flush(tid,pid,gethome(r),r,T)
s_refresh(tid,pid,setlocalt(set accessorl ist(sets tate(
r,UNUSED),ema),subl(getlocalt (r)))).
s_free_flushlock(pid).

%Y

sum(pid':Processorld,r_signal(t id,p id").
flushover(tid). Thread(tid,pi d,Fl ushList)
)
<| eq(subl(getlocalt(r)),0) |>
s_flush(tid,pid,gethome(r),r,F)
s_refresh(tid,pid,setlocalt(set accessorl ist(
r.ema),subl(getlocalt(r)))).s _fre e_flu shlo ck(p id).
sum(pid':Processorld,r_signal(t id,p id").
flushover(tid). Thread(tid,pi d,Fl ushList)
)

%%6%%%%%%6%%0%%% %% YWY YW 0% % %%
% Process: Region, both thread and processor can access the information.
%%6%%%%%6%6%%0%%% %% YWY YW 0% % %%
proc Region(pid:Processorld,r:Region)=
sum(tid:Threadld, s_sendback(tid,pid,r).
(r_norefresh(tid,pid).Region(p idr) +
sum(r':Region, r_refresh(tid,pid,r').Regio n(pid ,r))

+ ~

)

s_sendback(pid,r).

r_norefresh(pid).Region(pid, r+
sum(r':Region,r_refresh(pid, r). Region(pi d,r'))

~

r_home.Region(pid,r)<| eq(pid,gethome(r)) [>delta
s_home.Region(pid,r)<| eq(pid,gethome(r)) |>delta
r_copy.Region(pid,r)<| not(eq(pid,gethome(r))) |>delta

+ s_copy.Region(pid,r)<| not(eq(pid,gethome(r))) |>delta
%%6%%%%% %% %%%% %% %6 i %% %o H8%0
% Process: Processor, dealing with four messages.
%%6%%%%% %% %%%%% %% Wi Y6 % % %8%0
proc Processor(pid:Processorld)=

sum(tid:Threadld,sum(pid:Proce ssorld,su m(r' :Region,s um(kxBool ,

+ o+

V%Y

N](0"1’0”

204 Appendix A CRL Code of the Cache CoherenceProtocol

r_data_return(tid,pid,pid',r' ,b).

(sum(r:Region,r_sendback(pid,r).
(s_signal(tid,pid).
s_refresh(pid,sethome(setstat e(

r,getstate(r')),gethome(r'))).
s_free_remotequeuelock(pid).
Processor(pid)
<| not(eq(gethome(r),pid)) |>
s_signal(tid,pid).
s_refresh(pid,sethome(setstat e(
r,USED),pid)).s_free_remotequeu elock (pid).
Processor(pid)
)
<| not(b) |>
sum(r:Region,r_sendback(pid,r)
s_signal(tid,pid).
s_refresh(pid,sethome(setstate (seta ccessorl ist(
r,getaccessorlist(r')),USED) ,pid)).

s_free_remotequeuelock(pid).

Processor(pid)

))
)))

+ sum(tid:Threadld,sum(pid:P rocessorl d,
r_data_require(tid,pid',pid).
sum(r:Region,
r_sendback(pid,r).
(s_data_require(tid,pid',gethome n).
s_norefresh(pid).
s_free_homequeuelock(pid).
Processor(pid)
<| not(eq(gethome(r),pid)) |>
((s_data_return(tid,pid',pid,set homéset state (
setaccessorlist(r,insert(pid ;
getaccessorlist(r))),UNUSED) ,pid), T).
s_refresh(pid,sethome(setstate (set accessorl ist(
r,ema),UNUSED),pid").
s_free_homequeuelock(pid).
Processor(pid)
<| eq(getstate(r),UNUSED) |>
s_data_return(tid,pid',pid,
setstate(setaccessorlist(r,

insert(pid',getaccessorlist(r)) ,USH)F) .
s_refresh(pid,setstate(setacce ssorlist (
r.insert(pid',getaccessorlis t(r))),U SED)).

s_free_homequeuelock(pid).
Processor(pid)

)

<| not(eq(pid,pid")) |>

s_signal(tid,pid).

s_refresh(pid,setstate(setac cessorlis t(

))
)

+ sum(tid: Threadld,sum(pid":Pro

)

r,

insert(pid’,getaccessorlist(r), U

s_free_homequeuelock(pid).
Processor(pid)

r_flush(tid,pid',pid,r',b).
sum(r:Region,
r_sendback(pid,r).
s_flush(tid,pid',gethome(r),r 'b) .
s_norefresh(pid).
s_free_homequeuelock(pid).
Processor(pid)
<| not(eq(gethome(r), pid)) |>
s_signal(tid,pid).
s_refresh(pid,r).
s_free_homequeuelock(pid).
Processor(pid)

(

(

<| not(b) |>

(s_signal(tid,pid).

s_refresh(pid,setstate(setacc essorlist
r,remove(pid',getaccessorli st(r))),U

s_free_homequeuelock(pid).
Processor(pid)

<

empty(remove(pid',getaccessorl ist(r

((s_region_sponmigrate(tid,pi d,

)

getlden(remove(pid',getacces sorli
setaccessorlist(r,
remove(pid',getaccessorlist(r)))
s_signal(tid,pid).
s_refresh(pid,sethome(setst ate(
setaccessorlist(r,ema),UNUSE D),
getlden(remove(pid',getacces sorli
s_free_homequeuelock(pid).
Processor(pid)
<| not(eq(getlden(remove(pid',
getaccessorlist(r))),gethom e(r))
s_signal(tid,pid).
s_refresh(pid,setstate(seta ccessorli
r,remove(pid',getaccessorlis t(r))
s_free_homequeuelock(pid).
Processor(pid)
)
<|eg(count(remove(pid',geta ccessorli
s_signal(tid,pid).
s_refresh(pid,setaccessorli st(
r,remove(pid',getaccessorlis t(r))
s_free_homequeuelock(pid).
Processor(pid)

205

SED).

cessorld, sum(":R egion,sum(b:Bo ol,

(
NUSB)).

)i
st(r))),

st(r)

) 1>

st(
),USED)).

st(r)).S (0) I>

)-

206 Appendix A CRL Code of the Cache CoherenceProtocol

)]
+ sum(tid:Threadld,sum(pid:P rocessorl d,sum(r: Region,
r_region_sponmigrate(tid,pid' pid,).
sum(r:Region,
r_sendback(pid,r).
s_refresh(pid,sethome(setstate (set accessorl ist(
r,getaccessorlist(r')),USED) pid).
s_free_homequeuelock(pid).
Processor(pid)
)))
%%%6%%%%6 %% %% % % % % Y% YoY% B0 %0 %
% Process: HomeQueuesize one.
%%%6%%% %6 %% %% % % % %% Yo 8%%88%0 B0 %0 %
proc HomeQueue(pid: Processorld)=
sum(tid: Threadld,sum(pid:Pro cessorld,
r_i_data_require(tid,pid’,pid).
s_require_homequeuelock(pid).
(r_no_homequeuewait(pid)+r_si gnal_homeueuewait (pid)).
s_i_data_require(tid,pid’, pi d).Ho meQeaue(pid)
)
+ sum(tid:Threadld,sum(pid:P rocessorl d,su m(r:Regio n,su m(b:Bool,
r_i_flush(tid,pid',pid,r,b).
s_require_homequeuelock(pid).
(r_no_homequeuewait(pid)+r_si gnal_homeueuewait (pid)).
s_i_flush(tid,pid’,pid,r,b). Home@eue(pid)
)
+ sum(tid:Threadld,sum(pid:P rocessorl d,su m(r:Region,
r_i_region_sponmigrate(tid,pi d.pi dr) .
s_require_homequeuelock(pid).
(r_no_homequeuewait(pid)+r_si gnal_homegueuewait (pid)).
s_i_region_sponmigrate(tid,p id,p id,r).HomeQueaie(pid)
)
+ homequeueempty(pid).HomeQuge(pid)
%%%6%6%6%%6 %% %% % % % %% Yo 8%%88%0 B0 %0 %
% Process: RemoteQueue,size one.
%%%6%6%6%%% % %% %% % % % Y0 8%8%8%8%0 %% %0 %
proc RemoteQueue(pid: Processorld)=
sum(tid:Threadld,sum(pid:Pro cessorld, sum(:Region, sum(:Bool,
r_o_data_return(tid,pid,pid', r,b).
s_require_remotequeuelock(pid).
(r_no_remotequeuewait(pid)+r_ signal_re motequeuewait (pid)).
s_o_data_return(tid,pid,pid', r,b). RemteQueue(pid)
)
+ remotequeueempty(pid).Remot eQueie(pi d)
%%%6%6%6%% %% %% %% % % % Y0 8%8%8%8%0 %% %0 %
% Process: Locker
%%%6%6%6%%% % %% %% %% % Y0 8%8%8%8%0 %% %0 %
proc Locker(pid:Processorld,faulte rs:N atura I,fl ushers:Natura |,
homequeue:Natural,remotequeue:N atur al,
wait_faulters:Natural,wait_flus hers :Natu ral,

207

wait_homequeue:Natural,wait_ remotequeue:Natura)=

lockempty(pid).
Locker(pid,faulters,flushers,ho meqeue,r emotequeue,
wait_faulters,wait_flushers,wa it_ho meqeeue, wait_ remaeque ue)
<| and(and(and(and(and(and(and(
eq(faulters,0),eq(flushers,0)), eq(homeqeue, 0)),

eqg(remotequeue,0)),eq(wait_faul ters, 0)), eq(wait_f lush ers,0)),
eq(wait_homequeue,0)),eq(wait_r emotequeue,0)) |>delta

+

r_require_faultlock(pid).s_no_f ault wait(pid) .

Locker(pid,S(faulters),flushers ,homequeuwe,re motequeue,
wait_faulters,wait_flushers,wa it_ho meqgeue, wait_ remdeque ue)

<| and(eq(faulters,0), eq(flushers,0)) |>

r_require_faultlock(pid).

Locker(pid,faulters,flushers,ho meqeue,r emotequeue,
S(wait_faulters),wait_flushers ,wait _honequeue,wait_r emotegueue)

+

r_require_flushlock(pid).s_no_f lush wait(pid) .

Locker(pid,faulters,S(flushers) ,homequewe,re motequeue,
wait_faulters,wait_flushers,wa it_ho meqgeue, wait_ remdeque ue)

<| and(and(and(eq(faulters,0),e q(fl ushers,0)),
eq(homequeue,0)),eq(remotequeue ,0)) |>

r_require_flushlock(pid).

Locker(pid,faulters,flushers,ho meqeue,r emotequeue,
wait_faulters,S(wait_flushers) ,wait _honequeue,wait_r emotequeue)

+

r_require_serverlock(pid).s_no_ serv erwai t(pi d).

Locker(pid,faulters,flushers,S(homeueue),re motequeue,
wait_faulters,wait_flushers,wa it_ho meqgeue, wait_ remdeque ue)

<| and(eq(homequeue,0),eq(flush ers, 0)) |>

r_require_serverlock(pid).

Locker(pid,faulters,flushers,ho meqeue,r emotequeue,
wait_faulters,wait_flushers,S(wait_ homeueue),wait_r emotequeue)

+

r_require_homequeuelock(pid).s_ no_homeqeuevait(pid).

Locker(pid,faulters,flushers,S(homeueue),re motequeue,
wait_faulters,wait_flushers,wa it_ho meqeue, wait_ remaeque ue)

<| and(eq(homequeue,0),eq(flush ers, 0)) |>

r_require_homequeuelock(pid).

Locker(pid,faulters,flushers,ho meqeue,r emotequeue,
wait_faulters,wait_flushers,S(wait_ homejueue),wait_r emotegueue)

+

r_require_remotequeuelock(pid). s_no_remdequ euevait(p id).

Locker(pid,faulters,flushers,ho megeue,S(remoteq ueue),
wait_faulters,wait_flushers,wa it_ho meqgeue, wait_ remdeque ue)

<| and(eq(remotequeue,0),eq(flu shers,0)) |>

r_require_remotequeuelock(pid).

Locker(pid,faulters,flushers,ho meqeue,r emotequeue,
wait_faulters,wait_flushers,wa it_ho meqeue, S(wait_re motequeue))

+

208 Appendix A CRL Code of the Cache CoherenceProtocol

r_free_faultlock(pid).
(((s_signal_serverwait(pid).

Locker(pid,subl(faulters),fl ushers,S(homgueue),
remotequeue,wait_faulters,wait _flu shers,
subl(wait_homequeue),wait_remo tequ eue)

+

s_signal_homequeuewait(pid).

Locker(pid,subl(faulters),fl ushers,S(homegueue),
remotequeue,wait_faulters,wait _flu shers,
subl(wait_homequeue),wait_remo tequ eue)

)
<| and(not(eq(wait_homequeue,0)) ,eq(homegeue0)) [>
((s_signal_remotequeuewait(pid).
Locker(pid,subl(faulters),flus hers, homeueue,
S(remotequeue),wait_faulters ,wai t_fl ushers,
wait_homequeue,subl(wait_rem otequeue))
<| not(eq(wait_remotequeue,0)) [>
Locker(pid,subl(faulters),flus hers, homeueue,
remotequeue,wait_faulters,wa it f lush ers,
wait_homequeue,wait_remotequ eue)

)
<| eq(remotequeue,0) |>
Locker(pid,subl(faulters),flu shers,homequeue,

remotequeue,wait_faulters,wait_ flus hers,
wait_homequeue,wait_remotequeue)
))
<| and(not(and(eq(wait_homeque ue,0) ,
eg(wait_remotequeue,0))),eq(flu shers,0)) |>
(s_signal_flushwait(pid).

Locker(pid,subl(faulters),S (flus hers),homequeue,
remotequeue,wait_faulters,sub 1(wait_fl ushers),
wait_homequeue,wait_remoteque ue)

<| and(and(and(and(not(eq(wait_f Ilush ers,0)),e q(fl ushers,0)),

eq(homequeue,0)),eq(remotequeu €,0)),eq(subl(fau lters),0)) |>

(s_signal_faultwait(pid).

Locker(pid,faulters,flushers, homeueue,
remotequeue,subl(wait_faulters) ,wait fl ushers,
wait_homequeue,wait_remotequeue)

<| and(and(and(not(eq(wait_faulte rs,0)),eq (homequewe,0)),

eq(flushers,0)),eq(subl(fault ers), 0)) |>

Locker(pid,subl(faulters),flu shers,homequeue,
remotequeue,wait_faulters,wait_ flus hers,
wait_homequeue,wait_remotequeue)

)))

+

r_free_flushlock(pid).

(((s_signal_serverwait(pid).

Locker(pid,faulters,sub1(flus hers),S(h omeageue),
remotequeue,wait_faulters,wait_ flus hers,

subl(wait_homequeue),wait_remot equeue)

+

s_signal_homequeuewait(pid).

Locker(pid,faulters,subl1(flushe rs), S(homequee),
remotequeue,wait_faulters,wa it_f lushers,
subl(wait_homequeue),wait_re motequeue)

<| and(not(eq(wait_homequeue,0)),e q(homeqeue,0)) |>
((s_signal_remotequeuewait(pid).
Locker(pid,faulters,subl1(flu shers),h omeqeue,

S(remotequeue),wait_faulters, wait_ flus hers,

wait_homequeue,subl(wait_remotequeue))
<| not(eq(wait_remotequeue,0)) |>
Locker(pid,faulters,subl1(flu shers),h omeqeue,
remotequeue,wait_faulters,wai t_flu shers,
wait_homequeue,wait_remoteque ue)
)
<| eq(remotequeue,0) |[>
Locker(pid,faulters,subl1(flushe rs), homegueue,
remotequeue,wait_faulters,wa it_f lushers,
wait_homequeue,wait_remotequ eue)
))
<| and(not(and(eg(wait_homequeue,0),
eg(wait_remotequeue,0))),eq(subl(flus hers),0)) |>
(s_signal_flushwait(pid).
Locker(pid,faulters,flushers, homegeue,
remotequeue,wait_faulters,subl(wait _flus hers),
wait_homequeue,wait_remotequeue)

209

<| and(and(and(and(not(eq(wait_ flush ers, 0)), eq(re motequeug0)) ,

eg(homequeue,0)),eq(subl(flu shers),0)),eq (faul ters ,0))

(s_signal_faultwait(pid).

Locker(pid,S(faulters),subl1(flus hers),homequeue,
remotequeue,subl(wait_faulter s),wait_f lushers,

wait_homequeue,wait_remoteque ue)

<| and(and(and(not(eq(wait_faulter s,0)),eq(homeueug0)) ,

eq(subl(flushers),0)),eq(fault ers, 0) |>
Locker(pid,faulters,sub1(flu shers),h omeqeue,

remotequeue,wait_faulters,wai t_flu shers,
wait_homequeue,wait_remoteque ue)

)))

+

r_free_serverlock(pid).

(((s_signal_serverwait(pid).

Locker(pid,faulters,flusher s,homequeue,
remotequeue,wait_faulters,wai t_fl ushers,
subl(wait_homequeue),wait_rem otequeue)

+

s_signal_homequeuewait(pid) .

Locker(pid,faulters,flusher s,homequeue,
remotequeue,wait_faulters,wai t_fl ushers,
subl(wait_homequeue),wait_rem otequeue)

210 Appendix A CRL Code of the Cache CoherenceProtocol

<| and(not(eq(wait_homequeue,0)),e q(subl(homeqeue), 0)) |>
((s_signal_remotequeuewait(pid).
Locker(pid,faulters,flushers ,subl (homequeue),
S(remotequeue),wait_faulters,w ait_ flush ers,
wait_homequeue,subl(wait_remot equeue))
<| not(eq(wait_remotequeue,0)) |>
Locker(pid,faulters,flushers ,subl (homequeue),
remotequeue,wait_faulters,wait _flu shers,
wait_homequeue,wait_remotequeue)

)

<| eqg(remotequeue,0) [>

Locker(pid,faulters,flushers,su bl(homeqeue),
remotequeue,wait_faulters,wai t_fl ushers,
wait_homequeue,wait_remoteque ue)

))

<| and(not(and(eq(wait_homequeue, 0),
eq(wait_remotequeue,0))),eq(flus hers, 0)) |>

(s_signal_flushwait(pid).

Locker(pid,faulters,S(flushers),su bl(homeqeue),
remotequeue,wait_faulters,s ubl(wait_ flus hers) ,
wait_homequeue,wait_remoteq ueue)

<| and(and(and(and(not(eq(wait_fl ushers,0)),eq (remotequeue, 0)),
eq(subl(homequeue),0)),eq(flus hers,0)), eq(f ault ers,0)) |>

(s_signal_faultwait(pid).

Locker(pid,S(faulters),flushers ,subl (homequeue),
remotequeue,subl(wait_faulter s),w ait_ flush ers,
wait_homequeue,wait_remoteque ue)

<| and(and(and(not(eq(wait_faul ters, 0)), eq(f lushers,0)),

eq(subl(homequeue),0)),eq(f aulte rs,0)) |>

Locker(pid,faulters,flushers,su bl(homeqeue),
remotequeue,wait_faulters,wai t_fl ushers,
wait_homequeue,wait_remoteque ue)

)))

+
r_free_homequeuelock(pid).
(((s_signal_serverwait(pid).
Locker(pid,faulters,flushers, homeueue,
remotequeue,wait_faulters,wait_ flus hers,
subl(wait_homequeue),wait_remot equeue)
+
s_signal_homequeuewait(pid).
Locker(pid,faulters,flushers, homeueue,
remotequeue,wait_faulters,wait_ flus hers,
subl(wait_homequeue),wait_remot equeue)

<| and(eq(subl(homequeue),0),no t(eq (wait _honequeue,0))) |>
((s_signal_remotequeuewait(pid)
Locker(pid,faulters,flushers, subl(homeueue),
S(remotequeue),wait_faulters,wa it_f lushers,

211

wait_homequeue,subl(wait_remotequeue))
<| not(eq(wait_remotequeue,0)) |>
Locker(pid,faulters,flushers,su bl(homeqeue),

remotequeue,wait_faulters,wa it_fl ushers,

wait_homequeue,wait_remotequ eue)

)
<| eq(remotequeue,0) |>
Locker(pid,faulters,flushers,s ubl(homeueue),

remotequeue,wait_faulters,w ait_ flush ers,

wait_homequeue,wait_remoteq ueue)
))
<| and(not(and(eq(wait_homequeue,0),
eg(wait_remotequeue,0))),eq(flu shers,0)) |>
(s_signal_flushwait(pid).

Locker(pid,faulters,S(flushers) ,sub 1(homequee),
remotequeue,wait_faulters,su bl(wait_f lush ers),
wait_homequeue,wait_remotequ eue)

<| and(and(and(and(not(eq(wait_ flush ers, 0)), eq(re motequeue0)) ,
eq(subl(homequeue),0)),eq(f lushers,0)),e g(fau lter s,0)) |>
(s_signal_faultwait(pid).

Locker(pid,S(faulters),flushe rs,s ubl(homegeue),
remotequeue,subl(wait_faulters),wai t_fl ushers,
wait_homequeue,wait_remotequeue)

<| and(and(and(not(eq(wait_faulte rs,0)),

eq(subl(homequeue),0)),eq(flu shers,0)),eq(faul ters, 0)) |>

Locker(pid,faulters,flushers, subl(homequewe),
remotequeue,wait_faulters,wait _flus hers,
wait_homequeue,wait_remotequeue)

))

= 4+ =

~_free_remotequeuelock(pid).
((s_signal_serverwait(pid).
Locker(pid,faulters,flushers,S(homegueue),
subl(remotequeue),wait_fault ers, wait_flus hers,
subl(wait_homequeue),wait_re motequeue)

—~

+

s_signal_homequeuewait(pid).

Locker(pid,faulters,flushers,S(homegueue),
subl(remotequeue),wait_fault ers, wait_flus hers,
subl(wait_homequeue),wait_re motequeue)

<| and(eq(homequeue,0),not(eq(wait_h omeageue,0))) |>
((s_signal_remotequeuewait(pid).
Locker(pid,faulters,flushers,ho meqeue,
remotequeue,wait_faulters,wa it_fl ushers,
wait_homequeue,subl(wait_remotequeue))
<| not(eq(wait_remotequeue,0)) [>
Locker(pid,faulters,flushers,ho meqeue,
subl(remotequeue),wait_fault ers,wait_ flush ers,
wait_homequeue,wait_remotequ eue)

212 Appendix A CRL Code of the Cache CoherenceProtocol

<| eq(subl(remotequeue),0) |>

Locker(pid,faulters,flushers ,homequete,
subl(remotequeue),wait_faulter s,wait_f lushers,
wait_homequeue,wait_remotequeue)

))

<| and(not(and(eq(wait_homequeue,0),
eq(wait_remotequeue,0))),eq(fl ushers,0)) |>

(s_signal_flushwait(pid).

Locker(pid,faulters,S(flushers) ,homequete,
subl(remotequeue),wait_fault ers,s ubl(wait _flus hers),
wait_homequeue,wait_remotequ eue)

<| and(and(and(and(not(eq(wait_ flus hers, 0)),

eq(subl(remotequeue),0)),eq(faul ters, 0)),

eq(homequeue,0)),eq(flushers ,0)) |>

(s_signal_faultwait(pid).

Locker(pid,S(faulters),flush ers, homegeue,
subl(remotequeue),subl(wait_fa ulte rs),
wait_flushers,wait_homequeue,w ait_ remaequeue)

<| and(and(and(not(eq(wait_fault ers,0)),

eq(homequeue,0)),eq(flushers ,0)), eq(f ault ers,0)) |>

Locker(pid,faulters,flushers ,homequete,
subl(remotequeue),wait_faulter s,wait_f lushers,
wait_homequeue,wait_remotequeue)

)))
%%%6%6%6%%%% %% %% % % % %0 848%8%8%0 %% %0 %
% The protocol with 2 processors, 3 threads and 1 region.
% Each processor has a copy of the region.
%%%6%6%6%6%%% %% %% %% %% 848%8%8%0 %% %0 %
init hide (f... g, %Omitted. Hide all communication actions here.
encap(f... g, %Omitted. Enfore all r_* s * into c_*.

Processor(pidl) || Processor(pid2) ||

Thread(tid1,pid1,ridema) || Thread(tid2,pid2,ridema) Il
Thread(tid3,pid1,ridema) Il

Locker(pid1,0,0,0,0,0,0,0,0) || Locker(pid2,0,0,0,0,0,0,0,0) |l

HomeQueue(pidl) || HomeQueue(pid2) ||

RemoteQueue(pidl) || RemoteQueue(pid2) ||

Region(pidl,reg(ridl,pid1,UNU SED,ema,0) ||

Region(pid2,reg(rid1,pid1,UNU SED,ema,0))
))

Bibliograph vy

[1] J.-R. Abrial, D. Cansell,and D. Mery. A mechanically proved and incre-
merntal developmen of IEEE 1394 FireWire tree identify protocol. Formal
Aspects of Computing, 14(3):215-227,2003.

[2] L. Aceto, P. Bouyer, A. Burguero, and K.G. Larsen. The power of reach-
ability testing for timed automata. Theoretical Computer Sciene, 300(1-
3):411-475,2003.

[3] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Sciene, 126(2):183{235,1994.

[4] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7-48,1999.

[5] D. Angluin. Local and global propertiesin networks of processorgextended
abstract). In Proc. 12th ACM Sympmsium on Theory of Computing, pp.
82-93.ACM, 1980.

[6] T. Arts and I.A. van Langewelde. Correct performanceof transaction capa-
bilities. In Proc. 2nd Conference on Application of Concurrencyto System
Design, pp. 35{42. IEEE Computer Scciety, 2001.

[7] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge Uni-
versity Press,1998.

[8] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency of
Koomen'sfair abstraction rule. Theoretical Computer Sciena, 51:129{176,
1987.

[9] J.C.M. Baeten and W.P. Weijland. ProcessAlgebi, volume 18 of Cam-
bridge Tracts in Theoretical Computer Sciene. Cambridge University
Press,1990.

[10] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model chedking
continuous-time Markov chains by transient analysis. In Proc. 12th Confer-
ence on Computer Aided Veri c ation, LNCS 1855, pp. 358{372. Springer,
2000.

213

214 Bibliography

[11] C. Baier and M.Z. Kwiatk owska. Model cheding for a probabilistic branch-
ing time logic with fairness. Distributed Computing, 11(3):125-155,1998.

[12] J.W. de Bakker and J.I. Zucker. Processesand the denotational sematrtics
of concurrency Information and Control, 54(1/2):70-120,1982.

[13] T. Basten. Branching bisimilarity is an equivalenceindeed! Information
ProcessingLetters, 58(3):141{147,1996.

[14] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs,
S. Mauw, and L. Heerink. Formal test automation: A simple experimert.
Proc. 12th Workshop on Testing of Communicating Systems IFIP Confer-
enceProceedingsl147, pp. 179-196.Kluwer, 1999.

[15] J. Bengtsson,W.0O.D. Grio en, K.J. Kristo ersen, K.G. Larsen, F. Lars-
son, P. Pettersson,and Y. Wang. Automated analysis of an audio cortrol
protocol using UPPAAL. Journal of Logic and Algebric Programming,
52-53:163{181,2002.

[16] J.A. Bergstra and J.W. Klop. Processalgebrafor synchronous communi-
cation. Information and Computation, 60(1-3):109{137,1984.

[17] J.A. Bergstra and J.W. Klop. Algebra of communicating processeswith
abstraction. Theoretical Computer Sciene, 37:77{121,1985.

[18] J.A. Bergstra and J.W. Klop. Veri cation of an alternating bit protocol by
meansof processalgebra. In Proc. Spring Schal on Mathematical Methods
of Speci ¢ ation and Synthesisof Software Systems LNCS 215, pp. 9{23.
Springer, 1986.

[19] M.A. Bezem and J.F. Groote. A correctnessproof of a one bit sliding
window protocol in CRL. The Computer Journal, 37(4):289{307,1994.

[20] M.A. Bezemand J.F. Groote. Invariants in processalgebra with data.
In Proc. 5th Conferenae on Concurrency Theory, LNCS 836, pp. 401{416.
Springer, 1994,

[21] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langewelde, B. Lisser,
and J.C. vande Pol. CRL: A toolsetfor analysingalgebraicspeci cations.
In Proc. 13th Conference on Computer Aided Veri c ation, LNCS 2102, pp.
250{254. Springer, 2001.

[22] S.C.C. Blom, I.A. van Langewlde, and B. Lisser. Compressedand dis-
tributed le formats for labeledtransition systems.In Proc. 2nd Workshop
on Parallel and Distributed Model Checking, ENTCS 89(1). Elsevier, 2003.

[23] S.C.C. Blom and J.C. van de Pol. State spacereduction by proving con-
uence. In Proc. 14th Conference on Computer Aided Veri c ation, LNCS
2404, pp. 596{609. Springer, 2002.

Bibliography 215

[24] M. Broy, S. Merz, and M. Spies, eds. Formal SystemsSyeci ¢ ation: The
RPC-Memory Speci ¢ ation Case Study, LNCS 1169. Springer, 1996.

[25] J.J. Brunekreef. Sliding window protocols. In Algebric Speci c ation of
Protocols. Cambridge Tracts in Theoretical Computer Science36, pp. 71{
112. Cambridge University Press,1993.

[26] J.J. Brunekreef, J.-P. Katoen, R.L.C. Koymans, and S. Mauw. Algebraic
speci cation of dynamic leader election protocols in broadcast networks.
Distributed Computing, 9(4):157-171,1996.

[27] J.E. Burns. A formal model for messagepassingsystems. Technical Report
TR-91, Indiana University, 1980.

[28] M. Calder and A. Miller. Using Spin to analysethe tree identity phaseof
the IEEE 1394 high-performance serial bus (FireWire) protocol. Formal
Aspects of Computing, 14(3):247-266,2003.

[29] R. Cardell-Oliver. Using higher order logic for modelling real-time proto-
cols. In Proc. 4th Joint Conference on Theory and Practice of Software
Development LNCS 494, pp. 259{282. Springer, 1991.

[30] V.G. Cerf and R.E. Kahn. A protocol for padket network intercommunica-
tion. IEEE Transactionson Communications, 22(5):637{648,1974.

[31] K.M. Chandy and J. Misra. Parallel Program Design. A Foundation. Ad-
dison Wesley 1988.

[32] E.J.H. Chang and R. Roberts. An improved algorithm for decerralized
extrema- nding in circular con gurations of processes.Communication of
the ACM, 22(5):281-283,1979.

[33] D. Chkliaev, J. Hooman, and E. de Vink. Verication and improvemert
of the sliding window protocol. In Proc. 9th Conferenee on Tools and
Algorithms for the Construction and Analysis of Systems LNCS 2619, pp.
113{127. Springer, 2003.

[34] A. Cimatti, F. Giunchiglia, P. Pecdiari, B. Pietra, J. Profeta, D. Romano,
P. Traverso,and B. Yu. A provably correct embeddedveri er for the cer-
ti cation of safely critical software. In Proc. 9th Conference on Computer
Aided Veri c ation, LNCS 1254, pp. 202{213. Springer, 1997.

[35] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
2000.

[36] G. Coulouris, J. Dollimore, and T. Kindb erg. Distributed SystemsConcaepts
and Design Addison Wesley 1994.

[37] B. Courcelle. Recursive applicative program schemes. In Handtook of
Theoretical Computer Sciene, Volume B, Formal Methods and Semantics
pp. 459{492. Elsevier, 1990.

216 Bibliography

[38] G. Delzanno. Automatic veri cation of parameterizedcadche coherencepro-
tocols. In Proc. 12th Conference on Computer Aided Veri c ation, LNCS
1855, pp. 53{68. Springer, 2000.

[39] M.C.A. Devillers, W.O.D. Grio en,J.M.T. Romijn, and F.W. Vaandrager.
Veri cation of aleaderelection protocol - Formal methods applied to IEEE
1394. Formal Methads in System Design, 16(3):307{320,2000.

[40] E.W. Dijkstra. Self-stabilizing systemsin spite of distributed control. Com-
munications of the ACM, 17(11):643{644,1974.

[41] E.W. Dijkstra. Self-stabilization in spite of distributed cortrol. In Seleted
Writings on Computing: A Personal Perspective, pp. 41{46, Springer, 1982.

[42] E.W. Dijkstra. A belated proof of self-stabilization. Distributed Computing,
1(1):5-6, Springer, 1986.

[43] D.L. Dill. The Murphi verication system. In Proc. 8th Conferene on
Computer Aided Veri ¢ ation, LNCS 1102, pp. 390-393.Springer, 1996.

[44] D. Dolev, M. Klawe, and M. Rodeh. An O(nlogn) unidirectional dis-
tributed algorithm for extrema nding in a circle. Journal of Algorithms,
3:245-260,1982.

[45] M. Dubois, J.-C. Wang, L. Barroso, K. Lee, and Y.-S. Chen. Delayed
consistencyand its e ects on the miss rate of parallel programs. In Proc.
1991 ACM/IEEE Conference on Supercomputing, pp. 197{206, 1991.

[46] P.H.J. van Eijk, C.A. Vissers,and M. Diaz, eds. The formal description
technique LOTOS. Elsevier, 1989.

[47] E.A. Emersonand J.Y. Halpern. \Sometimes" and \not never" revisited:
on branching versuslinear time. Journal of the ACM, 33(1):151-178,1986.

[48] E.A. Emersonand C.-L. Lei. Modalities for model chedking: branching
time logic strikesbadk. Sciene of Computer Programming, 8(3):275-306,
1987.

[49] J.-C. Fernandez,H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighirearu. CADP { A protocol validation and veri cation toolbox.
In Proc. 8th Conference on Computer-Aided Veri ¢ ation, LNCS 1102, pp.
437{440. Springer, 1996.

[50] W.J. Fokkink. Intr oduction to ProcessAlgebia. Texts in Theoretical Com-
puter Science.An EATCS Series.Springer, 2000.

[51] W.J. Fokkink, J.F. Groote, J. Pang, B. Badban, and J.C. van de Pol.
Verifying a sliding window protocol in CRL. In Proc. 10th Conference on
Algebiaic Methodology and Software Technolayy, LNCS 3116.pp. 148-163.
Springer, 2004.

Bibliography 217

[52] W.J. Fokkink, J.-H. Hoepman, and J. Pang. A note on K -state self-
stabilization in a ring with K = N. CWI Tednical Report SEN-R0402,
2004.

[53] W.J. Fokkink, N.Y. loustinova, E. Kesseler,J.C. van de Pol, Y.S. Usenlo,
and Y.A. Yushtein. Re nement and veri cation applied to an in-igh t data
acquisition unit. In Proc. 13th Conference on Concurrency Theory, LNCS
2421, pp. 1{23. Springer, 2002.

[54] W.J. Fokkink and J. Pang. Conesand foci for protocol veri cation re-
visited. In Proc. 6th Conference on Foundations of Software Sciene and
Computation Structures LNCS 2620, pp. 267{281. Springer, 2003.

[55] W.J. Fokkink and J. Pang. Formal veri cation of timed systemsusing cones
and foci. In Proc. 6th AMAST Workshop on Real-Time Systems ENTCS,
Elsevier, 2004. To appear.

[56] W.J. Fokkink and J. Pang. Simplifying Itai-Ro deh leader election for
anonymous rings. CWI Tednical Report SEN-R0405,2004.

[57] W.J. Fokkink and J.C. van de Pol. Simulation asa correct transformation
of rewrite systems.In Proc. 22nd Symmsium on Mathematical Foundations
of Computer Sciene, LNCS 1295, pp. 249{258. Springer, 1997.

[58] R. Franklin. On an improved algorithm for decerralized extrema nd-
ing in circular con gurations of processors. Communication of the ACM,
25(5):336-337,1982.

[59] G.N. Fredericksonand N.A. Lynch. Electing a leaderin a synchronousring.
Journal of the ACM, 34(1):98-115,1987.

[60] L.A. Fredlund, J.F. Groote, and H.P. Korver. Formal verication of a
leader election protocol in processalgebra. Theoretical Computer Science,
177(2):459-486,1997.

[61] M. Fujita, P.C. McGeer, and J.C-Y. Yang. Multi-terminal binary decision
diagrams: An e cient data structure for matrix represenation. Formal
Methads in SystemDesign, 10(2/3):149-169,1997.

[62] H. Garavel and L. Mounier. Speci cation and veri cation of various dis-
tributed leaderelection algorithms for unidirectional ring networks. Sciene
of Computer Programming, 29(1/2):171-197,1997.

[63] H. Garavel, F. Lang and R. Mateescu. An overview of CADP 2001. Euro-
pean Asscciation for Software Sciene and Technolagy Newsletter 4:13-24,
2002.

[64] R.J. van Glabbeekand W.P. Weijland. Branching time and abstraction in
bisimulation semartics. Journal of the ACM, 43(3):555{600,1996.

218 Bibliography

[65] P. Godefroid and D.E. Long. Symbolic protocol veri cation with Queue
BDDs. Formal Methads and SystemDesign 14(3):257{271,1999.

[66] W. Goerigk and F. Simon. Towards rigorous compiler implementation ver-
i cation. In Collaboration between Human and Arti cial Scrieties, Coor-
dination and Agent-Basal Distributed Computing, LNCS 1624, pp. 62{73.
Springer, 1999.

[67] J. Gosling, B. Joy, and G. Steele.The Java LanguageSyeci ¢ ation. Addison
Wesley 1996.

[68] R.A. Groerveld. Verication of a sliding window protocol by means of
processalgebra. Report P8701, University of Amsterdam, 1987.

[69] J.F. Groote. ProcessAlgeba and Structured Operational Semantics. PhD
thesis, University of Amsterdam, 1991.

[70] J.F. Groote and B. Lisser. Computer assistedmanipulation of algebraic
processspeci cations. In Proc. 3rd Workshop on Veri c ation and Com-
putational Logic, Tednical Report DSSE-TR-2002-5.Department of Elec-
tronics and Computer Science,University of Southampton, 2002.

[71] J.F. Groote and H.P. Korver. Correctnessproof of the bakery protocol in
CRL. In Proc. 1st Workshop on the Algebia of Communicating Processes
Workshopsin Computing, pp. 63{86. Springer, 1995.

[72] J.F. Groote, F. Monin, and J.C. van de Pol. Cheding veri cations of
protocols and distributed systemsby computer. In Proc. 9th Conference
on Concurrency Theory, LNCS 1466, pp. 629{655. Springer, 1998.

[73] J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system
for lifting trucks. Journal of Logic and Algebiic Programming, 55(1/2):21{
56, 2003.

[74] J.F. Groote and A. Ponse.Proof theory for CRL: A languagefor processes
with data. In Proc. Workshop on Semantics of Speci ¢ ation Languages
Workshopsin Computing, pp. 232{251. Springer, 1994.

[75] J.F. Groote and A. Ponse. The syntax and semartics of CRL. In Proc.
1st Workshop on the Algebia of Communicating Processes Workshopsin
Computing Series,pp. 26{62. Springer, 1995.

[76] J.F. Groote, A. Ponse,and Y.S. Usenko. Linearization in parallel pCRL.
Journal of Logic and Algebiic Programming, 48(1/2):39{72, 2001.

[77] J.F. Groote and M.A. Reniers. Algebraic processverication. In J.A.
Bergstra, A. Ponse,and S.A. Smolka, eds. Handlook of Process Algebm,
pp. 1151{1208.Elsevier, 2001.

[78] J.F. Groote and M.P.A Sellink. Con uence for processveri cation. Theo-
retical Computer Sciene, 170(1/2):47{81, 1996.

Bibliography 219

[79] J.F. Groote and J. Springintveld. Focus points and cornvergert process
operators. A proof strategy for protocol veri cation. Journal of Logic and
Algebric Programming, 49(1/2):31{60, 2001.

[80] J.F. Groote and F.W. Vaandrager. An e cien t algorithm for branching
bisimulation and stuttering equivalence. In Proc. 17th Colloguium on Au-
tomata, Languagesand Programming, LNCS 443, pp. 626{638. Springer,
1990.

[81] J.F. Groote and J.J. van Wamel. The parallel composition of uniform
processesvith data. Theoretical Computer Sciene, 266(1/2):65-75, 2001.

[82] B.T. Hailpern. Verifying Concurrent ProcessesUsing Temporal Logic.
LNCS 129, Springer, 1982.

[83] H. Hanssonand B. Jonsson.A logic for reasoningabout time and reliabilit y.
Formal Aspects of Computing 6(5): 512-535,1994.

[84] K. Havelund, K.G. Larsen,and A. Skou. Formal veri cation of a power con-
troller using the real-time model chedker UPPAAL. In Proc. 5th AMAST
Workshop on Formal Methads for Real-Time and Prolabilistic Systems
LNCS 1601, pp. 277-298.Springer, 1999.

[85] M.C.B. Hennessyand R. Milner. Algebraic laws for nondeterminism and
concurrency Journal of the ACM, 32(1):137-161,1985.

[86] T.A. Henzinger,P.-H. Ho, and H. Wong-Toi. HyTed: A model cheder for
hybrid systems. Software Tools for Technolggy Transfer, 1(1/2):110-122,
1997.

[87] T.A. Henzinger, S. Qadeer,and S. Rajamani. Verifying sequetial consis-
tency on sharedmemory multipro cessorsystems.In Proc. 11th Conference
on Computer Aided Veri ¢ ation, LNCS 1633, pp. 301{315. Springer, 1999.

[88] D.S. Hirschbergand J.B. Sinclair. Decertralized extrema- nding in circular
con gurations of processes.Communication of the ACM, 23(11):627-628,
1980.

[89] C.A.R. Hoare. Communicating sequetial processes.Communications of
the ACM, 21(8):666{677,1978.

[90] C.A.R. Hoare. Communicating Seguential Processes.Prentice Hall, 1985.

[91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1991.

[92] G.J. Holzmann. The model cheder Spin. IEEE Transactionson Software
Engineering, 23(5):279-295,1997.

220 Bibliography

[93] J. Hooman and J.C. van de Pol. Formal veri cation of replication on a
distributed data spacearchitecture. In Proc. ACM 2002 Symposium on
Applied Computing, Special Track on Coordination Models, Languagesand
Applications, pp. 351-358.ACM, 2002.

[94] G.E. Hughesand M.J. Cresswell. A Companion to Modal Logic. Methuen,
1984.

[95] A. Itai and M. Rodeh. Symmetry breaking in distributiv e networks. In
Proc. 22nd Annual Symposium on Foundations of Computer Sciene, pp.
150{158. IEEE Computer Scciety, 1981.

[96] A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Infor-
mation and Computation, 88(1):60-87,1990.

[97] B. Jonsson.Compositional Veri ¢ ation of Distributed Systems PhD thesis,
Department of Computer Science,Uppsala University, 1987.

[98] B. Jonssonand M. Nilsson. Transitiv e closuresof regular relations for ver-
ifying in nite-state systems. In Proc. 6th Conference on Tools and Algo-
rithms for Construction and Analysis of Systems LNCS 1785,pp. 220{234.
Springer, 2000.

[99] R. Kaivola. Using compositional preorders in the veri cation of sliding
window protocol. In Proc. 9th Conference on Computer Aided Veri ¢ ation,
LNCS 1254, pp. 48{59. Springer, 1997.

[100] B. Karstens. Formal veri ¢ ation of the redesignof a distributed lift system
using UPPAAL . Master thesis, Utrecht University, 2003.

[101] P. Keleher, A. Cox, S. Dwarkadas,and W. Zwaenemel. TreadMarks: Dis-
tributed shared memory on standard workstations and operating systems.
In Proc. USENIX Winter 1994 Conference, pp. 115{132,1994.

[102] R.M. Keller. Formal veri cation of parallel programs. Communications
of the ACM, 19(7):371{384,1976.

[103] D.E. Knuth. Veri cation of link-level protocols. BIT, 21:21{36,1981.

[104] D. Kozen. Results on the propositional -calculus. Theoretical Computer
Sciene, 27:333-354,1983.

[105] C.P.J. Koymansand J.C. Mulder. A modular approach to protocol veri -
cation using processalgebra. In Applications of ProcessAlgebia, Cambridge
Tracts in Theoretical Computer Sciencel?, pp. 261{306. Cambridge Uni-
versity Press,1990.

[106] S.S. Kulkarni, J. Rushby, and N. Shankar. A case-studyin componen-
basedmedanical veri cation of fault-tolerant programs.In Proc. 4th Work-
shopon Self-Stabilization, pp. 33-40.IEEE Computer Scciety, 1999.

Bibliography 221

[107] M.Z. Kwiatk owska, G. Norman, and D. Parker. PRISM: Probabilistic
symbolic model cheder. In Proc. 12th Conference on Computer Perfor-
mance Evaluation, Modelling Techniquesand Tools, LNCS 2324, pp. 200-
204. Springer, 2002.

[108] L. Lamport. Proving the correctnessof multipro cessprograms. IEEE
Transactionson Software Engineering, 3(2):125-143,1977.

[109] L. Lamport. How to make a multipro cessorcomputer that correctly exe-
cutes multipro cessprogram. IEEE Transaction on Computers 28(9):690{
691, 1979.

[110] L. Lamport. Specifying Systems: The TLA+ Languageand Tools for
Hardware and Software Engineers. Addison Wesley 2003.

[111] K.G. Larsen,P. Pettersson,and Y. Wang. UPPAAL in a nutshell. Software
Tools for Technolaggy Transfer, 1(1/2):134{152, 1997.

[112] T. Latvala. Model chedking LTL properties of high-level Petri nets with
fairnessconstraints. In Proc. 22nd Conference on Application and Theory
of Petri Nets, LNCS 2075, pp. 242{262. Springer, 2001.

[113] G. Le Lann. Distributed systems: Towards a formal approad. Informa-
tion Processing77, Proc. of the IFIP Congress pp. 155-160,1977.

[114] M. Lindahl, P. Pettersson,and Y. Wang. Formal designand analysis of
a gear controller. Software Tools for Technolagy Transfer, 3(3):353{368,
2001.

[115] J. Loedkx, H.-D. Ehrich, and M. Wolf. Specic ation of Abstract Data
Types Wiley/T eubner, 1996.

[116] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[117] N.A. Lynch and M.R. Tuttle. Hierarchical correctnessproofs for dis-
tributed algorithms. In Proc. 6th ACM Sympmsium on Principles of Dis-
tributed Computing, pp. 137{151. ACM, 1987.

[118] N.A. Lynch and F.W. Vaandrager. Forward and badkward simulations.
Part I: Untimed systems. Information and Computation, 121(2):214{233,
1995.

[119] E. Madelaine and D. Vergamini. Speci cation and veri cation of a sliding
window protocol in Lotos. In Proc. 4th Conference on Formal Description
Techniques for Distributed Systemsand Communication Protocols, IFIP
Transactions (C-2), pp. 495-510.North-Holland, 1991.

[120] J. Maessen,Arvind, and X. Shen. Improving the Java memory model
using CRF. In Proc. 2000ACM SIGPLAN Conference on Object-Oriented
Programming Systems,Languagesand Applications, pp. 1{12. ACM, 2000.

222 Bibliography

[121] J. Mansonand W. Pugh. Core semarics of multithreaded Java. In Proc.
ACM 2001 Java Grande Conference, pp. 29{38. ACM, 2001.

[122] R. Mateescuand M. Sighirearu. E cien t on-the-y model-cheking for
regular alternation-free mu-calculus. Sciene of Computer Programming,
46(3):255-281,2003.

[123] S.Mauw and G.J. Veltink. A processspeci cation formalism. Fundamenta
Informatic ae, 13(2):85{139, 1990.

[124] S. Merz. On the verication of a self-stabilizing algorithm. Tednical
Report, University of Munich, 1998.

[125] A. Middeldorp. Speci cation of a sliding window protocol within the
framework of processalgebra. Report FVI 86-19,University of Amsterdam,
1986.

[126] R. Milner. A Calculus of Communicating Systems LNCS 92, Springer,
1980.

[127] R. Milner. Calculi for synchrony and asyndirony. Theoretical Computer
Sciene, 25(3):267-310,1983.

[128] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[129] G.C. Necula. Translation validation for an optimizing compiler. In Proc.
2000 ACM SIGPLAN Conferene on Programming LanguageDesign and
Implementation, pp. 83{94. ACM, 2000.

[130] T. Nipkow, L.C. Paulson,and M. Wenzel. Isakelle/HOL - A Proof Assis-
tant for Higher-Order Logic. Springer, 2002.

[131] S. Owre, S. Rajan, J.M. Rushby, N. Shanlkar, and M.K. Srivas. PVS:
Combining speci cation, proof chedking, and model cheking. In Proc.
8th Conference on Computer-Aided Veri ¢ ation, LNCS 1102, pp. 411-414.
Springer, 1996.

[132] K. Paliwoda and J.W. Sanders.An incremertal speci cation of the sliding-
window protocol. Distributed Computing, 5:83{94, 1991.

[133] J. Pang. Analysis of a security protocolin CRL. In Proc. 4th Conferenae
on Formal Engineering Methods, LNCS 2495, pp. 396-400.Springer, 2002.

[134] J. Pang, W.J. Fokkink, R.F.H. Hofman, and R. Veldema. Model check-
ing a cade coherenceprotocol for a Java DSM implemertation. In Proc.
8th Workshop on Formal Methaods for Parallel Programming: Theory and
Applications, 238.IEEE Computer Scciety, 2003.

[135] J. Pang, B. Karstens, and W.J. Fokkink. Analyzing the redesign of a
distributed lift systemin UPPAAL. In Proc. 5th Conferena on Formal
Engineering Methads, LNCS 2885, pp. 504-522.Springer, 2003.

Bibliography 223

[136] J. Pang, J.C. van de Pol, and M. Valero Espada. Abstraction of parallel
uniform processeswith data. In Proc. 2nd Conferena on Software Engi-
neering and Formal Methaods, IEEE Computer Scciety, 2004, To appear.

[137] D.M.R. Park. Concurrency and automata on in nite sequenceslin Proc.
5th Gl-Conferena on Theoretical Computer Sciene, LNCS 104, pp. 167-
183. Springer, 1981.

[138] G.L. Peterson. An O(nlogn) unidirectional algorithm for the circular ex-
trema problem. IEEE Transactions on Programming Languagesand Sys-
tems, 4(4):758-762,1982.

[139] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Sympsium
on Foundations of Computer Sciene, pp. 46-57.IEEE Computer Scciety,
1977.

[140] A. Pnueli, M. Siegel,and E. Singerman. Translation validation. In Proc.
4th Conference on Tools and Algorithms for Construction and Analysis of
Systems LNCS 1384, pp. 151{166. Springer, 1998.

[141] J.C. van de Pol. A prover for the CRL toolsetwith applications { version
0:1. Tednical Report SEN-R0106,CWI Amsterdam, 2001.

[142] J.C. van de Pol and M. Valero Espada. Formal speci cation of Java-
SpacesM architecture using CRL. In Proc. 5th Conference on Coordina-
tion Modelsand Languages LNCS 2315, pp. 274{290. Springer, 2002.

[143] F. Pongand M. Dubois. Formal automatic veri cation of cache coherence
in multipro cessorswith relaxed memory models. IEEE Transaction on
Parallel and Distributed Systems 11(9):989{1006,2000.

[144] S. Qadeerand N. Shanlar. Verifying a self-stabilizing mutual exclusion
algorithm. In Proc. IFIP Working Conferene on Programming Concept
and Methads, pp. 424-442.Chapman & Hall, 1998.

[145] J-P. Queille and J. Sifakis. Fairnessand related properties in transition
systems- A temporal logic to deal with fairness. Acta Informatic a, 19:195-
220,1983.

[146] J.L. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Verication in Xe-
sar of the sliding window protocol. In Proc. 7th Conferena on Protocol
Speci ¢ ation, Testing and Veri ¢ ation, pp. 235{248. North-Holland, 1987.

[147] Robert Bosch GmbH, Postfach 30 02 40, D-70442 Stuttgart, Germany.
CAN Syeci c ation. Version 2.0, 1991.

[148] C. Reckl and J. Esparza. Proof-cheding proto cols using bisimulations. In
Proc. 10th Conference on Concurrency Theory, LNCS 1664, pp. 525{540.
Springer, 1999.

224 Bibliography

[149] J.M.T. Romijn. Analysing Industrial Protocols with Formal Methods. PhD
thesis, University of Twente, 1999.

[150] J.M.T. Romijn. A timed verication of the IEEE 1394 leader election
protocol. Formal Methads in SystemDesign 19(2):165{194,2001.

[151] A. Roychoudhury and T. Mitra. Specifying multithreaded Java sematrtics
for program veri cation. In Proc. ACM SIGSOFT Conference on Software
Engineering, pp. 192{201. ACM, 2002.

[152] V. Rusu. Verifying a sliding-window protocol using PVS. In Proc. 21st
Conferencee on Formal Techniquesfor Networked and Distributed Systems
IFIP ConferenceProceedings197, pp. 251-268.Kluwer, 2001.

[153] M. Schneider. Self-stabilization. ACM Computing Surveys 25(1):45-67,
1993.

[154] A.A. Schoone. Assertional Veri ¢ ation in Distributed Computing. PhD
thesis, Utrecht University, 1991.

[155] V. Schuppan and A. Biere. Verifying the IEEE 1394FireWire tree identity
protocol with SMV. Formal Aspects of Computing, 14(3):267-280,2003.

[156] C. Shanklandand A. Verdejo. A casestudy in abstraction using E-LOTOS
and the FireWire. Computer Networks 37(3/4):481-502,2001.

[157] C. Shanklandand M. B. van der Zwaag. The tree identify protocol of IEEE
1394in CRL. Formal Aspects of Computing, 10(5/6):509-531,1998.

[158] X. Shen, Arvind, and L. Rodolph. Cachet: an adaptive cache coherence
protocol of distributed shared memory systems. In Proc. 13th ACM Con-
ference on Supercomputing, pp. 135{144,1999.

[159] S.K. Shukla, D.J. Rosenkranz, and S.S.Ravi. Simulation and validation
tool for self-stabilizing protocols. In Proc. 2nd SPIN Workshop DIMA CS
Seriesin Discrete Mathematics and Theoretical Computer Science(32),
1996.

[160] M.A. Smith and N. Klarlund. Verication of a sliding window protocol
using IOA and MONA. In Proc. 20th Conference on Formal Techniques
for Distributed SystemDevelopment IFIP ConferenceProceedingsl83, pp.
19{34. Kluwer, 2000.

[161] J.L.A. van de Snepstieut. The sliding window protocol revisited. Formal
Aspects of Computing, 7(1):3{17, 1995.

[162] K. Stahl, K. Baukus, Y. Lakhnech, and M. Ste en. Divide, abstract,
and model-chek. In Proc. 6th SPIN Workshop LNCS 1680, pp. 57{76.
Springer, 1999.

Bibliography 225

[163] N.V. Stenning. A data transfer protocol. Computer Networks 1(2):99{
110,1976.

[164] J. Stoy, X. Shen, and Arvind. Proofs of correctnessof cache-coherence
protocols. In Formal Methads for Increasing Software Productivity: Proc.
Sympsium of Formal Methods Europe, LNCS 2021, pp. 43{71. Springer,
2001.

[165] A.S. Tanerbaum. Computer Networks Prentice Hall, 1981.

[166] A. Tarski. A lattice-theoretical xp oint theorem and its applications.
Paci ¢ Journal of Mathematics, 5:285{309, 1955.

[167] G. Tel. Introduction to Distributed Algorithms. Cambridge University
Press,1994.

[168] O.E. Theel. Exploitation of Ljapunov theory for verifying self-stabilizing
algorithms. In Proc. 14th Conferenae on Distributed Computing, LNCS
1914, pp. 209-222.Springer, 2000.

[169] T. Tsuchiya, S. Nagano, R.B. Paidi, and T. Kikuno. Symbolic model
cheding for self-stabilizing algorithms. IEEE Transaction on Parallel and
Distributed Systems 12(1):81-95,2001.

[170] Y.S. Usenlo. Linearization of CRL speci cations (extended abstract).
In Proc. 3rd Workshop on Veri ¢ ation and Computational Logic, Ted-
nical Report DSSE-TR-2002-5.Department of Electronics and Computer
Science,University of Southampton, 2002.

[171] F.W. Vaandrager. Veri cation of two communication protocols by means
of processalgebra. Report CS-R8608,CWI, Amsterdam, 1986.

[172] G. Varghese. Self-Stabilization by Local Checking and Corrections. PhD
thesis, MIT, 1992.

[173] R. Veldema, R.F.H. Hofman, R. Bhoedjang, and H.E. Bal. Runtime op-
timizations for a Java DSM implementation. In Proc. ACM Java Grande
Conference, pp. 153{162. ACM, 2001.

[174] R. Veldema, R.F.H. Hofman, R. Bhoedjang, C. Jacobs, and H.E. Bal.
Source-lewel global optimizations for ne-grain distributed shared memory
systems.In Proc. 8th ACM SIGPLAN Sympmsium on Principles and Prac-
tice of Parallel Programming, pp. 83{92. ACM, 2001.

[175] A. Verdejo, |. Pita, and N. Marti-Oliet. Speci cation and veri cation of
the tree identify protocol of IEEE 1394in rewriting logic. Formal Aspects
of Computing, 14(3):228-246,2003.

[176] J.J. van Wamel. A study of a one bit sliding window protocol in ACP.
Report P9212,University of Amsterdam, 1992.

226 Bibliography

[177] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Analyzing the CRF Java
memory model. In Proc. 8th Asia-Paci ¢ Software Engineering Conference,
pp. 21{28. IEEE Computer Scciety, 2001.

[178] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Specifying Java thread
sematrtics using a uniform memory model. In Proc. ACM 2002 Java Grande
Conference, pp. 192{201. ACM, 2002.

[179] Y. Zhou, L. Ifto de, and K. Li. Performanceevaluation of two home-based
lazy release-consistencyrotocols for shared virtual memory systems. In
Proc. 2nd USENIX Sympsium on Operating SystemsDesign and Imple-
mentation, pp. 75{88, 1996.

[180] M.B. van der Zwaag. The conesand foci proof technique for timed tran-
sition systems. Information ProcessingLetters, 80(1):33{40, 2001.

Summary

The designand implementation of distributed systemsare error-prone and be-
coming extremely complex. Formal methods can be usedto specify systems
in a precise,consistert and non-ambiguous way. Moreover, formal veri cation
techniques, such as model cheding and theorem proving, can be usedto verify
whether a systemhasdesiredproperties. The proper useof formal methods will
lead to more reliable, dependable,and securesystemsin the future.

Chapter 3 preserts a conesand foci proof method, which rephrasesthe ques-
tion whether two systemspeci cations are branching bisimilar in terms of proof
obligations on relations betweendata objects. Comparedto the original cones
and foci method from Groote and Springintveld [79], this method is more gener-
ally applicable, and doesnot require a preprocessingstep to eliminate internal
loops. The method has been formalized and proved correct using the theorem
prover PVS [131]. Thus a framework for medanical protocol veri cation has
beenestablished.

Chapter 4 preserts the veri cation of oneof the most complexsliding window
protocols preseried in Tanerbaum's Computer Networks textb ook [165 using
the conesand foci method and its medanical framework in PVS. We provedthe
correctnessof this sliding window protocol with an arbitrary nite window size
n and sequencenumbers modulo 2n. We showed that the external behavior of
this protocol is equivalent to a FIF O queueof capacity 2n. This proof is entirely
basedon the axiomatic theory underlying CRL and the axioms characterizing
the data types, and was chedked with the help of PVS.

Chapter 5 preserts that, cortrary to common belief, Dijkstra's K -state mu-
tual exclusion algorithm on a ring [40, 41] also stabilizes when the number K
of states per processis one lessthan the number N + 1 of processesn the ring.
The algorithm and the proof has beenformalized and chedked in PVS, based
on Qadeerand Shanlkar's work [144].

Chapter 6 presents the analysis of a distributed system for lifting trucks.
When testing the implementation of the system, the dewvelopers found prob-
lems. They solved these problems by trial and error, partly becausethe causes
of problems were unclear. The analysis of the original designof the systemin

CRL [75, 21] in combination with the CADP toolset[49, 63] revealedthe rea-
sonsfor the problems. Another new problem wasfound in the model, which was
indeed presen in the implementation of the system. Solutions were proposed
and included in the CRL speci cation, and we shoved by model cheding that

227

228 Summary

the problems were solved indeed. The dewelopers tried to solve the problems
independertly. They made a redesign of the lift system basedon their own
solutions, The redesignwas analyzedby using the real-time model cheder UP-
PAAL [111]. We showed that the solutions of the developers do not solve the
problems completely, while a re ned version of our solutions contained in the

CRL speci cation does. Currently, the lift systemis under revision, and our
solutions to the problems are being implemented.

Chapter 7 presens the analysis of a self-invalidation based, multiple-writer
cache coherenceprotocol for Jackal, which is a ne-grained, distributed shared
memory implementation of Java. The veri cation allowedto discover two errors
in the designof the cadce coherenceprotocol. Also, a large number of inconsis-
tencies and misunderstandingswere found, mostly causedby the ewolution of
the implementation simultaneously with the formal analysis process.This case
study beneted a lot from the CRL distributed state spacegeneration tool,
and also pushedforward its developmert.

Chapter 8 preseris two probabilistic leader election algorithms for anony-
mous unidirectional rings with FIF O channels,basedon an algorithm from ltai
and Rodeh [95]. In contrast to the Itai-Ro deh algorithm, our algorithms are
nite-state. Sothey can be analyzed using explicit state spaceexploration; we
usedthe probabilistic model chedker PRISM [107] to verify, for rings up to size
four, that eventually a unique leaderis electedwith probability one.

Nederlandse Samenvatting

Formele Veri catie van GedistribueerdeSystemen

Het ontwerp en implemerteren van gedistribueerde systemenis zeer gecom-
pliceerd geworden, en daarmeegewelig voor fouten. Formele methoden kunnen
worden gebruikt voor preciezeen consisterte speci catie van systemen. Boven-
dien kunnen formele veri catie gereedshappen, zoals model cheders en au-
tomatische stellingbewijzers, worden gebruikt om na te gaan of eensysteemde
gewenste eigenstiappen heeft. Goed gebruik van formele methoden zal in de
toekomst leiden tot betrouwbaarder en veiliger gedistribueerdesystemen.

Hoofdstuk 3 preseneert eenconesen foci bewijsmethode, die de vraag of
tweesysteem-sgci caties equivalert zijn herformuleert in termen van bewijsver-
plichtingen enrelaties tussendata-objecten. Dezemethode is algemenertoepas-
baar dan de originele conesen foci methode van Groote en Springintveld [79],
en is geformaliseerden correct bewezen met behulp van de stellingbewijzer
PVS [13]1]. Aldus wordt een raamwerk voor mechanische protocol-veri catie
verkregen.

Hoofdstuk 4 bevat de veri catie van een van de meestingewikkelde sliding
window protocollen uit Tanerbaum's Computer Networks tekstboek [165, op
basisvan het raamwerk uit het vorige hoofdstuk. De correctheid van dit sliding
window protocol wordt aangetoond voor een willekeurige omvang van de win-
dows, en voor volgnummers modulo 2n. Het externe gedragvan het protocol
is equivalent met een FIFO queue van capaciteit 2n. Het bewijs is volledig
gebaseerdop de axiomatische theorie die ten grondslag ligt aan CRL, en de
axioma's voor de data-types.

Hoofdstuk 5 laat zien dat (in tegenstellingtot wat somswordt beweerd) Di-
jkstra's K -state mutual exclusionalgoritme voor eenring [40, 41] ook stabiliseert
wanneer het aantal K van toestandenper proceseen minder is dan het aartal
N + 1 van processerin dering. Het algoritme en het bewijs zijn geformaliseerd
in PVS, op basisvan eerderwerk van Qadeerand Shanlar [144.

Hoofdstuk 6 preserieert de analyse van een gedistribueerd systeem voor
het optillen van voertuigen zoals vrachtwagensen treinen. Tijdens het testen
van eenimplementatie liepen de ontwerpers van het systeemtegen problemen
aan. Deze problemen werden ad hoc opgelost, zonder dat de oorzaken van de
problemen edht duidelijk waren geworden. Door middel van een analyse van

229

230 NederlandseSamervatting

het oorspronkelijke systeem-otwerp met CRL [75, 21], in combinatie met de

CADP toolset [49, 63], konden we de oorzaken voor de problemen aantonen.

Bovendienwerd eennieuw probleemgedetecteerd dat inderdaad aanwezigbleek
te zijn in de implemertatie. We stelden oplossingenvoor en namen die op

in de CRL specicatie. Door middel van model cheken met CADP werd

aannemelijk gemaakt dat de problemen aldus werkelijk waren opgelost. De

ontwerpers echter maakten in de tussertijd onafhankelijk een herontwerp van

het liftsysteem, en namen daarin andere oplossingenop voor bovengen@mde
problemen. We analyseerdendit herontwerp met behulp van de tijdsgebaseerde
model chedker UPPAAL [111]. Dezeanalysetoonde aan dat de oplossingenvan

de ontwerpers de problemen niet volledig oplossen,terwijl eenverjnde versie
van onzeoplossingendat wel doet. Momenteel is het liftsysteem opnieuw onder
revisie, en worden onze oplossingengemplemerteerd.

Hoofdstuk 7 bevat de analysevan eenmultiple-writer cache cohernce proto-
col voor eengedistribueerdeshared memory implementatie van Java, genaamd
Jackal. Tijdens de vericatie, door middel van model chedken, werden twee
fouten ontdekt in het ontwerp van dit cace coherenceprotocol. Ook werden
eengroot aantal tegenstrijdighedenen misverstandenaan het licht gebradt, in
de meestegevwallen veroorzaakt door de ontwikkeling van de implementatie in
parallel met onze veri catie. Doordat bij dezeveri catie zeergrote toestand-
sruimten gegenereerdverden, washet gebruik van eengedistribueerdegenerator
essetieel. Anderzijds bleekdezecase-studieeenbelangrijke drijfv eertot verdere
verbetering van dezegedistribueerdegenerator.

Hoofdstuk 8 preserteert tweeprobabilistische leader election algoritmes voor
anonieme,unidirectionele ringen met FIF O kanalen, gebaseercp eenalgoritme
van Itai en Rodeh [95]. In tegenstelling tot het Itai-Ro deh algoritme hebben
onzealgoritmes eeneindige toestandsruinte. Aldus kunnen zij worden geanaly-
seerddoor middel van expliciete exploratie van de toestandsruinte; wij hebben
de probabilistische model chedker PRISM [107] gebruikt om te veri eren, voor
ringen ter grootte Vier, dat met kans een uiteindelijk een unieke leider wordt
gekozen.

Titles in the IP A Dissertation

J.0. Blanco . The State Operator in Pro-
cess Algebra. Faculty of Mathematics and
Computing Science, TUE. 1996-01

AM. Geerling Transformational Devel-
opment of Data-Par allel Algorithms. Fac-
ulty of Mathematics and Computer Science,
KUN. 1996-02

P.M. Achten . Inter active Functional Pro-
grams: Models, Methods, and Implementa-
tion. Faculty of Mathematics and Computer
Science, KUN. 1996-03

M.G.A. Verho even. Parallel Local
Search. Faculty of Mathematics and Com-
puting Science, TUE. 1996-04

M.H.G.K. Kesseler . The Implementation
of Functional Languages on Parallel Ma-
chines with Distrib. Memory. Faculty of
Mathematics and Computer Science, KUN.
1996-05

D. Alstein Distribute d Algorithms for
Hard Real-Time Systems. Faculty of Mathe-
matics and Computing Science, TUE. 1996-
06

J.H. Hoepman . Communication, Syn-
chronization, and Fault-T olerance. Fac-
ulty of Mathematics and Computer Science,
UVA. 1996-07

H. Do orn bos. Reductivity Arguments and
Program Construction . Faculty of Mathe-
matics and Computing Science, TUE. 1996-
08

D. Turi . Functorial Operational Semantics
and its Denotational Dual. Faculty of Math-
ematics and Computer Science, VUA. 1996-
09

AM.G. Peeters. Single-Rail Handshake
Cir cuits. Faculty of Mathematics and Com-
puting Science, TUE. 1996-10

N.W.A. Arends . A Systems Engineering
Speci ¢ ation Formalism . Faculty of Mechan-
ical Engineering, TUE. 1996-11

P. Severi de Santiago . Normalisation in
Lambda Calculus and its Relation to Type
Infer ence. Faculty of Mathematics and Com-
puting Science, TUE. 1996-12

D.R. Dams .
Partition

Abstract Interpr etation and
Re nement for Model Checking.

Series

Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-13

M.M. Bonsangue . Topological Dualities
in Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter . Algorithms for Graphs
of Small Treewidth. Faculty of Mathematics
and Computer Science, UU. 1997-01

W.T.M. Kars . Process-algebmic Transfor-
mations in Context. Faculty of Computer
Science, UT. 1997-02

P.F. Ho ogendijk . A Generic Theory of
Data Types. Faculty of Mathematics and
Computing Science, TUE. 1997-03

T.D.L. Laan . The Evolution of Type The-
ory in Logic and Mathematics. Faculty of
Mathematics and Computing Science, TUE.
1997-04

C.J. Blo o. Preservation of Termination for
Explicit Substitution . Faculty of Mathemat-
ics and Computing Science, TUE. 1997-05

J.J. Vereijk en. Discrete-Time Process Al-
gebra. Faculty of Mathematics and Comput-
ing Science, TUE. 1997-06

F.AM. van den Beuk en. A Functional
Approach to Syntax and Typing. Faculty of
Mathematics and Informatics, KUN. 1997-07

AW. Heerink Ins and Outs in Refusal
Testing. Faculty of Computer Science, UT.
1998-01

G. Naumoski and W. Aberts. A
Discr ete-Event Simulator for Systems Engi-
neering. Faculty of Mechanical Engineering,
TUE. 1998-02

J. Verriet . Scheaduling with Communic a-
tion for Multipr ocessor Computation . Fac-
ulty of Mathematics and Computer Science,
UU. 1998-03

J.S.H. van Gageldonk . An Asynchronous
Low-Power 80C51 Micr ocontroller. Fac-
ulty of Mathematics and Computing Science,
TUE. 1998-04

A.A. Basten . In Terms of Nets: System
Design with Petri Nets and Process Algebra.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1998-05

E. Voermans . Inductive Datatypes with
Laws and Subtyping { A Relational Model.

Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-01

H. ter Do est. Towards Probabilistic
Unic ation-based Parsing. Faculty of Com-
puter Science, UT. 1999-02

J.P L. Segers. Algorithms for the Simula-
tion of Surface Processes Faculty of Mathe-
matics and Computing Science, TUE. 1999-
03

C.HM. van Kemenade Recombinative
Evolutionary Search. Faculty of Mathemat-
ics and Natural Sciences,UL. 1999-04

E.l. Barak ova. Learning Reliability: a
Study on Indecisiveness in Sample Selec-
tion. Faculty of Mathematics and Natural
Sciences,RUG. 1999-05

M.P . Bo dlaender . Schedulere Optimiza-
tion in Real-Time Distribute d Databases
Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-06

M.A. Reniers . Message Sequence Chart:
Syntax and Semantics. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
07

J.P. Warners . Nonlinear Approaches to
Satis ability Problems. Faculty of Mathe-
matics and Computing Science, TUE. 1999-
08

J.M.T. Romijn . Analysing Industrial Pro-
tocols with Formal Methods. Faculty of
Computer Science, UT. 1999-09

P.R. D'Argenio . Algebras and Automata
for Timed and Stochastic Systems. Faculty
of Computer Science, UT. 1999-10

G. Fabian. A Language and Simulator for
Hybrid Systems. Faculty of Mechanical En-
gineering, TUE. 1999-11

J. Zw anen burg . Object-Oriente d Concepts
and Proof Rules. Faculty of Mathematics
and Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated
Neural Prediction System. Faculty of Math-
ematics and Natural Sciences,RUG. 1999-13

J. Saraiv a. A Purely Functional Imple-
mentation of Attribute Grammars. Faculty
of Mathematics and Computer Science, UU.
1999-14

R. Schiefer . Viper, A Visualisation Tool
for Parallel Program Construction . Fac-
ulty of Mathematics and Computing Science,
TUE. 1999-15

K.M.M. de Leeuw. Cryptology and State-
craft in the Dutch Republic. Faculty of
Mathematics and Computer Science, UVA.
2000-01

T.EJ. Vos. UNITY in Diversity. A
strati e d approach to the veric ation of dis-
tribute d algorithms . Faculty of Mathematics
and Computer Science, UU. 2000-02

W. Mallon Theories and Tools for the
Design of Delay-Insensitive Communic ating
Processes Faculty of Mathematics and Nat-
ural Sciences,RUG. 2000-03

W.0.D. Grio en. Studies in Computer
Aided Veric ation of Protocols. Faculty of
Science, KUN. 2000-04

P.H.F.M. Verho even. The Design of the
MathSpad Editor . Faculty of Mathematics
and Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending
and Packaging Plant. Faculty of Mechanical
Engineering, TUE. 2000-06

M. Franssen . Cocktail: A Tool for Deriv-
ing Corr ect Programs. Faculty of Mathemat-
ics and Computing Science, TUE. 2000-07

P.A. Olivier . A Framework for Debugging
Heterogeneous Applic ations. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2000-08

E. Saaman . Another Formal Specic ation
Language Faculty of Mathematics and Nat-
ural Sciences,RUG. 2000-10

M. Jelasit y. The Shape of Evolutionary
Search Discovering and Representing Search
Space Structur e. Faculty of Mathematics
and Natural Sciences,UL. 2001-01

R. Ahn . Agents, Objects and Events a com-
putational approach to knowledge, observa-
tion and communic ation. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-
02

M. Huisman . Reasoning about Java Pro-
grams in Higher Order Logic using PVS and
Isabelle. Faculty of Science, KUN. 2001-03

.M.M.J. Reymen . Improving Design
Processes through Structur ed Re ection.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-04

S.C.C. Blom . Term Graph Rewriting:
Syntax and Semantics. Faculty of Sciences,
Division of Mathematics and Computer Sci-
ence, VUA. 2001-05

R. van Liere . Studies in Inter active Visu-
alization . Faculty of Natural Sciences,Math-
ematics and Computer Science, UvA. 2001-
06

A.G. Engels . Languages for Analysis and
Testing of Event Seguences. Faculty of
Mathematics and Computing Science, TU/e.
2001-07

J. Hage . Structur al Aspects of Switching
Classes Faculty of Mathematics and Natu-
ral Sciences,UL. 2001-08

M.H. Lamers . Neural Networks for Analy-
sis of Data in Envir onmental Epidemiolo gy:
A Case-study into Acute E e cts of Air Pol-
lution Episodes Faculty of Mathematics and
Natural Sciences,UL. 2001-09

T.C. Ruys. Towards E e ctive Model
Checking. Faculty of Computer Science, UT.
2001-10

D. Chkliaev Mechanical Veric ation of
Concurr ency Control and Recovery Proto-
cols. Faculty of Mathematics and Comput-
ing Science, TU/e. 2001-11

M.D. Oostdijk Generation and Presen-
tation of Formal Mathematic al Documents.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-12

A.T. Hofk amp . Reactive Machine Con-
trol: A Simulation Approach using . Fac-
ulty of Mechanical Engineering, TU/e. 2001-
13

D. Bosnacki. Enhancing State Space
Reduction Techniques for Model Checking.
Faculty of Mathematics and Computing Sci-
ence, TU/e. 2001-14

M.C. van Wezel. Neural Networks for In-
telligent Data Analysis: theoretical and ex-
perimental aspects. Faculty of Mathematics
and Natural Sciences,UL. 2002-01

V. Bos and J.J.T. Kleijn . Formal Speci-
c ation and Analysis of Industrial Systems.
Faculty of Mathematics and Computer Sci-
ence and Faculty of Mechanical Engineering,
TU/e. 2002-02

T. Kuip ers. Techniques for Understanding
Legacy Software Systems. Faculty of Nat-
ural Sciences, Mathematics and Computer
Science, UvA. 2002-03

S.P. Luttik . Choice Quantic ation in Pro-
cess Algebra. Faculty of Natural Sciences,
Mathematics, and Computer Science, UVA.
2002-04

R.J. Willemen School Timetable Con-
struction: Algorithms and Complexity . Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-05

M.LA. Sto elinga . Alea Jacta Est: Veri-
cation of Probabilistic, Real-time and Para-
metric Systems. Faculty of Science, Mathe-
matics and Computer Science, KUN. 2002-
06

N. van Vugt. Models of Molecular Com-
puting . Faculty of Mathematics and Natural
Sciences,UL. 2002-07

A. Fehnk er. Citius, Vilius, Melius: Guid-
ing and Cost-Optimality in Model Check-
ing of Timed and Hybrid Systems. Faculty
of Science, Mathematics and Computer Sci-
ence, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin
Packing. Faculty of Mathematics and Natu-
ral Sciences,UL. 2002-09

D. Tauritz . Adaptive Information Fil-
tering: Concepts and Algorithms. Faculty
of Mathematics and Natural Sciences, UL.
2002-10

M.B. van der Zwaag. Models and Logics
for Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UVA. 2002-11

J.I. den Hartog . Probabilistic Extensions
of Semantical Models. Faculty of Sciences,
Division of Mathematics and Computer Sci-
ence, VUA. 2002-12

L. Mo onen. Exploring Software Systems.
Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2002-13

J.I. van Hemert . Applying Evolutionary
Computation to Constraint Satisfaction and
Data Mining . Faculty of Mathematics and
Natural Sciences,UL. 2002-14

S. Ando va. Probabilistic Process Algebra.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2002-15

Y.S. Usenk o. Linearization in CRL. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-16

J.J.D. Aerts . Random Redundant Storage
for Video on Demand. Faculty of Mathe-
matics and Computer Science, TU/e. 2003-
01

M. de Jonge . To Reuse or To Be Reusd:
Techniques for component composition and
construction . Faculty of Natural Sciences,
Mathematics, and Computer Science, UVA.
2003-02

J.M.W. Visser . Generic Traversal over
Typed Source Code Representations. Faculty
of Natural Sciences,Mathematics, and Com-
puter Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences,UL. 2003-04

T.A.C. Wilemse Semantics and Veri-
c ation in Process Algebras with Data and
Timing . Faculty of Mathematics and Com-
puter Science, TU/e. 2003-05

S.V. Nedea . Analysis and Simulations of
Catalytic Reactions. Faculty of Mathematics
and Computer Science, TU/e. 2003-06

M.E.M. Lijding . Real-time Scheduling of
Tertiary Storage. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2003-07

H.P . Benz . Casual Multime dia ProcessAn-
notation { CoMPAs. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2003-08

D. Distefano . On Modelchecking the Dy-
namics of Object-based Software: a Founda-
tional Approach. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2003-09

M.H. ter Beek . Team Automata { A For-
mal Approach to the Modeling of Collabora-
tion Between System Components. Faculty
of Mathematics and Natural Sciences, UL.
2003-10

D.J.P . Leilen . The Abroad { A Func-
tional Approach to Software Components.
Faculty of Mathematics and Computer Sci-
ence, UU. 2003-11

W.P .AJ. Mic hiels . Performanc e Ratios
for the Dier encing Method. Faculty of
Mathematics and Computer Science, TU/e.
2004-01

G.l. Jojgov. Incomplete Proofs and Terms
and Their Use in Inter active Theorem Prov-
ing. Faculty of Mathematics and Computer
Science, TU/e. 2004-02

P. Frisco . Theory of Molecular Computing
{ Splicing and Membrane systems. Faculty
of Mathematics and Natural Sciences, UL.
2004-03

S. Maneth Models of Tree Translation .
Faculty of Mathematics and Natural Sci-
ences,UL. 2004-04

Y. Qian . Data Synchronization and Brows-
ing for Home Environments. Faculty of
Mathematics and Computer Science and

Faculty of Industrial Design, TU/e. 2004-05

F. Bartels . On Generalised Coinduc-
tion and Probabilistic Speci c ation Formats.
Faculty of Sciences,Division of Mathematics
and Computer Science, VUA. 2004-06

L. Cruz-Filip e. Constructive Real Anal-
ysis: a Type-Theoretical Formalization and
Applic ations. Faculty of Science, Mathemat-
ics and Computer Science, KUN. 2004-07

E.H. Gerding Autonomous Agents in
Bargaining Games: An Evolutionary Inves-
tigation of Fundamentals, Strategies, and
Business Applic ations. Faculty of Tecnol-
ogy Management, TU/e. 2004-08

N. Goga . Control and Selection Techniques
for the Automated Testing of Reactive Sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-09

M. Niqui . Formalising Exact Arithmetic:
Representations, Algorithms and Proofs.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2004-10

A. Loh. Exploring Generic Haskell. Fac-
ulty of Mathematics and Computer Science,
UU. 2004-11

I.C.M. Flinsen berg. Route Planning Al-
gorithms for Car Navigation. Faculty of
Mathematics and Computer Science, TU/e.
2004-12

R.J. Bril . Real-time Scheduling for Media
Processing Using Conditional ly Guaranteed
Budgets. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-13

J. Pang. Formal Veric ation of Distribute d
Systems. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA.
2004-14

