equational programming
2017 10 30
lecture 1
overview

- practical issues
- introductory remarks
- lambda terms
- material
overview

- practical issues
- introductory remarks
- lambda terms
- material
who

• **lectures:**
 Femke van Raamsdonk
f.van.raamsdonk at vu.nl
 T446

• **exercise classes:**
 Judith Schermer

• **Haskell lab:**
 Hans-Dieter Hiep
classes

- lectures:
 week 44–50
 Monday 11.00-12.45 in S631
 Thursday 13.30-15.15 in M607

- exercise classes:
 week 44–50
 Tuesday 9.00-10.45 in S631
 Friday 11.00-12.45 in HG different rooms

- computer lab:
 week 44–50 (or a bit shorter)
 Tuesday 13.30-17.15 in P337
exam

• 3 or 4 sets of Haskell exercises (obligatory)

• 4 sets of theory exercises (not obligatory)

• written exam
 Tuesday December 19, 2017, 12.00–14.45 (check!)
 and one resit

• minimum
 5.5 for partial results (Haskell, written exam)

• validity
 partial results are valid only this year (2017-2018)

• final grade
 25% Haskell exercises, 75% written exam,
 at most 0.5 bonus on exam grade for theory exercises
material

- courses notes, slides, exercises
- webpage of the course
- via web, for example the Haskell page
- extra
 some additional material via slides and links
 (unless otherwise stated not for exam)
overview

- practical issues
- introductory remarks
- lambda terms
- material
overview

- practical issues
- introductory remarks
- lambda terms
- material
equational programming

foundations of functional programming
a functional program is an expression, and is executed by evaluating the expression (use definitions from left to right)

focus on what and not so much on how

the functions are pure (or, mathematical)

an input always gives the same output
example functional programming style

in Haskell: applying functions to arguments

sum [1 .. 100]

in Java: changing stored values

total = 0;
for (i = 1; i <= 100; ++i)
 total = total + i;
taste of Haskell

definition of sum:

\[
\text{sum} \; [] = 0 \\
\text{sum} \; (n:ns) = n + \text{sum} \; ns
\]

type of sum:

\[
\text{Num} \; a \Rightarrow [a] \rightarrow a
\]

that is:
for any type \(a \) of numbers, \text{sum} maps a list of elements of \(a \) to \(a \)

use of sum: application of the function \text{sum} to the argument \([1,2,3]\)

\text{sum} \; [1,2,3]
evaluation by equational reasoning

definition:\[\text{double } x = x + x \]

evaluation:

\[
\text{double } 2 \\
= \{ \text{ unfold definition double } \} \\
2 + 2 \\
= \{ \text{ applying } + \} \\
4
\]

\[
\text{double } (\text{double } 2) \\
= \{ \text{ unfold definition inner double } \} \\
\text{double } (2 + 2) \\
= \{ \text{ unfold definition double } \} \\
(2 + 2) + (2 + 2) \\
= \{ \text{ apply first } + \} \\
4 + (2+2) \\
= \{ \text{ apply last } + \} \\
4 + 4 \\
= \{ \text{ apply } + \} \\
8
\]
functional programming: properties

- high level of abstraction
- concise programs
- more confidence in correctness
 (read, check, prove correct)
- higher-order functions
- equational reasoning
Haskell: properties

lazy evaluation strategy

powerful type system
some history

Lisp John McCarthy (1927–2011), Turing Award 1971

FP John Backus (1924–2007), Turing Award 1977

Miranda David Turner (born 1946)
Haskell

a group containing ao Philip Wadler and Simon Peyton Jones
functional programming languages

<table>
<thead>
<tr>
<th>typed</th>
<th>untyped</th>
</tr>
</thead>
<tbody>
<tr>
<td>strict</td>
<td>ML</td>
</tr>
<tr>
<td>lazy</td>
<td>Haskell</td>
</tr>
</tbody>
</table>

See also F# (Microsoft), Erlang (Ericsson), Scala (Java plus ML)
Based on the lambda calculus, Lisp rapidly became ...
(from: wikipedia page John McCarthy)

Haskell is based on the lambda calculus, hence the lambda we use as a logo.
(from: the Haskell website)

Historically, ML stands for metalanguage: it was conceived to develop proof tactics in the LCF theorem prover (whose language, pplambda, a combination of the first-order predicate calculus and the simply typed polymorphic lambda calculus, had ML as its metalanguage).
(from: wikipedia page of ML)
Corrado Böhm (1923–2017)

PhD thesis (1954, ETH Zürich): meta-circular compiler

lambda calculus

combinatory logic

semantics of functional programming languages
course equational programming (EP)

lambda calculus

algebraic specifications

exercises functional programming: Haskell
overview

- practical issues
- introductory remarks
- lambda terms
- material
overview

- practical issues
- introductory remarks
- lambda terms
- material
lambda calculus

inventor: Alonzo Church (1936)

foundations of mathematics

foundations of concept ‘computability’

restriction to functions

basis of functional programming
notation for (anonymous) functions

mathematical notation:

\[f : \text{nat} \to \text{nat} \]
\[f(x) = \text{square}(x) \]

or also:

\[f : \text{nat} \to \text{nat} \]
\[f : x \mapsto \text{square}(x) \]

lambda notation:

\[\lambda x. \text{square} \, x \]

we start with the untyped \(\lambda \)-calculus
lambda terms: intuition

abstraction:

\(\lambda x. M\) is the function mapping \(x\) to \(M\)

\(\lambda x. \text{square} \ x\) is the function mapping \(x\) to \(\text{square} \ x\)

application:

\(F \ M\) is the application

(not the result of applying)

of the function \(F\) to its argument \(M\)
lambda terms: inductive definition

- variable
 \(x \)

- constant (sometimes used)
 \(c \)

- abstraction
 \((\lambda x. M) \)

- application
 \((F M) \)
famous terms

\[I = \lambda x. x \]

\[K = \lambda x. \lambda y. x \]

\[S = \lambda x. \lambda y. \lambda z. x \, z \,(y \, z) \]

\[\Omega = (\lambda x. x \, x) \, (\lambda x. x \, x) \]
terms as trees: example
terms as trees: general
subterm

part of a term that corresponds to a subtree of the syntax tree
application is associative to the left
\((M \, N \, P)\) instead of \(((M \, N) \, P)\)

outermost parentheses are omitted
\(M \, N \, P\) instead of \((M \, N \, P)\)

lambda extends to the right as far as possible
\(\lambda x. \, M \, N\) instead of \(\lambda x. (M \, N)\)

sometimes we combine lambdas
\(\lambda x_1 \ldots x_n. \, M\) instead of \(\lambda x_1 \ldots \lambda x_n. \, M\)
more notation

$(\lambda x. \lambda y. M)$ instead of $(\lambda x. (\lambda y. M))$

$(M \lambda x. N)$ instead of $(M (\lambda x. N))$

$\lambda xy. M$ instead of $\lambda x. \lambda y. M$
inductive definition of terms

definitions recursively on the definition of terms

eexample: definition of the free variables of a term

proofs by induction on the definition of terms

eexample: every term has finitely many free variables
currying

reduce a function with several arguments to functions with single arguments

example:

\[f : x \mapsto x + x \text{ becomes } \lambda x. x + x \]

\[g : (x, y) \mapsto x + y \text{ becomes } \lambda x. \lambda y. x + y, \text{ not } \lambda(x, y). \text{plus } x \, y \]

\((\lambda x. \lambda y. x + y) \, 3\) is an example of partial application
towards computation

we will use terms to compute, as for example in

\[(\lambda x. f \ x) \ 5 \ \rightarrow_\beta \ (f \ x)[x := \ 5] = \ f \ 5\]

the definition of substitution requires more preparation
bound variables: definition

x is bound by the first λx above it in the term tree

eamples: the underlined x is bound in

$\lambda x. \underline{x}$

$\lambda x. \underline{x} \ x$

$\lambda x. \underline{x} \ x$

$(\lambda x. \underline{x}) \ x$

$\lambda x. \ y \underline{x}$
free variables: definition

a variable that is not bound is free

alternatively: define recursively the set $\text{FV}(M)$ of free variables of M:

$$
\begin{align*}
\text{FV}(x) &= \{x\} \\
\text{FV}(c) &= \emptyset \\
\text{FV}(\lambda x. M) &= \text{FV}(M) \setminus \{x\} \\
\text{FV}(F P) &= \text{FV}(F) \cup \text{FV}(P)
\end{align*}
$$

a term is closed if it has no free variables
substitution: intuition

\[M[x := N] \] means:

the result of replacing in \(M \) all free occurrences of \(x \) by \(N \)
substitution: recursive definition

substitution in a variable or a constant:

\[x[x := N] = N \]

\[a[x := N] = a \text{ with } a \neq x \text{ a variable or a constant} \]

substitution in an application:

\[(P \; Q)[x := N] = (P[x := N]) \; (Q[x := N]) \]

substitution in an abstraction:

\[(\lambda x. \; P)[x := N] = \lambda x. \; P \]

\[(\lambda y. \; P)[x := N] = \lambda y. \; (P[x := N]) \text{ if } x \neq y \text{ and } y \not\in \text{FV}(N) \]

\[(\lambda y. \; P)[x := N] = \lambda z. \; (P[y := z][x := N]) \text{ if } x \neq y \text{ and } z \not\in \text{FV}(N) \cup \text{FV}(P) \text{ and } y \in \text{FV}(N) \]

(we come back to this slide and the slides below)
substitution: examples

\[(\lambda x. x)[x := c] = \lambda x. x\]
\[(\lambda x. y)[y := c] = \lambda x. c\]
\[(\lambda x. y)[y := x] = \lambda z. x\]
alpha conversion

alpha conversion:
bound variables may be renamed

example:
\(\lambda x. x =_{\alpha} \lambda y. y \)

compare with:
\(f : x \mapsto x^2 \) is \(f : y \mapsto y^2 \)
\(\forall x. P(x) \) is \(\forall y. P(y) \)

identification of alpha-equivalent terms
we work with equivalence classes modulo \(\alpha \)
now we know the statics of the lambda-calculus

we consider λ-terms modulo α-conversion

application and abstraction

bound and free variables

currying

substitution

we continue with the dynamics: β-reduction
beta reduction: examples

$$(\lambda x. x) y \rightarrow_{\beta} y$$

$$(\lambda x. x x) y \rightarrow_{\beta} y y$$

$$(\lambda x. x z) y \rightarrow_{\beta} y z$$

$$(\lambda x. z) y \rightarrow_{\beta} z$$
beta reduction rule: definition

\[(\lambda x. M) N \rightarrow_\beta M[x := N]\]

here we have the following:

- \(x\) is a variable
- \(M\) and \(N\) are terms
- \([x := N]\) is the substitution of \(N\) for \(x\)
overview

- practical issues
- introductory remarks
- lambda terms
- material
• course notes chapter *Terms and Reduction*

• Haskell pages

• additional reading:
 Why functional programming matters
 by John Hughes

• additional reading:
 History of Lambda-calculus and Combinatory Logic
 by Felice Cardone en J. Roger Hindley