
Building a Reliable Storage Stack

Ph.D. Thesis

David Cornelis van Moolenbroek

Vrije Universiteit Amsterdam, 2016

This work was supported by the European Research Council Advanced Grant 227874.

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 355.

Copyright © 2016 by David Cornelis van Moolenbroek.

ISBN 978-94-028-0240-5

Cover design by Eva Dienske.
Printed by Ipskamp Printing.

VRIJE UNIVERSITEIT

Building a Reliable Storage Stack

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. V. Subramaniam,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen

op maandag 12 september 2016 om 11.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

David Cornelis van Moolenbroek

geboren te Amsterdam

promotor: prof.dr. A.S. Tanenbaum

To my parents

Acknowledgments

This book marks the end of both a professional and a personal journey–one that has
been long but rewarding. There are several people whom I would like to thank for
accompanying and helping me along the way.

First and foremost, I would like to thank my promotor, Andy Tanenbaum. While
I was finishing up my master project under his supervision, he casually asked me
“Would you like to be my Ph.D student?” during one of our meetings. I did not have
to think long about the answer. Right from the start, he warned me that I would now
have to conduct original research myself; only much later did I understand the full
weight of this statement. Throughout the years, Andy’s supervision has been fairly
hands-off, but he has also been truly supportive especially at key moments. As a
result, I learned a lot, but I was also able to see it through to the end. I am incredibly
proud to have worked as a Ph.D student under Andy’s supervision, and incredibly
grateful that he guided me through the process.

Among Andy’s contributions, perhaps the most important one was to suggest
that I collaborate with Raja Appuswamy. As a result, I had the opportunity to work
with Raja on his great new idea at the time, which turned into Loris and ended up
being the ground work for this thesis as well. During our collaboration, I learned so
many things from Raja–ranging from the more practical side of doing good research
to various aspects of Indian culture. Working with him has always been pleasant
and easy, and outside work I have been lucky enough to share several memorable
adventures with him. Now that it is my turn to face the guillotine, I could not wish
for a better paranymph!

I would also like to thank Dirk Vogt, whom I am honored to have as my other
paranymph. With his inspiring enthusiasm, broad interests, challenging ideas, and
a great gift for generating entropy, he has been a key figure in the later years of my
Ph.D and is a major part of the reason that I miss going to the VU on a regular basis.

vii

viii ACKNOWLEDGMENTS

During my years as a Ph.D student, I have had the fortune to share office space
and time with all of the researchers in Andy’s MINIX 3 group: Jorrit Herder, Mischa
Geldermans, Raja Appuswamy, Cristiano Giuffrida, Tomáš Hrubý, Lorenzo Caval-
laro, Dirk Vogt, and Erik van der Kouwe. From detailed technical discussions to
pizza-and-movie nights, it has always been fun. The programmers deserve mention
in the same breath: Ben Gras, Philip Homburg, Kees Bot, Arun Thomas, Thomas
Veerman, Gianluca Guida, Kees Jongenburger, and Lionel Sambuc. They tolerated
that I regularly put on a programmers’ hat as well, making my time as Ph.D student
much more enjoyable even if longer!

I would like to thank several others. The various students that contributed to
MINIX 3, and the Loris project in particular, including Arne Welzel, Richard van
Heuven van Staereling, and Sharan Santhanam.

The Dutch lesson group: Ana-Maria Oprescu, Corina Stratan, Albana Gaba,
Philip Homburg, Dirk Vogt, Daniela Remenska, and later various others. I will
always cherish the amazing, cultural, crazy evenings and nights I shared with these
fantastic people.

The larger VU computer systems group for many fun days and evenings in and
around the coffee room; Kaveh Razavi and Caroline Waij in particular.

Arjen van Deutekom, for always being a good listener and a welcome source of
interesting discussions, good advice, and comic relief.

The moo team, for being somewhat of a home to me, even if virtual. Especially
Oliver [Redacted] and Loren Segal, for enduring all my stories about work frustra-
tion, helping me out with a few important issues, and providing many distractions.

My talented sister, Eva Dienske, who always pushes me to get the most out of
myself, and whose work I am proud to have on the cover of this thesis. My parents,
Jaap van Moolenbroek and Joke Putters, for their undying support, encouragement,
understanding, and love.

Finally, I would like to thank the members of my reading committee: Herbert
Bos, Cristiano Giuffrida, Jorrit Herder, Spyros Voulgaris, and Carsten Weinhold,
who have taken the time to read my thesis and provide valuable feedback.

David van Moolenbroek
Hilversum, The Netherlands, June 2016

Contents

Acknowledgments vii

Contents ix

1 General Introduction 1
1.1 Problems . 3
1.2 Research approach and questions 5
1.3 Research overview . 7

1.3.1 Loris: a new storage stack arrangement 7
1.3.2 The platform . 9
1.3.3 Improving the reliability of Loris 10

1.4 Contributions and thesis outline . 12

2 Loris - A Dependable, Modular, File-Based Storage Stack 15
2.1 Introduction . 16
2.2 Problems with the Traditional Storage Stack 17

2.2.1 Reliability . 17
2.2.2 Flexibility . 19
2.2.3 Heterogeneity Issues . 20

2.3 Solutions Proposed in the Literature 20
2.4 The Design of Loris . 21

2.4.1 The Physical Layer . 22
2.4.2 The Logical Layer . 25
2.4.3 The Cache Layer . 26
2.4.4 The Naming Layer . 27

2.5 The Advantages of Loris . 28

ix

x CONTENTS

2.5.1 Reliability . 28
2.5.2 Flexibility . 29
2.5.3 Heterogeneity . 30

2.6 Evaluation . 30
2.6.1 Test Setup . 31
2.6.2 Evaluating Reliability and Availability 31
2.6.3 Performance Evaluation 35

2.7 Conclusion . 37

3 Integrated System and Process Crash Recovery in the Loris Storage
Stack 39
3.1 Introduction . 40
3.2 Background: the Loris storage stack 41

3.2.1 Layers of the stack . 42
3.3 The case for integrated recovery 43

3.3.1 Recovering from system crashes 43
3.3.2 Recovering from process crashes 45
3.3.3 Integrated recovery . 45

3.4 Checkpointing . 46
3.4.1 The TwinFS file store . 46
3.4.2 General consistency scheme requirements 48
3.4.3 Taking and reloading checkpoints 49

3.5 Data resynchronization . 49
3.5.1 Limiting the areas to scan 50
3.5.2 Verifying data . 50
3.5.3 The TwinFS resynchronization log 51
3.5.4 Resynchronization procedure 51

3.6 In-memory roll-forward logging 52
3.6.1 Interaction with checkpointing 52
3.6.2 Logging and replay . 53
3.6.3 Assumptions and guarantees 55

3.7 Evaluation . 55
3.7.1 Performance evaluation . 55
3.7.2 Reliability evaluation . 57

3.8 Related work . 58
3.8.1 System crash recovery . 58
3.8.2 Process crash recovery . 59

3.9 Conclusion and future work . 60

4 Battling Bad Bits with Checksums in the Loris Page Cache 61
4.1 Introduction . 62
4.2 Background: the Loris stack . 63
4.3 The case for checksumming in the cache 64

CONTENTS xi

4.3.1 Memory errors . 64
4.3.2 Software bugs . 66

4.4 Dealing with memory errors . 67
4.4.1 Suitability of on-disk checksums 67
4.4.2 Propagation of checksums 68
4.4.3 Verification strategies . 68
4.4.4 Other memory . 69

4.5 Dealing with software bugs . 70
4.5.1 Assumptions . 71
4.5.2 The Dirty State Store . 71
4.5.3 Checksumming dirty pages 72
4.5.4 Recovery procedure . 73
4.5.5 Consequences for memory errors 73

4.6 Implementation . 74
4.7 Evaluation . 74

4.7.1 Microbenchmarks . 74
4.7.2 Macrobenchmarks . 75
4.7.3 Fault injection . 79

4.8 Related work . 80
4.8.1 Memory errors . 80
4.8.2 Software bugs . 80

4.9 Conclusion . 81

5 Transaction-based Process Crash Recovery of File System Namespace
Modules 83
5.1 Introduction . 84
5.2 Motivation . 85

5.2.1 Namespace modules as an emerging concept 85
5.2.2 The reliability problem . 88

5.3 Design . 89
5.3.1 Assumptions . 89
5.3.2 Transactions and recovery 90
5.3.3 Support in the object storage layer 91
5.3.4 Support in the VFS layer 92
5.3.5 Requirements for namespace modules 92

5.4 Implementation . 93
5.4.1 Background: the Loris storage stack 93
5.4.2 Infrastructure changes . 95
5.4.3 Case study: the POSIX namespace module 95
5.4.4 Case study: the HDF5 namespace module 97

5.5 Evaluation . 98
5.5.1 Performance . 98
5.5.2 Reliability . 101

xii CONTENTS

5.6 Related work . 102
5.7 Conclusion and future work . 103

6 Towards a Flexible, Lightweight Virtualization Alternative 105
6.1 Introduction . 106
6.2 Virtualization as a continuum . 106

6.2.1 Hardware-level virtualization 107
6.2.2 Operating system-level virtualization 107
6.2.3 The case for new alternatives 107

6.3 A new virtualization design . 108
6.3.1 Design goals . 108
6.3.2 Abstractions . 109
6.3.3 Properties . 111

6.4 Our prototype . 113
6.5 Evaluation . 115
6.6 Related Work . 116
6.7 Conclusion . 116

7 Putting the Pieces Together: The Construction of a Reliable Virtualizing
Object-Based Storage Stack 117
7.1 Introduction . 118
7.2 Background . 119

7.2.1 The Loris storage stack . 119
7.2.2 Improved reliability in the physical and logical layers 121
7.2.3 Improved reliability in the cache layer 122
7.2.4 Improved reliability in the naming layer 123
7.2.5 A new approach to virtualization 123

7.3 vLoris: support for virtualization 124
7.3.1 Object virtualization and copy-on-write 124
7.3.2 Transactions . 125
7.3.3 Attribute localization . 125
7.3.4 Object-level deduplication 126

7.4 rvLoris: integration of reliability support 127
7.4.1 Lower-layer restarts versus virtualization 127
7.4.2 Cache restarts versus transactions 128
7.4.3 Cache restarts versus object virtualization 129
7.4.4 Cache restarts versus object deduplication 129
7.4.5 Discussion . 130

7.5 Evaluation . 131
7.5.1 vLoris performance . 131
7.5.2 rvLoris performance . 134
7.5.3 rvLoris reliability . 135

7.6 Related Work . 135

CONTENTS xiii

7.7 Conclusion . 137

8 Discussion 139
8.1 On storage device failures . 139
8.2 Checkpoints and the freeze window 141
8.3 The fsync problem . 142
8.4 Improving cache-layer recovery 143
8.5 Implementation complexity . 144

9 General Conclusions 149
9.1 Answers to research questions . 150

9.1.1 Building blocks for reliability 151
9.1.2 Exploiting high-level knowledge 152
9.1.3 The ideal level of componentization 154
9.1.4 Robustness against software bugs 156

9.2 Future work . 161
9.2.1 Software bugs . 161
9.2.2 Virtualization . 162
9.2.3 Performance . 164
9.2.4 Emerging technologies . 165

References 167

Summary 185

Samenvatting 189

1
General Introduction

In an ideal world, computer systems would always operate correctly. Practice is
different however: it is well known that both the hardware and software components
of computer systems are subject to several forms of failure. There are many causes
for failures: a poor hardware manufacturing process, physical wear, loss of power,
cosmic radiation, programmers introducing software bugs, and so on. The resulting
failures may subvert the operation of a computer system, thereby not only making
its functionality unavailable temporarily, but possibly also causing data loss, which
often results in more lasting damage. A plethora of real-world cases have shown
that these dangers are real and can lead to significant monetary losses–or worse
[68, 79, 81, 123].

As a result, there is an active field of research on computer systems dependabil-
ity, and specifically reliability, aiming to ensure that computer systems continue
to operate correctly in the presence of faults (causes of failures) [14]. Since faults
can often not be prevented, a common goal is fault tolerance: a system’s ability to
avoid that faults turn into full-scale system failures. Fault tolerance consists of de-
tection of manifested faults (errors) and subsequent recovery of the system. Overall,
these reliability improvements provide the benefit of avoiding costly disasters in the
infrequent but important cases that errors occur.

In all but the most trivial cases, fault tolerance comes at a cost as well. For er-
ror detection, this cost is paid in the form of more expensive verification of correct
operation; for recovery, it is typically paid in some form of redundancy. In concrete
terms, the cost can take the form of more hardware, lower system performance,
higher storage and memory usage, increased software complexity, and so on. The
cost has to be paid even when the extra reliability goes unused. In general, stronger
reliability guarantees tend to come at a yet higher cost, thus yielding a whole spec-
trum of possible reliability improvements.

1

2 CHAPTER 1. GENERAL INTRODUCTION

In this thesis, we aim to advance the state of the art of computer systems fault
tolerance by making reliability improvements in one particular area that we believe
is in particular need of such improvements: the operating system storage stack. We
will now explain how we arrived at this area.

First of all, we must consider the cost aspect of our improvements. After all, even
though the benefits of improved reliability are relevant to the owners of all computer
systems, low or modest cost is essential for the possible real-world adoption of any
solution. As a result, we only consider the software side of computer systems.
While improvements in hardware are often able to provide good guarantees, changes
on the hardware side also tend to be expensive. In addition, hardware improvements
typically do not become available for computer systems that are already in operation,
thus eliminating a large potential target group of systems that would benefit from
improved reliability. In contrast, software-based improvements may not always be
able to provide the same guarantees of hardware solutions, but they also tend to be
less expensive, and can be applied on existing computer systems as well.

Within the software stack, we assert that the primary focus of reliability research
should be the operating system layer, for two reasons. First, the operating system
is the main single point of failure in the software stack. Logically positioned be-
tween the hardware and the running applications, the operating system controls the
hardware resources, and exposes these as high-level abstractions to the applications.
The typical operating system creates a separate failure domain for each running ap-
plication, allowing multiple applications to run in isolation from each other. Thus, a
reliability problem in a particular application affects only that application. However,
a reliability problem in the operating system may end up affecting all the running
applications as well.

Second, only the operating system can ensure that reliability problems, both in
the underlying hardware and within itself, are not fatal to the operation of the com-
puter system, and to running applications in particular. Operating systems have ful-
filled this role for decades–for example, reportedly, about half of the code of the
Multics operating system was related to error recovery [155]. However, over time,
our understanding of the ways in which computer systems can fail has improved,
and this in turn has revealed that today’s operating systems do not cope well with
several real-world reliability problems. The result is a “gap” between the level of
reliability offered by contemporary operating systems, and the reliability threats that
these operating systems are actually up against.

Within the operating system, we argue that the component most in need of clos-
ing this gap is the storage stack. The storage stack consists of the software layers
collectively responsible for all aspects of data storage in the system, ranging from
managing low-level storage hardware to exposing high-level storage abstractions
such as files and directories to applications. The storage stack stands to be affected
by several different external reliability problems: storage device failures, whole-
system failures, and memory corruption. As we will argue, these problems are cur-
rently not handled satisfactorily. In addition, modern storage stacks often consist of

1.1. PROBLEMS 3

hundreds of thousands of lines of code optimized primarily for high performance,
which makes it likely that the storage stack contains many software bugs, each of
which has the potential to bring down the entire system or cause data loss. At the
same time, from an application perspective, the storage stack is generally expected
to perform operations without reporting exceptional failures–in contrast to the net-
work stack, for example. Thus, if the storage stack itself does not adequately shield
applications from reliability problems, there is little hope that applications will be
able to recover from these problems themselves.

Therefore, in this dissertation, we aim to improve the reliability of the operating
system storage stack. Our goal is to provide better protection from reliability threats
for both applications and data, while also keeping in mind the cost aspect; therefore,
we specifically explore software solutions that have low or modest overhead. In the
remainder of this chapter, we first elaborate on the exact problems we aim to address
(Sec. 1.1), then describe our research approach and the research questions we aim to
answer (Sec. 1.2), give a broad overview of our research (Sec. 1.3), and finally give
an outline of the rest of this thesis, including per-chapter contributions (Sec. 1.4).

1.1 Problems

We now describe the four storage stack reliability problems that we consider in this
dissertation. The first two problems involve particular failures that by themselves are
not fatal to the long-term operation of the computer system, but may result in subse-
quent faults being introduced into the system. The last two problems concern faults
themselves. In all cases, if not taken care of, these faults may end up causing more
serious failures down the line, including corrupted data being passed to applications
and permanent data loss.

The first problem is storage device failures: failures that occur within the stor-
age device hardware–typically hard disks. Traditionally, the failure mode of storage
devices has been modeled as fail-stop: either the device functions correctly, or it
reports failure to the operating system. However, research has shown that hard disks
can fail in various other, partial ways [16], resulting in silent data corruption: cor-
ruption of data without any indication that corruption took place. Specifically, mal-
functioning disk hardware or firmware may cause lost, misdirected, and torn writes,
where write operations are (silently) not performed, performed at the wrong device
location, or completed partially, respectively. In addition, storage devices may be
subject to bit rot, where the contents of a data block become corrupted due to decay
of the storage medium. As a result, the storage device ends up containing faulty data.
Analysis of disk errors in large installations shows that such failures indeed occur
in practice [16, 80]. Furthermore, the use of a software implementation of RAID
(Redundant Array of Inexpensive Disks [113]) within the traditional storage stack
may exacerbate this problem: for legacy reasons, the RAID layer operates transpar-
ently below the file system layer, and this arrangement creates an information gap

4 CHAPTER 1. GENERAL INTRODUCTION

between the two layers [33]. This information gap may lead to undetected propaga-
tion of corruption, subverting the guarantees supposedly offered by the RAID layer
and resulting in possible destruction of data [88]. Thus, it is key that silent storage
device failures be detected before the resulting faults can propagate and cause more
damage. Once data corruption is detected, recovery requires a redundant, good copy
of the data. However, ideally a storage system continues the best it can even in the
light of partial, permanent data loss.

The next problem is whole-system failures, or system crashes: unexpected shut-
downs of the entire computer system. One cause of such an event is a power failure,
although it may also be caused by a hardware failure or a failure in a critical part
of the operating system. Whole-system failures can often not be prevented, but
are also transient. Thus, from a reliability perspective, the focus should be on the
consequences. In particular, a system crash may lead to the situation that some but
not all scheduled data changes have yet been written to stable storage at the time
of the crash, which may result in an inconsistent state on the storage devices. Thus,
whole-system failures may lead to corruptions in stored data, and these inconsistency
faults may lead to a variety of failures upon a subsequent system reboot, including
the worst case: loss of data, including data that was not being updated at the time of
the original failure. Therefore, the recovery procedure must eliminate the possibility
that any such faults remain. The problem of whole-system failures is well known,
and several different solutions have been proposed and implemented in file systems
in order to allow recovery to a consistent state, including journaling [53], logging
[112], copy-on-write [66], and soft updates [43]. However, as we will show, a proper
solution for storage device failures in fact creates a new challenge for whole-system
failure recovery.

Another problem is memory corruption; in particular, transient bit changes (soft
errors) in the computer system’s main dynamic random access memory (DRAM or
RAM), as a result of external factors such as cosmic rays. Previous research has
yielded varying estimations for the frequency of soft error occurrences in DRAM
[95, 124, 145]. While error-correcting code (ECC) RAM is able to recover from the
majority of such cases, many computer systems today are not equipped with ECC
RAM because of the added cost. Memory corruption is relevant for the storage stack
in particular: on typical modern operating systems, the largest fraction of RAM not
used by applications is used by the operating system for the purpose of caching
storage device contents. Thus, a random bit change in memory is relatively likely
to affect the storage stack’s cache. In addition, storage cache memory may end up
being read and modified by any application in the system, so memory corruption in
the storage cache may arbitrarily affect the entire computer system. Only the storage
stack is in the the position to mitigate this problem, by detecting corruption before it
reaches the application, and recovering a valid copy from storage when possible.

The final problem we consider in this work is the problem of faults in software,
better known as software bugs. Research has shown that the number of software
bugs is correlated with the number of lines of software source code [111], and that

1.2. RESEARCH APPROACH AND QUESTIONS 5

even well-written software can be expected to have a nonnegligible number of bugs
[57]. The storage stack is typically a large and complex part of the operating system,
and thus, its implementation is likely to have many bugs. These bugs have the po-
tential to subvert the correct operation of the storage stack. Since software bugs can
change the software’s behavior in arbitrary ways, it is possible to detect and recover
from the results of certain classes of software bugs only. For example, detection is
impossible if a software bug causes a semantic failure: behavior that is unintended
but seemingly correct. Recovery is impossible if a software bug causes a permanent
failure, which blocks overall progress by triggering repeatedly, or if the software
bug causes damage beyond the scope of the recovery system. However, at the very
least, the storage stack should be able to continue correct operation in the presence
of software bugs that lead to detectable, transient, and sufficiently bounded forms of
misbehavior.

1.2 Research approach and questions

Earlier, we stated that there is a spectrum of possible reliability improvements de-
pending on how much reliability gain is desired versus how much cost one is willing
to incur. In this dissertation, we are therefore required to make a number of choices.
In this section, we first describe the choices that we consider as a given in the rest of
our work, and then state the resulting research questions that we aim to answer.

First, as mentioned earlier, we focus on the software layer only. As such, we
do not impose substantial restrictions on the underlying hardware, thus allowing us
to employ our resulting solutions even on existing and low-cost hardware–that is,
hardware that has not been especially engineered for reliability. Computer systems
with such hardware stand to gain the most from reliability improvements in software.
We will however also show that more recent CPU extensions can optionally be used
to further reduce performance overheads.

Second, throughout our work, we explore the use of run-time modularity and iso-
lation of the various software components in the storage stack. The use of isolated
modules allows us to consider recovery from software failures and memory corrup-
tion on a per-component basis. Moreover, it allows the system to recover from a
larger set of forms of misbehavior than possible on systems without such a strict
separation between components. Thus, part of our research consists of exploring
a meaningful definition and arrangement of components and boundaries within the
storage stack. It is our point of view that both this exploration itself and the better
guarantees justify the extra performance cost that must be paid for such fine-grained
modularity and isolation. At the same time, we do not exclude the possibility that re-
duced versions of our solutions could also be applied in environments without such
strict forms of separation.

With these two points as a given, our goal is to explore the end of the spec-
trum that optimizes for cost. In particular, we aim to maintain high performance,

6 CHAPTER 1. GENERAL INTRODUCTION

acceptable resource usage, and low complexity, at the cost of legacy support, gener-
ality, and maximum reliability. In particular, we follow a number of main principles
throughout our work.

Legacy: We explicitly refrain from limiting ourselves to solutions that integrate
well with existing software systems. While we concede that legacy support gen-
erally allows for easier real-world adoption of any solutions, we believe that more
significant benefits can be obtained by more structurally rethinking the system. As
indicated previously, part of our work addresses problems that were in fact intro-
duced as a direct result of the desire for legacy support.

Language: In order to maximize performance, we consider a storage stack that is
written in the (unsafe) C language. We opt not to use safer but slower programming
languages and paradigms. While these could decrease the possibility of low-level
software bugs, operating system storage stacks are typically written in C for fast
low-level access to data structures. We note that safer programming languages do
not eliminate many classes of software bugs, nor do they deal with other problems
such as soft memory errors any better than their unsafe counterparts.

Generality: We aim to exploit as much high-level knowledge as we can about
the storage stack that is the target of our work. Thus, we intentionally sacrifice
generality of our solutions. This allows us to optimize for both high performance
and low complexity. For example, we can avoid handling cases that we know will
never occur. As a result, a substantial part of our research attempts to explore how
we can get the most out of our storage stack. While this approach runs the risk of
making our solutions specific to our storage stack, we challenge some of our own
assumptions in the last stage of our work.

Integration: In our research, we go beyond focusing on individual components
and problems alone, and look at the “big picture” of generally improving the relia-
bility of the entire storage stack. This allows us to study the effects of integrating
solutions for individual components and problems. One aspect of such integration is
that it allows us to reduce complexity further by exploring reuse of the same concepts
and code for multiple purposes.

Transparency: We choose not to involve applications as active participants in
our reliability solutions. Instead, whenever possible, the operating system should
recover from reliability problems without exposing what happens to the applications
in any way. The result is that applications need not be changed to benefit fully from
our improvements. Application-transparent recovery is generally possible only in
the case that the failure is transient–upon repeated or permanent failure, it may be
impossible for the operating system to deliver certain services.

With the stated points in mind, this thesis focuses on the following main research
questions:

• Feasibility and properties: It is possible to integrate a number of low-cost
reliability techniques in order to construct a low-cost, high-gain reliability so-
lution, and what properties does such a solution have?

1.3. RESEARCH OVERVIEW 7

• Building blocks for reliability: Is it beneficial to consider multiple types of
reliability threats at once, rather than focusing on a single reliability threat for
each solution; what common patterns and building blocks emerge if we do?

• Exploiting high-level knowledge: What benefits, if any, can be gained from ex-
ploiting high-level, specific knowledge about the storage stack for the purpose
of improving reliability?

• The ideal level of componentization: What level of componentization of a
storage stack into individual failure domains is appropriate from a reliability
viewpoint, how should the components be arranged in order to provide opti-
mal reliability guarantees, and how far can we push these guarantees while
retaining low overheads?

• Robustness against software bugs: What kind of general model can be defined
to characterize the solutions we develop to recover from software bugs in the
various components of the storage stack, and how do our various solutions
compare when examined using this model?

The last two research questions pertain primarily to the problem of software
bugs. We examine this problem carefully in our work, since the problem is rela-
tively unexplored in the context of storage stacks. In addition, we will later demon-
strate that the solutions for software bugs also offer benefits in dealing with memory
corruption.

Finally, we do not attempt to cover all cases of reliability problems exhaustively,
even where theoretically possible. There is a general “long tail” of failures and
especially combinations of failures that are increasingly unlikely to occur in practice.
Covering all of those would require a large amount of complex and hard-to-test
software additions.

1.3 Research overview

In this section, we present an overview of the research presented in this thesis. We
describe Loris, our new storage stack arrangement (Sec. 1.3.1). We then describe the
development platform and its advantages for reliability (Sec. 1.3.2). Finally, we sum-
marize our solutions for the four aforementioned reliability problems (Sec. 1.3.3).

1.3.1 Loris: a new storage stack arrangement

The conceptual structure of the traditional storage stack, as can be found in most
operating systems today, is shown in Fig. 1.1a. Its operation can be described in
the following (simplified) way. Applications make file system calls into the Virtual
File System (VFS) layer of the operating system, which forwards these calls to the

8 CHAPTER 1. GENERAL INTRODUCTION

File
system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software
RAID

(a) (c)

Softw. RAID

Naming

VFS

Cache

Layout

Disk driver

(b)

ApplicationApplication Application

Figure 1.1: The figure depicts (a) the arrangement of layers in the traditional stack, (b) the first
step in the rearrangement, and (c) the arrangement of the Loris storage stack. The layers above
the dotted line are file-aware, the layers below are not.

appropriate file system. The file system converts the calls to block operations: re-
quests to read or write certain disk blocks. Typically, these block operations are
given directly to the storage device driver, which forwards them to the actual stor-
age hardware. However, between the file system and driver layers, a software-RAID
layer may add redundancy across multiple devices to protect against fail-stop device
failures, without the file system being aware of this.

As we mentioned earlier, the traditional storage stack has fundamental reliability
issues as a result of the information gap between the file system and the RAID layer.
In addition, we will show that it has other shortcomings in the areas of heterogeneity
and flexibility. Moreover, it lacks the level of modularity required for our work.
Therefore, the first part of our work consists of rearranging the traditional storage
stack to form a new storage stack which does not suffer from any of these issues.

To this end, we first split the traditional file system into three layers: a naming
layer, which manages high-level abstractions such as directories and file attributes; a
cache layer, which performs caching of file data; and, a layout layer, which converts
file operations to block operations, and manages the layout on the underlying device.
The result of this intermediate step is shown in Fig. 1.1b. After this split-up, we
swap the traditional RAID layer with the layout layer, thereby making the former
file-aware. We refer to the new file-based RAID layer as the logical layer, and to
the layout layer as the physical layer, respectively. The physical layer consists of
one or more instances (called physical modules or file stores), each independently
responsible for one storage device. The four layers communicate with each other

1.3. RESEARCH OVERVIEW 9

in terms of files: storage containers that each have a unique identifier, byte-granular
data contents of arbitrary size, and a small set of associated attributes.

The final result is shown in Fig. 1.1c. We call this arrangement the Loris storage
stack. As we will demonstrate, Loris is a major step towards solving the aforemen-
tioned reliability, heterogeneity, flexibility, and modularity issues of the traditional
stack.

Viewed from another perspective, the lower three new layers (cache, logical,
physical) can together be seen as an implementation of object storage in the defi-
nition used in the distributed file systems world [38, 46]. This is shown in Fig. 1.2a
and 1.2b. As a result, we also refer to files within the storage stack as objects. On
top of the object store, the naming layer forms a namespace using the independent
objects. For this reason, we also refer to the naming layer as the namespace layer.

There is largely a one-to-one relationship between files as exposed to applica-
tions and objects within the storage stack. However, each of the layers may need to
use and store metadata: information necessary for the operation of the storage stack,
but not exposed (directly) to the application layer. While the physical modules can
store their metadata directly in designated areas on the storage device, the higher
layers use the object abstraction to store their metadata in metadata objects. For
example, the naming layer stores directories as objects.

1.3.2 The platform

As a proof of concept, we implement a prototype of Loris. This prototype serves
as the basis of all our subsequent work. The implementation is developed on the
MINIX 3 operating system [142]. MINIX 3 is based on the microkernel model, with
a small kernel running with full system privileges (in kernel mode), and the rest of
the operating system running in system processes: isolated processes running with
normal privileges (in user mode) and in their own address space, with the ability to
communicate with the rest of the system by means of interprocess communication
(IPC).

For the purpose of improving system reliability, in particular in the light of soft-
ware bugs, MINIX 3 has two important properties. First, the decomposition of
the operating system into a number of system processes aids in both containment
and (early) detection of the results of software bugs within each of these processes
[62, 64]. The privileges of the system processes can be restricted at the IPC bound-
aries to the minimum needed for correct operation (the principle of least authority
[122]), thereby restricting the damage that can be done as the result of anomalous
behavior. Any system process’s violation of its strict boundaries is sign of misbe-
havior and provides reason for its termination. The modularity allows MINIX 3 to
provide additional facilities in this respect, such as a heart-beat check whether a
system process is still responding. Throughout this work we refer to all forms of a
system process visibly deviating from its intended behavior, and subsequently being
terminated, as process crashes.

10 CHAPTER 1. GENERAL INTRODUCTION

Second, MINIX 3 provides a basic recovery infrastructure for crashed system
processes [63]. When a system process crashes, MINIX 3 has the ability to restart it
automatically. However, the restarted instance of the system process will be started
anew, and thus not retain any of its internal state from before the crash. In addition,
ongoing IPC will be canceled. Thus, the system process and its communication
partners are responsible for figuring out how to recover the previous state and resume
IPC, if necessary. This basic infrastructure is sufficient to recover from crashes in
several classes of device drivers [63], including storage (block) device drivers, since
these have very little state to restore, and restarting IPC is simple as all operations
are idempotent. Throughout this work, we use the term “stateless” for a system
process with no state that, once lost due to a crash, needs to be recovered in order
for the system process to resume correct operation. As we will show, most parts of
the storage stack are not stateless.

1.3.3 Improving the reliability of Loris

The rearrangement of the storage stack already solves one major problem regard-
ing storage device failures: by swapping the original file system layout layer and
the original software-RAID layer, we close the information gap between these two
layers. In particular, the swap ensures that no data will ever be propagated between
devices (by the logical layer) without being checked for corruption (by the physical
layer) first. However, the physical layer then needs a reliable way to detect data
corruption. Our solution is to mandate that each physical module in the Loris stack
use a form of checksumming called parental checksumming, which is sufficient to
detect all forms of silent data corruption described earlier [88]. One layer higher,
in the logical layer, redundancy across devices (and thus physical modules) is then
used for recovery. The operation on a per-object basis of the logical layer allows
both redundancy policies and handling of recovery failures to be established on a
more fine-grained basis than in the traditional stack.

The new storage stack arrangement does complicate recovery from whole-system
failures. In order for the storage stack to recover to an overall consistent state, an
internally consistent snapshot of all metadata has to be reloaded from storage. In
addition, any redundantly stored object data must be synchronized between the in-
volved storage devices. Therefore, proper whole-system failure recovery involves
the metadata of all layers and data stored across all the devices. Thus, while tra-
ditionally, consistency of metadata can be managed on a per-filesystem basis and
consistency of data can be managed independently by the RAID layer, Loris must
synchronize the metadata and replicated data across all layers and physical modules.
Our solution consists of a combination of a stack-wide synchronization procedure
to create new consistent checkpoints (or recovery points) for metadata, and a proto-
col between the logical and physical layers to both restore the last checkpoint and
resynchronize any data outside the checkpoint.

For memory corruption, we focus on the Loris cache layer, as its cached object

1.3. RESEARCH OVERVIEW 11

data pages typically make up by far the largest part of the memory used by the
storage stack and indeed the entire operating system. Our goal is to ensure that
any memory corruption in these pages is at least detected, with high probability,
before it propagates to the higher layers–in particular the application layer. However,
since the cache is in the critical path of the majority of I/O operations, it is crucial
that the overhead of such detection be kept low. Our solution consists of involving
the cache layer in the process of generating checksums for data pages, which was
previously implemented entirely in the physical layer. Once the cache layer is aware
of checksums, it can use them for detection of memory corruption at little extra cost.

Finally, for software bugs, there is no single low-cost approach that provides a
solution across the entire storage stack. Therefore, we look at the individual layers of
the storage stack instead. As mentioned, the MINIX 3 crash recovery infrastructure
already provides support that is sufficient for the recovery of (block) device drivers.
Therefore, in this work, we consider recovering from device driver crashes to be
a solved problem, and we focus on the other layers of the storage stack. All the
modules in these layers have internal state which, in order to allow for application-
transparent recovery, needs to be restored after a crash.

For the four core layers of the new arrangement (the naming, cache, logical,
and physical layers), we come up with three separate solutions for process crash re-
covery, each with slightly different assumptions and recovery guarantees. For the
logical and physical layers, we reuse part of the whole-system failure recovery in-
frastructure, combining it with an in-memory log that contains a recent history of
operations in the cache layer. Thus, in these two layers, we integrate recovery from
whole-system failures and process crashes. For recovery from crashes in the cache
layer itself, keeping a copy of the state needed for recovery (dirty pages, among other
things) would be too expensive, so we opt for recovery of this state from the memory
image of the crashed process. In order to verify that the state has not been corrupted
as part of the crash, we leverage the checksum support in the cache, thus integrating
memory corruption detection and crash recovery support in this layer. For naming-
layer crash recovery, we introduce support for transactions in the cache layer so as
to make the naming layer stateless, thus allowing for straightforward process crash
recovery.

This leaves the VFS layer. As it turns out, in particular this layer has more
(numerous and diverse) internal state than can realistically be recovered from either
itself or elsewhere. We therefore take a different approach for VFS. In several use
cases, many applications running on the system will not actually need to interact with
each other. Thus, we can place each application or group of interacting applications
in its own isolated environment, and include a copy of parts of the operating system
in this environment. In our case, each environment includes at least a copy of VFS.
As a result, if an instance of VFS crashes, it will merely result in shutdown of its own
environment, leaving the other environments unaffected. This approach requires a
split of the operating system between the isolated environments (“domains”) and the
shared base system (“host”). We propose a split between the namespace and object

12 CHAPTER 1. GENERAL INTRODUCTION

Physical

Naming

VFS

Cache

Logical

Disk driver

(b)

Namespace

VFS

Object store

Disk driver

(a)

ApplicationApplication

(c)

Naming

VFS

Cache

Logical

Disk driver

Physical

do
m

ai
ns

ho
st

Application

Figure 1.2: The figure depicts (a) the general model of an object storage stack, (b) Loris as an
instance of such a stack, and (c) the split-up chosen for our virtualization approach: the layers
above the dotted line are part of each of the virtual domains, whereas the layers below the dotted
line are part of the shared base system.

storage layers, as shown in Fig. 1.2c. Taken to its logical conclusion, the result is a
new approach to virtualization, with a number of interesting properties compared to
the alternatives in this space: virtual machines [49] and operating system containers
[131]. We present the idea and an initial implementation of its core in this thesis.

1.4 Contributions and thesis outline

We now present the organization of the rest of this thesis, and list the main contribu-
tions of each chapter.

In Chapter 2, we show that the traditional storage stack suffers from no less
than six major shortcomings, in the areas of reliability, heterogeneity, and flexibil-
ity. We then introduce the Loris storage stack arrangement, and show how this new
arrangement resolves all six issues. In terms of reliability, the main contribution
of this chapter is a comprehensive solution for detection of storage device failures,
consisting of the combination of a system of parental checksumming in the physi-
cal layers and the object awareness of the software RAID replacement (the logical
layer). Chapter 2 is published as a technical report [10], which consists of the origi-
nal paper published in Proceedings of the Sixteenth IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC’10) [9] and an extended evaluation.
The work in this chapter was done in collaboration with Raja Appuswamy, who au-

1.4. CONTRIBUTIONS AND THESIS OUTLINE 13

thored the idea; the design, implementation, and evaluation were done together. The
same chapter appears in Raja Appuswamy’s doctoral thesis [7], which focuses in
particular on the flexibility side of Loris.

Chapter 3 focuses on whole-system failures, as well as process crashes in the
logical and physical layers. We demonstrate that recovery from both failure types
can be built on top of a unified infrastructure for creating and restoring checkpoints
for metadata. On top of such a checkpointing framework, recovery from whole-
system failures then only requires a system for data resynchronization, and recovery
from process crashes in the lower Loris layers only requires a way to roll forward
from the last checkpoint to the current state. We design, implement, and evaluate
a checkpoint infrastructure, a data resynchronization protocol, and an in-memory
roll-forward operations log in the cache layer. We define a set of requirements
for physical-module implementations to support the checkpointing system, and we
show how our approach to data resynchronization is inherently less costly than its
traditional counterpart in RAID solutions. As proof of concept, we develop a new
on-device layout and corresponding physical module which can create and restore
checkpoints and perform resynchronization in a simple and reliable manner, called
TwinFS. Chapter 3 was published in Proceedings of the Seventh IEEE International
Conference on Networking, Architecture, and Storage (NAS’12) [150].

In Chapter 4, we focus on the cache layer. We consider the problems of de-
tecting memory corruption in cached data and of recovering the cache-layer process
after a crash. We argue that as part of the solution for both problems, the cache layer
benefits from being involved in the checksumming of data, which was previously
limited to the physical layer. Within the cache layer, we show that these data check-
sums can be used for two purposes. First, the checksums can be used for detection
of memory corruption in cached data. We demonstrate that simple algorithms can
achieve a high probability of detection of corruption at low cost. Second, in the
event of a crash in the cache layer process, the checksums can be used to verify
that dirty data pages have not been corrupted as part of the crash, so that a new
instance of the cached process can recover them from the old instance. We show
that these data checksums can be maintained in a checksum-protected in-memory
metadata hierarchy at low cost. Finally, we show that combining the two solutions
yields advantages for both. Chapter 4 was published in Proceedings of the Sixth
Latin-American Symposium on Dependable Computing (LADC’13) [151].

In Chapter 5, we consider process crashes in the naming layer. We start by argu-
ing that this layer may in fact contain not only the traditional (primary) namespace
manager of the storage stack, but also additional (extension) namespace modules
which may expose the contents of a single, internally hierarchically structured object
through the normal file system application programming interface. We then argue
that both these categories of namespace modules may experience crashes, albeit for
different reasons. As a first step towards crash recovery, we argue that the mod-
ules should be stateless, and thus not defer sending any modifications to the cache
layer. In addition, to prevent inconsistencies resulting from crashes in the middle of

14 CHAPTER 1. GENERAL INTRODUCTION

processing a system call, we extend the cache layer with transaction support. Each
namespace module can use these transactions to make atomic transitions from one
consistent state to another. Finally, we formulate a number of additional rules which
guarantee successful namespace module crash recovery. We evaluate our ideas using
both the Loris primary namespace module, and a newly developed HDF5 [58] exten-
sion namespace module. Chapter 5 was published in Proceedings of the Nineteenth
IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’13)
[152].

Chapter 6 presents our new virtualization concept, originally conceived as a
way to create smaller failure domains to deal with crashes in the VFS process, ex-
tended into a viable alternative to other virtualization technologies. The heart of the
approach consists of a new split of the storage stack, between the lower layers that
form the object store (the cache layer and below) and the upper layers that support
application abstractions (the naming layer and above). This allows both isolation
at the application level and sharing at the object level. We describe the concep-
tual advantages and disadvantages of the approach, and present an initial prototype
implementation. Chapter 6 was published in Proceedings of the Seventh ACM In-
ternational Systems and Storage Conference (SYSTOR’14) [154].

In Chapter 7, we take all the individual reliability and virtualization extensions
presented in the previous chapters and combine them to form a reliable, virtualizing
version of the Loris storage stack. This final integration allows us to look at the big-
ger picture of storage stack reliability, and to answer a number of research questions
that exceed the scope of each of the individual projects. We perform the actual work
in two steps. First, we extend Loris to include a complete version of the storage
virtualization features as laid out in Chapter 6: object virtualization, copy-on-write,
and deduplication. We call the result vLoris. Second, we integrate the reliability
extensions from Chapters 3 to 5, making them work with both the virtualization
extensions and each other, thereby forming rvLoris. We evaluate the advantages,
limitations, complexity, performance, and reliability of the resulting storage stack.
Chapter 7 was published in Proceedings of the Second International Symposium on
Computing and Networking (CANDAR’14) [153].

Chapters 2 to 7 have been reproduced here exactly as they were published, with
the exception of a handful of corrected typos. Chapter 8 elaborates on a number of
specific points which we did not manage to fit in the original publications.

In Chapter 9, we conclude the thesis, by summarizing our work, returning to
our originally stated research questions, and listing possible areas of future work.

2
Loris - A Dependable, Modular, File-Based Storage

Stack

Abstract

The arrangement of file systems and volume management/RAID systems, together
commonly referred to as the storage stack, has remained the same for several decades,
despite significant changes in hardware, software and usage scenarios. In this paper,
we evaluate the traditional storage stack along three dimensions: reliability, hetero-
geneity and flexibility. We highlight several major problems with the traditional
stack. We then present Loris, our redesign of the storage stack, and we evaluate
several reliability, availability and performance aspects of Loris.

15

16 CHAPTER 2. LORIS

2.1 Introduction

Over the past several years, the storage hardware landscape has changed dramati-
cally. A significant drop in the cost per gigabyte of disk drives has made techniques
that require a full disk scan, like fsck or whole disk backup, prohibitively expen-
sive. Large scale installations handling petabytes of data are very common today,
and devising techniques to simplify management has become a key priority in both
academia and industry. Research has revealed great insights into the reliability char-
acteristics of modern disk drives. “Fail-partial” failure modes [116] have been stud-
ied extensively and end-to-end integrity assurance is more important now than ever
before. The introduction of SSDs and other flash devices is sure to bring about a sea
change in the storage subsystem. Radically different price/performance/reliability
trade-offs have necessitated rethinking several aspects of file and storage manage-
ment [42, 74]. In short, the storage world is rapidly changing and our approach to
making storage dependable must change, too.

Traditional file systems were written and optimized for block-oriented hard disk
drives. With the advent of RAID techniques [113], storage vendors started develop-
ing high-performance, high-capacity RAID systems in both hardware and software.
The block-level interface between the file system and disk drives provided a conve-
nient, backward-compatible abstraction for integrating RAID algorithms.

As installations grew in size, administrators needed more flexibility in managing
file systems and disk drives. Volume managers [144] were designed as block-level
drivers to break the “one file system per disk” bond. By providing logical volumes,
they abstracted out details of physical storage and thereby made it possible to re-
size file systems/volumes on the fly. Logical volumes also served as units of policy
assignment and quota enforcement. Together, we refer to the RAID and volume
management solutions as the RAID layer in this paper.

This arrangement of file system and RAID layers, as shown in Figure 2.1a, has
been referred to as the storage stack [33]. Despite several changes in the hardware
landscape, the traditional storage stack has remained the same for several decades.
In this paper, we examine the block-level integration of RAID and volume manage-
ment along three dimensions: reliability, flexibility, and heterogeneity. We highlight
several major problems with the traditional stack along all three dimensions. We
then present Loris, our new storage stack. Loris improves modularity by decom-
posing the traditional file system layer into several self-contained layers, as shown
in Figure 2.1b. It improves reliability by integrating RAID algorithms at a different
layer compared to the traditional stack. It supports heterogeneity by providing a file-
based stack in which the interface between layers is a standardized file interface. It
improves flexibility by automating device administration and enabling per-file policy
selection.

This paper is structured as follows. In Sec. 2.2, we explain in detail the prob-
lems associated with the traditional stack. In Sec. 2.3, we briefly outline some at-
tempts taken by others in redesigning the storage stack and also explain why other

2.2. PROBLEMS WITH THE TRADITIONAL STORAGE STACK 17

File

system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software

RAID

(a) (b)

Figure 2.1: The figure depicts (a) the arrangement of layers in the traditional stack, and (b) the
new layering in Loris. The layers above the dotted line are file-aware, the layers below are not.

approaches fail to solve all the problems. In Sec. 2.4, we introduce Loris and ex-
plain the responsibilities and abstraction boundaries of each layer in the new stack.
We also sketch the realization of these layers in our prototype implementation. In
Sec. 2.5, we present the advantages of Loris. We then evaluate both performance
and reliability aspects of Loris in Sec. 2.6 and conclude in Sec. 2.7.

2.2 Problems with the Traditional Storage Stack

In this section, we present some of the most important problems associated with the
traditional storage stack. We present the problems along three dimensions: reliabil-
ity, flexibility and heterogeneity.

2.2.1 Reliability

The first dimension is reliability. This includes the aspects of data corruption, system
failure, and device failure.

Data Corruption

Modern disk drives are not “fail-stop.” Recent research has analyzed several “fail-
partial” failure modes of disk drives. For example, a lost write happens when a
disk does not write a data block. A misdirected write by the disk results in a data
block being written at a different position than its intended location. A torn write
happens when a write operation fails to write all the sectors of a multisector data

18 CHAPTER 2. LORIS

block. In all these cases, if the disk controller (incorrectly) reports back success,
data is silently corrupted. This is a serious threat to data integrity and significantly
affects the reliability of the storage stack.

File systems and block-level storage systems detect data corruption by employ-
ing various checksumming techniques [128]. The level of reliability offered by a
checksumming scheme depends heavily on what is checksummed and where the
checksum is stored. Checksums can be computed on a per-sector or per-block (file
system block) basis, where a block is typically 2, 4, 8, or more sectors. Using per-
sector checksums does not protect one against any of the failure cases mentioned
above if checksums are stored with the data itself. Block checksums, on the other
hand, protect against torn writes but not against misdirected or lost writes.

In yet another type of checksumming, called parental checksumming, the check-
sum of a data block is stored with its parent. For instance, a parental checksumming
implementation could store block checksums in the inode, right next to the block
pointers. These checksums would then be read in with the inode and used for veri-
fication. Formal analysis has verified that parental checksumming detects all of the
aforementioned sources of corruption [88].

However, using parental checksumming in the current storage stack increases
the chance of data loss significantly [88]. Since the parental relationship between
blocks is known only to the file system, parental checksums can be used only by the
file system layer. Thus, while file system initiated reads can be verified, any reads
initiated by the RAID layer (for partial writes, scrubbing, or recovery) escape veri-
fication. As a result, a corrupt data block will not only go undetected by the RAID
layer, but could also be used for parity recomputation, causing parity pollution [88],
and hence data loss.

System Failure

Crashes and power failures pose a metadata consistency problem for file systems.
Several techniques like soft updates and journaling have been used to reliably update
metadata in the face of such events. RAID algorithms also suffer from a consistent
update problem. Since RAID algorithms write data to multiple disk drives, they
must ensure that the data on different devices are updated in a consistent manner.

Most hardware RAID implementations use NVRAM to buffer writes until they
are made durable, cleanly side-stepping this problem. Several software RAID so-
lutions, on the other hand, resort to whole disk resynchronization after an unclean
shutdown. During resynchronization, all data blocks are read in, parity is computed,
and the computed parity is verified with the on-disk parity. If a mismatch is detected,
the newly computed parity is written out replacing the on-disk parity.

This approach—in addition to becoming increasingly impractical due to the
rapid increase in disk capacity—has two major problems: (1) it increases the vulner-
ability window within which a second failure can result in data loss. This problem
is also known as the “RAID write hole”, and (2) it adversely affects availability, as

2.2. PROBLEMS WITH THE TRADITIONAL STORAGE STACK 19

the whole disk array has to be offline during the resynchronization period [20].
The other approach adopted by some software RAID implementations is journal-

ing a block bitmap to identify regions of activity during the failure. While this ap-
proach reduces resynchronization time, it has a negative impact on performance [34],
and results in functionality being duplicated across multiple layers.

Device Failure

Storage array implementations protect against a fixed number of disk failures. For
instance, a RAID 5 implementation protects against a single disk failure. When an
unexpected number of failures occur, the storage array comes to a grinding halt.
An ideal storage array however, should degrade gracefully. The amount of data
inaccessible should be proportional to the number of failures in the system. Research
has shown that to achieve such a property, a RAID implementation must provide: (1)
selective replication of metadata to make sure that the directory hierarchy remains
navigable at all times, and (2) fault-isolated positioning of files so that a failure of
any single disk results in only files on that disk being inaccessible [129].

By recovering files rather than blocks, file-level RAID algorithms reduce the
amount of data that must be recovered, thus shrinking the vulnerability window be-
fore a second failure. Even a second failure during recovery results in the loss of only
some file(s), which can be restored from backup sources, compared to block-level
RAID where the entire array must be restored. None of these functionalities can
be provided by the traditional storage stack as the traditional RAID implementation
operates strictly below a block interface.

2.2.2 Flexibility

We discuss two points pertaining to flexibility: management and policy assignment.

Management Flexibility

While traditional volume managers make device management and space allocation
more flexible, they introduce a series of complex, error prone administrative op-
erations, most of which should be automated. For instance, a simple task such
as adding a new disk to the system involves several steps like creating a physical
volume, adding it to a volume group, expanding logical volumes and finally resiz-
ing file systems. While new models of administering devices, like the storage pool
model [136], are a huge improvement, they still suffer from other problems, which
we will describe in the next section.

In addition to device management complexity, software-based RAID solutions
expose a set of tunable parameters for configuring a storage array based on the ex-
pected workload. It has been shown that an improperly configured array can render
layout optimizations employed by a file system futile [134]. This is an example
of the more general “information gap” problem [33]— different layers performing

20 CHAPTER 2. LORIS

different optimizations unaware of the effect they might have on the overall perfor-
mance.

Policy Assignment Flexibility

Different files have different levels of importance and need different levels of protec-
tion. However, policies like the RAID level to use, encryption, and compression, are
only available on a per-volume basis rather than on a per-file basis. Several RAID
implementations even lock-in the RAID levels and make it impossible to migrate
data between RAID levels. In cases where migration is supported, it usually comes
at the expense of having to perform a full-array dump and restore. In our view, an
ideal storage system should be flexible enough to support policy assignment on a
per-file, per-directory, or a per-volume basis. It should support migration of data
between RAID levels on-the-fly without affecting data availability.

2.2.3 Heterogeneity Issues

New devices are emerging with different data access granularities and storage inter-
faces. Integrating these devices into the storage stack has been done using two ap-
proaches that involve extending either the file system layer or the block-level RAID
layer with new functionality.

The first approach involves building file systems that are aware of device-specific
abstractions [74]. However, as the traditional block-based RAID layer exposes a
block interface, it is incompatible with these file systems. As a result, RAID and
volume management functionalities must be implemented from scratch for each de-
vice family.

The second approach is to be backward compatible with traditional file systems.
This is typically done by adding a new layer that translates block requests from the
file system to device-specific abstractions [42]. This layer cannot be integrated be-
tween the file system and RAID layers, as it is incompatible with the RAID layer.
Hence, such a layer has to either reimplement RAID algorithms for the new device
family, or be integrated below the RAID layer. This integration retains compatibil-
ity with both traditional file system and RAID implementations. However, this has
the serious effect of widening the information gap by duplicating functionality. For
instance, both the file system and translation layers now try to employ layout opti-
mizations – something that is completely unwarranted. The only way to avoid this
duplication is by completely redesigning the storage stack from scratch.

2.3 Solutions Proposed in the Literature

Several approaches have been taken to solving some of the problems mentioned in
the previous section. However, none of these approaches solve all these problems
by design. In this section, we highlight only the most important techniques. We

2.4. THE DESIGN OF LORIS 21

Boot block
Superblock

Inode bitmap

Inodes File data blocks
Block

bitmap

Root
data

blocks

Figure 2.2: High-level overview of the on-disk layout used by the physical layer prototype.

classify the approaches taken into four types, namely: (1) inferring information, (2)
sharing information, (3) refactoring the storage stack, and (4) extending the stack
with stackable filing.

One could compensate for the lack of information in the RAID layer by having
it infer information about the file system layer. For instance, semantically smart
disks [129] infer file system specific information (block typing and structure infor-
mation), and use the semantic knowledge to improve RAID flexibility, availability,
and performance. However, by their very nature, they are file-system-specific, mak-
ing them nonportable.

Instead of inferring information, one could redesign the interface between the
file system and RAID layers to share information. For example, ExRAID [33], a
software RAID implementation, provides array related information (such as disk
boundaries and transient performance characteristics of each device) to an informed
file system (I-LFS), which uses it to make informed data placement decisions.

While both inferring and sharing information can be used to add new function-
ality, they do not change the fundamental division of labor between layers. Hence,
most of the problems we mentioned remain unresolved.

A few projects have refactored the traditional storage stack. For instance, ZFS [136]’s
storage stack consists of three layers, the ZFS Posix Layer (ZPL), the Data Manage-
ment Unit (DMU), and the Storage Pool Allocator (SPA). ZFS solves the reliabil-
ity and flexiblity problems we mentioned earlier by merging block allocation with
RAID algorithms in its SPA layer. SPA exposes a virtual block abstraction to DMU
and acts as a multidisk block allocator. However, because SPA exposes a block
interface, it suffers from the same heterogeneity problems as the RAID layer. In ad-
dition, we believe that layout management and RAID are two distinct functionalities
that should be modularized in separate layers.

RAIF [75] provides RAID algorithms as a stackable file system. RAID algo-
rithms in RAIF work on a per-file basis. As it is stackable, it is very modular and can
be layered on any file system, making it device independent. While this does solve
the flexibility and heterogeneity problems, it does not solve the reliability problems.

2.4 The Design of Loris

We now present our new storage stack, Loris. The Loris stack consists of four lay-
ers in between the VFS layer and the disk driver layer, as shown in Figure 2.1b.

22 CHAPTER 2. LORIS

Within the stack, the primary abstraction is the file. Each layer offers an interface
for creating and manipulating files to the layer above it, exposing per-file operations
such as create, read, write, truncate, and delete. A generic attribute abstraction is
used to both maintain per-file metadata, and exchange information within the stack.
The getattr and setattr operations retrieve and set attributes. Files and attributes are
stored by the lowest layer.

We implemented a Loris prototype on the MINIX 3 multiserver operating system
[62]. The modular and fault-tolerant structure of MINIX 3 allows us to quickly and
easily experiment with invasive changes. Moreover, we plan to apply ongoing re-
search in the areas of live updates [47] and many-core support to our work. MINIX 3
already provides VFS and the disk drivers, each running as a separate process, which
improves dependability by allowing failed OS components to be replaced on the fly.

The four layer implementations of the prototype can be combined into one pro-
cess, or separated out into individual processes. The single-process setup allows for
higher performance due to fewer context switches and less memory copying over-
head. The multiprocess setup by nature imposes a very strict separation between
layers, provides better process fault isolation in line with MINIX 3’s dependability
objectives [62], and is more live-update-friendly [47]. The difference between these
configurations is abstracted away by a common library that provides primitives for
communication and data exchange.

We will now discuss each of the layers in turn, starting from the lowest layer.

2.4.1 The Physical Layer

The lowest layer in the Loris stack is the physical layer. The physical layer algo-
rithms provide device-specific layout schemes to store files and attributes. They offer
a fail-stop physical file abstraction to the layers above it. By working on physical
files, the rest of the layers are isolated from device-specific characteristics of the
underlying devices (such as access granularity).

As the physical files are fail-stop, every call that requests file data or attributes,
returns either a result that has been verified to be free of corruption or an error. To
this end, every physical layer algorithm is required to implement parental checksum-
ming. To repeat, above the physical layer, there is no silent corruption of data. A
torn, lost, or misdirected write is converted into a hard failure that is passed upward
in the stack.

In our prototype, each physical device is managed by a separate, independent
instance of one of the physical layer algorithms. We call such an instance a module.
Each physical module has a global module identifier, which it uses to register to the
logical layer at startup.

2.4. THE DESIGN OF LORIS 23

On-Disk Layout

The on-disk layout of our prototype is based directly on the MINIX 3 File System
(MFS) [142], a traditional UNIX-like file system. We have extended it to support
parental checksums. Figure 2.2 shows a high-level view of the layout. We delib-
erately chose to stay close to the original MFS implementation so that we could
measure the overhead incurred by parental checksumming.

Each physical file is represented on disk by an inode. Each inode has an inode
number that identifies the physical file. The inode contains space to store persistent
attributes, as well as 7 direct, one single indirect and one double indirect safe block
pointers. Each safe block pointer contains a block number and a CRC32 checksum
of the block it points to. The single and double indirect blocks store such pointers as
well, to data blocks and single indirect blocks, respectively. All file data are therefore
protected directly or indirectly by checksums in the file inode.

The inodes and other metadata are protected by means of three special on-disk
files. These are the inode bitmap file, the block bitmap file, and the “root file.” The
bitmap file inodes and their indirect blocks contain safe block pointers to the bitmap
blocks. The root file forms the hierarchical parent of all the inodes—its data blocks
contain checksums over all inodes, including the bitmap file inodes. The checksums
in the root file are stored and computed on a per-inode basis, rather than a per-block
basis. The checksum of the root file’s inode is stored in the superblock.

Figure 2.3 shows the resulting parental checksumming hierarchy. The superblock
and root data blocks contain only checksums; the inodes and indirect blocks contain
safe block pointers. Please note that this hierarchy is used only for checksumming—
unlike copy-on-write layout schemes [66], blocks are updated in-place.

Superblock

Inode bitmap

Block bitmap inode
Inode bitmap inode

Block bitmap File data

Root inode

Root data blocks

Inodes

Data blocks

Figure 2.3: Parental checksumming hierarchy used by the physical layer prototype. With respect
to parental checksumming, the two special bitmap files are treated as any other files. Indirect
blocks have been omitted in this figure.

24 CHAPTER 2. LORIS

Delayed Checksum Computation

One of the main drawbacks of parental checksumming is cascading writes. Due
to the inherent nature of parental checksumming, a single update to a block could
result in several blocks being updated all the way up the parental tree to the root.
Updating all checksums in the mainstream write path would slow down performance
significantly.

The physical layer prevents this by delaying the checksum computation, using a
small metadata block cache that is type-aware. By knowing the type of each block,
this cache makes it possible to perform checksum computation only when a block is
written to or read from the underlying device. For instance, by knowing whether a
block is a bitmap or inode block, it can compute and update checksums in the bitmap
and root file inodes lazily, that is, only right before flushing these metadata blocks
from the cache.

Error Handling

Parental checksumming allows the physical layer to detect corrupt data. When a
physical module detects a checksum error in the data or indirect block of a file, it
marks that portion of the file as corrupted. If the file’s inode checksum, as stored in
the root file, does not match the checksum computed over the actual inode, then the
entire file is marked as corrupted. In both cases, reads from the corrupt portion will
result in a checksum error being returned to the logical layer. The physical module
uses two attributes in the file’s inode, begin range and end range, to remember this
sick range.

For instance, consider a read request to a physical module for the first data block
of a file. If the physical module detects a checksum mismatch on reading in the
data block, it sets the begin and end range attributes to 0 and 4095 respectively, and
responds back to the logical layer with a checksum error. We will detail the recovery
process initiated by the logical layer when we describe its error handling mechanism.

In contrast to inodes and data blocks, if a part of the other on-disk metadata
structures is found corrupted, the physical module will shut down for offline repair.
While we could have supported metadata replication to improve reliability, we chose
not to do so for the first prototype to stay as close as possible to the original MFS
implementation in order to get honest measurements.

If the underlying device driver returns an error or times out, the physical module
will retry the operation a number of times. Upon repeated failure, it returns back an
I/O error to the logical layer. An I/O error from the physical module is an indication
to the logical layer that a fatal failure has occurred and that the erroneous device
should not be used anymore.

2.4. THE DESIGN OF LORIS 25

2.4.2 The Logical Layer

The logical layer implements RAID algorithms on a per-file basis to provide various
levels of redundancy. The logical layer offers a reliable logical file abstraction to the
layers above. It masks errors from the physical layer whenever there is enough data
redundancy to recover from them. One logical file may be made up of several inde-
pendent physical files, typically each on a different physical module, and possibly at
different locations. As such, the logical layer acts as a centralized multiplexer over
the individual modules in the physical layer.

Our prototype implements the equivalents of RAID levels 0, 1, and 4—all of
these operate on a per-file basis. There is only one module instance of the logical
layer, which operates across all physical modules.

File Mapping

The central data structure in our logical layer prototype is the mapping. The mapping
contains an entry for every logical file, translating logical file identifiers to logical
configurations. The logical configuration of a file consists of (1) the file’s RAID
level, (2) the stripe size used for the file (if applicable), and (3) a set of one or more
physical files that make up this logical file, each specified as a physical module and
inode number pair. The RAID level implementations decide how the physical files
are used to make up the logical file.

The create operation creates a mapping entry for a given logical file identifier,
with a given configuration (more about this later). For all other file operations com-
ing in from above, the logical layer first looks up the file’s logical configuration in
the mapping. The corresponding RAID algorithm is then responsible for calling
appropriate operations on physical modules.

Figure 2.4 shows how a logical file that is striped across two devices, is con-
structed out of two independent physical files. The mapping entry for this file
F1 could look like this: F1=<raidlevel=0, stripesize=4096, physicalfiles=<D1:I1,

F1

I1 I2

Logical layer

Physical layer

D1 D2

Cache layer

Disk driver

Figure 2.4: An example of the file abstractions provided by the logical and physical layers. The
logical layer exposes a logical file, F1, which is constructed out of two physical files, namely I1 on
physical module D1 and I2 on physical module D2, by means of striping.

26 CHAPTER 2. LORIS

D2:I2>>. The entry specifies a RAID level of 0, a stripe size of 4096 bytes, and
two physical files: file I1 on physical module D1 and file I2 on physical module D2.
Now consider a read request for the first 16384 bytes of this file coming down to the
logical layer. Upon receiving the read request, the logical layer looks up the entry
for F1 in its mapping, and passes on the call to the RAID 0 algorithm. The RAID
0 code uses the entry to determine that logical bytes 0-4095 are stored as bytes 0-
4095 in physical file D1:I1, logical bytes 4096-8191 are stored as bytes 0-4095 in
file D2:I2, logical bytes 8192-12287 are stored as bytes 4096-8191 in file D1:I1, and
logical bytes 12288-16383 are stored as bytes 4096-8191 in file D2:I2. The logical
layer issues two read requests, one to D1 for the first 8192 bytes of I1, and the other
to D2 for the first 8192 bytes of I2. The results are combined to form a “flat” result
for the layer above.

The mapping itself is a logical file. The logical configuration of this file is hard-
coded. The mapping file is crucial for accessing any other files, and is therefore
mirrored across all physical modules for increased dependability. It uses the same
static inode number on all physical modules.

Error Handling

When the logical layer gets a checksum error in response to an operation on a phys-
ical module, it will restore the correct data for the file involved in the operation
if enough data redundancy is present. If on-the-fly restoration is not possible, the
logical layer fails the operation with an I/O error.

For instance, let us consider a read request for the first block of a file mirrored
on two physical modules P1 and P2. If P1 responds back with a checksum error, the
logical layer first retrieves the begin and end sick range attributes from P1. Assuming
that only the first block was corrupt, these values would be 0 and 4095. The logical
layer then issues a read request to module P2, for data in the range 0–4095. If this
read request succeeds, the logical layer issues a write request to P1 for this data
range, thereby performing on-the-fly recovery. It finally clears the sick range by
resetting begin and end ranges to their defaults.

When the logical layer gets an I/O error from a physical module, it considers this
to be a permanent error, and disables the physical module. The logical layer will
continue to serve requests for affected files from redundant copies where possible,
and return I/O errors otherwise.

2.4.3 The Cache Layer

The cache layer caches file data in main memory. This layer may be omitted in
operating systems that provide a unified page cache. As MINIX 3 does not have
a unified page cache, our prototype implements this layer. The cache layer is also
needed on systems that do not have any local physical storage such as PDAs and
other small mobile devices.

2.4. THE DESIGN OF LORIS 27

File-Based Caching

The prototype cache is file-aware and performs readahead and eviction of file data
on a per-file basis. Files are read from the lower layers in large readahead chunks
at a time, and only entire files are evicted from the cache. The cache maintains file
data at the granularity of memory pages.

Early experiments showed a large performance penalty incurred by small file
writes. Small file writes were absorbed completely by the cache until a sync request
was received or the cache needed to free up pages for new requests. During eviction,
each file would be written out by means of an individual write operation, forcing
the physical layer to perform a large number of small random writes. To counter
this problem, we introduced a vwrite call to supply a vector of write operations for
several files. The cache uses this call to pass down as many dirty pages as possible
at once, eventually allowing the physical modules to reorder and combine the small
writes.

Problems with Delayed Allocation

The cache delays writes, so that write calls from above can be satisfied very quickly.
This results in allocation of data blocks for these writes to be delayed until the mo-
ment that these blocks are flushed out. This delayed allocation poses a problem in
the stack. Because of the abstraction provided by the logical layer, the cache has no
knowledge about the devices used to store a file, nor about the free space available
on those devices. Therefore, when a write operation comes in, the cache cannot
determine whether the write will eventually succeed.

Although we have not yet implemented a solution for this in our prototype, the
problem can be solved by means of a free-space reservation system exposed by the
physical modules through the logical layer to the cache.

2.4.4 The Naming Layer

The naming layer is responsible for naming and organizing files. Different naming
layer algorithms can implement different naming schemes: for example, a tradi-
tional POSIX style naming scheme, or a search-oriented naming scheme based on
attributes.

POSIX Support

Our prototype implements a traditional POSIX naming scheme. It processes calls
coming from the VFS layer above, converting POSIX operations into file operations.

Only the naming layer knows about the concept of directories. Below the naming
layer, directories are stored as files. The naming layer itself treats directories as flat
arrays of statically sized entries, one per file. Each entry is made up of a file name
and a logical file identifier. Again, this layout was chosen for simplicity and to stay

28 CHAPTER 2. LORIS

close to the original MFS implementation for comparison purposes. A new naming
module could implement more advanced directory indexing.

The naming layer is also responsible for maintaining the POSIX attributes of files
(file size, file mode, link count, and so on). It uses Loris attributes for this: it uses
the setattribute call to send down POSIX attribute changes, which are ultimately
processed and stored by the physical layer in the file’s inode.

Policy Assignment

When creating a new file, the naming layer is responsible for picking a new logical
file identifier, and an initial logical configuration for the file. The logical configura-
tion may be picked based on any information available to the naming layer: the new
file’s name, its containing directory, its file type, and possibly any flags passed in by
the application creating the file. The chosen logical configuration is passed to lower
layers in the create call in the form of attributes.

By default, directories are mirrored across all devices in order to provide graceful
degradation. Upon getting a create directory request from VFS, the naming layer
picks a new file identifier for the directory, and sends down a create call to the cache,
with RAID level 1 specified as the file’s logical policy. The cache forwards the call
to the logical layer. The logical layer creates a new entry in the mapping for this file,
and forwards the create call to all of the physical modules. Upon return, the logical
layer stores the resulting inode numbers in the mapping entry as well.

2.5 The Advantages of Loris

In this section, we highlight how Loris solves all the problems mentioned in Sec. 2.2
by design. This section has been structured to mirror the structure of Sec. 2.2 so that
readers can match the problems with their corresponding solutions one-to-one.

2.5.1 Reliability

We now explain how Loris protects against the three threats to data integrity.

Data Corruption

As RAID algorithms are positioned in the logical layer, all requests, both user ap-
plication initiated reads and RAID initiated reads, are serviced by the physical layer.
Thus, any data verification scheme needs to be implemented only once, in the phys-
ical layer, for all types of requests. In addition, since the physical layer is file-aware,
parental checksumming can be used for detecting all possible sources of corruption.
Thus, by requiring every physical layer algorithm to implement parental checksum-
ming, fail-partial failures are converted into fail-stop failures. RAID algorithms can
safely provide protection against fail-stop failures without propagating corruption.

2.5. THE ADVANTAGES OF LORIS 29

System Failure

Journaling has been used by several file systems to provide atomic update of system
metadata [53]. Modified journaling implementations have also been used to main-
tain the consistency between data blocks and checksums in the face of crashes [133].
While any such traditional crash recovery techniques can be used with Loris to main-
tain metadata consistency, we are working on a new technique called metadata re-
play. It protects the system from both hard crashes (power failures, kernel panic,
etc.) and soft crashes (modules failing due to bugs). We will provide a brief de-
scription of this technique now, but it should be noted that independently of the
technique used, Loris does not require expensive whole disk synchronization due to
its file-aware nature.

Metadata replay is based on the counterintuitive idea that user data (file data and
POSIX attributes), if updated atomically, can be used to regenerate system metadata.
To implement this, we have two requirements: (1) a lightweight mechanism to log
user data, and (2) some way to restore back the latest consistent snapshot. With
highly flexible policy selection in place, the user could log only important files,
reducing the overhead of data logging. We plan to add support for selective logging
and metadata snapshotting. When a crash occurs, the logical layer coordinates the
rollback of all physical layers to a globally consistent state. Then, the logged user
data are replayed, regenerating metadata in both logical and physical layers, and
bringing the system to new consistent state.

Device Failure

Graceful degradation is a natural extension of our design. Since RAID policies can
be selected on a per-file basis, directories can be replicated on all devices while file
data need not be, thereby providing selective metadata replication. Since the logical
layer is file-aware, fault-isolated placement of files can also be provided on a per-
file basis. Furthermore, recovery to a hot spare on a disk failure is faster than a
traditional RAID array since the logical layer recovers files. As mentioned earlier,
file-granular recovery restores only “live data” by nature, i.e., unused data blocks in
all physical layers do not have to be restored. Because traditional RAID operates at
the block level, it is unaware of which data blocks hold file data, and has to restore
all data blocks in the array.

2.5.2 Flexibility

The new file-oriented storage stack is more flexible than the traditional stack in sev-
eral ways. Loris supports automating several administrative tasks, simplifies device
management, and supports policy assignment at the granularity of files.

30 CHAPTER 2. LORIS

Management Flexiblity

Loris simplifies administration by providing a simple model for both device and
quota management. It supports automating most of the traditional administrative
chores. For instance, when a new device is added to an existing installation, Loris
automatically assigns the device a new identifier. A new physical module corre-
sponding to this device type is started automatically and this module registers itself
with the logical layer as a potential source of physical files. From here on, the log-
ical layer is free to direct new file creation requests to the new module. It can also
change the RAID policy of existing files on-the-fly or in the background. Thus, Loris
supports a pooled storage model similar to ZFS.

File systems in ZFS [136] serve as units of quota enforcement. By decoupling
volume management from device management, these systems make it possible for
multiple volumes to share the same storage space. We are working on a file volume
management implementation for Loris. We plan to modify the logical layer to add
support for such a volume manager. File volumes in Loris will be able to provide
functionalities similar to ZFS since files belonging to any volume can be allocated
from any physical module.

Policy Assignment Flexiblity

Loris provides a clean split between policy and mechanism. For instance, while
RAID algorithms are implemented in the logical layer, the policy that assigns RAID
levels to files can be present in any layer. Thus, while the naming layer can assign
RAID levels on a per-file, per-directory or even per-type basis [75], the logical layer
could assign policies on a per-volume basis or even globally across all files.

2.5.3 Heterogeneity

All of the aforementioned functionalities are device-independent. By having the
physical layer provide a physical file abstraction, algorithms above the physical layer
are isolated from device-specific details. Thus, Loris can be used to set up an instal-
lation where disk drives coexist with byte-granular flash devices and Object-based
Storage Devices (OSDs), and the administrator would use the same management
primitives across these device types. In addition, as the physical layer works directly
on the device without being virtualized, device-specific layout optimizations can be
employed without creating an information gap.

2.6 Evaluation

In this section, we will evaluate several reliability, availability and performance as-
pects of our prototype.

2.6. EVALUATION 31

2.6.1 Test Setup

All tests were conducted on an Intel Core 2 Duo E8600 PC, with 4 GB RAM, and
four 500 GB 7200RPM Western Digital Caviar Blue SATA hard disks (WD5000AAKS),
three of which were connected to separate ICIDU SATA PCI EXPRESS cards. We
ran all tests on 8 GB test partitions at the beginning of the disks. In experiments
where Loris is compared with MFS, both were set up to work with a 32 MB buffer
cache.

2.6.2 Evaluating Reliability and Availability

To evaluate the reliability and availability of Loris, we implemented a fault injection
block driver that is capable of simulating both fail-partial failures (by corrupting
specific data blocks) and fail-stop disk failures (by returning an EIO on all requests).

We first present an evaluation of the ability of Loris to perform on-the-fly data
recovery. Rather than just showing that our prototype detects corruption, we illus-
trate how file-awareness helps in reducing the recovery time. We then present an
evaluation of availability under unexpected failures. We show two cases of graceful
degradation, both of which cannot be done by block-level RAID implementations.

On-the-Fly Recovery

Our recovery measurements were gathered using a series of fault injection tests. The
test file system consists of a single 100 MB file, mirrored over a two-disk Loris
installation. The test workload is generated by a user application that issues read re-
quests for specific data ranges in the file. These read requests get forwarded through
the stack to the fault injection driver.

The driver corrupts three types of file blocks in three different scenarios: (1) a
random direct data block, (2) a random single indirect block, and (3) the double in-
direct block. In all cases, the driver returns back corrupt data block(s) to the physical
layer. Upon detecting a checksum violation, the physical layer responds to the read
request with a checksum error.

The logical layer, on being notified of a checksum error, performs on-the-fly
recovery using the redundant copy, and restores lost data onto the corrupt physical
layer immediately. Table 2.1 shows the recovery time for various corruption cases.
As can be seen, the recovery time is proportional to the amount of data lost within a
file.

Graceful Degradation

Our test file system for graceful degradation consists of a collection of 12,000 32 KB
files, organized uniformly across 100 directories. We created the test file system on
a Loris installation with three disk drives. The number and size of files were chosen

32 CHAPTER 2. LORIS

to minimize the effect of caching, and the directory layout minimizes the effect of
our linear file name lookup.

With this setup, we evaluated graceful degradation with two different file layout
schemes, which we will detail shortly. However, in both cases, all directories are
mirrored across the three disk drives, and all files are positioned in a fault-isolated
manner. Directory replication is done by having the naming layer assign the RAID
1 policy to all directories. Fault-isolated file placement is done by storing each file,
in its entirety, in at least a single physical module (as opposed to striping it across
all modules). The ease with which we were able to provide these functionalities
highlights the flexibility of a file-oriented stack.

Our workload is generated by a program that randomly picks a file and performs
a 32 KB read, followed by a 32 KB write, overwriting the entire file. The program
considers each open-read-write-close sequence as a single operation, and keeps track
of the total number of successful operations.

Figure 2.5 illustrates graceful degradation under no replication. The files in this
configuration are uniformly distributed across the three disk drives, that is, each
corresponding physical module is responsible for serving a third of file requests.
This is made possible by having the logical layer rotate file creation requests between
the three physical modules. For instance, the create request for file 1 is forwarded to
physical module P1, 2 to P2, 3 to P3, 4 again to P1, and so on.

As it can be seen, when the first fault occurs, the availability drops by roughly
33 %. This is expected since a third of the files are serviced by each physical module,
and a device failure renders files serviced by that corresponding module inaccessi-
ble. A second failure results in another 33 % drop in availability. At this point,
the directory hierarchy remains navigable (because directories are replicated on all
drives), and the system continues serve requests that can be satisfied using the last
disk drive. It can also be seen that the number of successful requests per second
stays unaffected. The sharp drop in performance every thirty seconds is due to syn-
chronous data and metadata flush during a sync.

Figure 2.6 shows graceful degradation, with files protected against a single disk
failure. This case further illustrates the advantages of file-level RAID. A block-level
RAID implementation would typically use RAID levels 1, 4 or 5 (two data and one
parity) to protect against single disk failures. We used RAID 1 and we chose a layout
that supported graceful degradation. It should be noted that the same technique can

Block type Affected Recovery time
Direct (actual data) 0.0039 % 28 ms
Single indirect 2.0000 % 157 ms
Double indirect 97.9727 % 6688 ms

Table 2.1: Recovery time after corruption of various data block types in a 100 MB file. For each
block type the table lists: (1) the percentage of the file affected when a block of this type is
corrupted, and (2) the recovery time measured after corrupting a block of this type.

2.6. EVALUATION 33

B
en

ch
m

ar
k

M
FS

L
or

is
(s

in
gl

e-
pr

oc
es

s)
L

or
is

(m
ul

tip
ro

ce
ss

)
N

o
ch

ec
ks

um
La

yo
ut

on
ly

C
he

ck
su

m
N

o
ch

ec
ks

um
La

yo
ut

on
ly

C
he

ck
su

m
Po

st
M

ar
k

79
4.

00
(1

.0
0)

72
9.

00
(0

.9
2)

72
3.

00
(0

.9
1)

79
7.

00
(1

.0
0)

76
0.

00
(0

.9
6)

76
3.

00
(0

.9
6)

82
2.

00
(1

.0
4)

A
pp

le
ve

l(
co

py
)

79
.8

6
(1

.0
0)

86
.4

1
(1

.0
8)

86
.0

0
(1

.0
8)

10
1.

36
(1

.2
7)

94
.6

6
(1

.1
9)

94
.3

8
(1

.1
8)

10
9.

63
(1

.3
7)

A
pp

le
ve

l(
bu

ild
)

58
.0

6
(1

.0
0)

58
.5

0
(1

.0
1)

58
.4

8
(1

.0
1)

60
.2

1
(1

.0
4)

73
.6

8
(1

.2
7)

73
.7

8
(1

.2
7)

75
.6

1
(1

.3
0)

A
pp

le
ve

l(
fin

d
an

d
gr

ep
)

16
.5

5
(1

.0
0)

16
.9

0
(1

.0
2)

17
.0

1
(1

.0
3)

19
.7

3
(1

.1
9)

22
.6

1
(1

.3
7)

22
.5

0
(1

.3
6)

25
.5

3
(1

.5
4)

A
pp

le
ve

l(
de

le
te

)
19

.7
6

(1
.0

0)
10

.0
1

(0
.5

1)
10

.0
1

(0
.5

1)
13

.0
6

(0
.6

6)
18

.6
8

(0
.9

5)
18

.9
6

(0
.9

6)
22

.0
0

(1
.1

1)

Ta
bl

e
2.

2:
Tr

an
sa

ct
io

n
tim

e
in

se
co

nd
s

fo
rP

os
tM

ar
k

an
d

w
al

lc
lo

ck
tim

e
fo

ra
pp

le
ve

lb
en

ch
m

ar
ks

.
Ta

bl
e

sh
ow

s
bo

th
ab

so
lu

te
an

d
re

la
tiv

e
pe

rfo
rm

an
ce

nu
m

be
rs

,c
on

tra
st

in
g

M
FS

w
ith

Lo
ris

in
se

ve
ra

lc
on

fig
ur

at
io

ns
.

B
en

ch
m

ar
k

L
or

is
(w

ith
ou

tc
he

ck
su

m
m

in
g)

L
or

is
(w

ith
ch

ec
ks

um
m

in
g)

R
A

ID
0-

4
R

A
ID

1-
1

R
A

ID
1-

2
R

A
ID

4-
4

R
A

ID
0-

4
R

A
ID

1-
1

R
A

ID
1-

2
R

A
ID

4-
4

Po
st

M
ar

k
19

5.
00

19
7.

00
20

5.
00

26
8.

00
22

8.
00

20
4.

00
21

4.
00

31
9.

00

Ta
bl

e
2.

3:
Tr

an
sa

ct
io

n
tim

e
in

se
co

nd
s

fo
rd

iff
er

en
tR

A
ID

le
ve

ls
.

E
ac

h
co

lu
m

n
R

A
ID

X
-Y

sh
ow

s
th

e
pe

rfo
rm

an
ce

of
R

A
ID

le
ve

lX
in

a
Y-

di
sk

co
nfi

gu
ra

tio
n.

34 CHAPTER 2. LORIS

 0

 20

 40

 60

 80

 100

 0 60 120 180 240 300 360
 0

 150

 300

 450

 600
A

v
a

ila
b

ili
ty

 (
%

 f
a

ile
d

 o
p

s
/s

e
c
)

P
e

rf
o

rm
a

n
c
e

 (
c
o

m
p

le
te

d
 o

p
s
/s

e
c
)

Time (sec)

First failure

Second failure

Availability Performance

Figure 2.5: Graceful degradation case 1: Unreplicated files. The figure shows how Loris exhibits
graceful degradation under unexpected failures. Each disk failure results in a third of files being
inaccessible since files are not replicated. But the system continues to survive with an availability
of around 33 % even after two disk failures.

also be used with other RAID levels in a file-level RAID.

With three disks, there are three possible combinations that can be chosen to
protect a file against a single disk failure: D1-D2, D1-D3, and D2-D3. Our logical
layer rotates files across these combinations. For instance, the first file is mirrored
on disks D1-D2, second on D1-D3, third on D2-D3, fourth again on of D1-D2, and
so on.

As it can be seen in Figure 2.6, the first failure has no effect on the system,
as it would be with block-level RAID, since every file is protected against a single
disk failure. A second failure would result in a block-level RAID implementation
shutting down. In our case, we can see that the availability drops only by a third. All
the files that were mirrored across the two failed disks are now inaccessible. Thus,
even with just a single functional disk, Loris is able to maintain an availability close
to 66 %.

We would like to point out that these techniques are complementary to higher
levels of protection, that is, they can be used in combination with RAID 6 techniques,
for instance, to build a file-level RAID array with extremely high reliability and
availability. Furthermore, these techniques can be customized on a per-file basis,
with different files using different levels of protection.

2.6. EVALUATION 35

2.6.3 Performance Evaluation

In this section we present the performance evaluation of Loris. We first present an
evaluation of the overhead of two important aspects of our new architecture: the
parental checksumming scheme as implemented in the physical layer, and the pro-
cess isolation provided by splitting up our stack into separate processes. We then
present an evaluation of our file-level RAID implementation.

Checksumming and Process Isolation

We now evaluate parental checksumming and process isolation using two mac-
robenchmarks: (1) PostMark, configured to perform 20,000 transactions on 5,000
files, spread over 10 subdirectories, with file sizes ranging from 4 KB to 1 MB,
and read/write granularities of 4 KB, and (2) an application-level macrobenchmark,
which we will refer to henceforth as applevel, consists a set of very common file sys-
tem operations including copying, compiling, running find and grep, and deleting.

We tested three checksumming schemes: no checksumming, checksumming lay-
out only, and full checksumming. In the layout-only scheme, the CRC32 routine has
been substituted by a function that always returns zero. This allowed us to mea-
sure only the I/O overhead imposed by parental checksumming. We ran these three
schemes in both the single-process and the multiprocess Loris versions, yielding six

 0

 20

 40

 60

 80

 100

 0 60 120 180 240 300 360
 0

 150

 300

 450

 600

A
v
a

ila
b

ili
ty

 (
%

 f
a

ile
d

 o
p

s
/s

e
c
)

P
e

rf
o

rm
a

n
c
e

 (
c
o

m
p

le
te

d
 o

p
s
/s

e
c
)

Time (sec)

First failure

Second failure

Availability Performance

Figure 2.6: Graceful degradation case 2: Rotated mirroring of files. The figure shows how Loris
exhibits graceful degradation with files protected against a single disk failure. Each of the three
possible pairs holds a third of the files redundantly. As a result, the system continues to serve
two-thirds of all its files, with an availability of 66 %, even under two disk failures.

36 CHAPTER 2. LORIS

configurations in total.

Table 2.2 shows the performance of all six new configurations, compared to the
MFS baseline. Loris outperforms MFS in most configurations with PostMark. This
is primarily due to the fact the delete algorithm used by Loris performs better than
MFS, as seen in the applevel delete benchmark in Table 2.2.

Looking at the applevel results, it can be seen that the single-process case suffers
from an overhead of about 8 % compared to MFS during the copying phase. This
overhead is due to the difference in caching logic between Loris and MFS.

The block-level buffer cache in MFS makes it possible to merge and write out
many physically contiguous files during sync periods. Since Loris has a file-level
cache, it is unaware of the physical file layout and hence might make less-than-
optimal file evictions. In addition, our prototype also limits the number of files that
can be written out during a vectored write call, to simplify implementation. These
two factors result in a slight overhead, which is particularly noticeable for workloads
with a very large number of small files.

Since the copy phase involves copying over 75,000 files, of which a significant
percentage is small, there is an 8 % overhead. Even though the overhead is small,
we plan on introducing the notion of file group identifiers, to enable the passing file
relationship hints between layers. The cache layer could then use this information to
evict physically contigous files during a vectored write operation. This and several
other future optimizations should remove this overhead completely.

Another important observation is the fact that in both single-process and mul-
tiprocess configurations, the checksum layout incurs virtually no overhead. This
means that the entire parental checksumming infastructure is essentially free. The
actual checksum computation, however, is not, as illustrated by a 7 % overhead (over
no checksum case) for PostMark, and 3-19 % overhead in applevel tests.

It should be noted that with checksumming enabled, every file undergoes check-
sum verification. We would like to point out that with per-file policy selection in
place, we could reduce the overhead easily, by either checksumming only impor-
tant file data, or by adopting other lightweight verification approaches as opposed
to CRC32 (such as XOR-based parity). For example, we could omit checksumming
compiler temporaries and other easily regeneratable files.

We also see that the multiprocess configuration of Loris suffers consistently, with
an overhead ranging between 11-45 %. This contradicts the results from PostMark,
where the multiprocess case has an overhead of only about 3 % compared to the
single-process case. This is again due to the fact that the applevel benchmark has
a large number of small files compared to PostMark. Data copying and context
switching overheads constitute a considerable portion of the elapsed time when small
files dominate the workload. With large files, these overheads are amortized over the
data transfer time. We confirmed this with separate microbenchmarks, not shown
here, involving copying over a large number of small files.

2.7. CONCLUSION 37

File-Level RAID

In this section, we evaluate our RAID implementation. We test two RAID 1 configu-
rations: (1) RAID 1 on a single disk, and (2) RAID 1 with mirroring on 2 disks. The
RAID 0 and RAID 4 implementations use all four disks, with RAID 0 configured
to use 60 KB stripe units, and RAID 4 80 KB stripe units for all files. These stripe
sizes align full stripe writes with the maximum number of blocks in a vectored write
request (240 KB).

We ran PostMark in a different configuration compared to the earlier bench-
mark—20,000 transactions on 60,000 files, distributed across 600 directories, with
file sizes ranging from 4 KB to 10 KB. Small-file workloads are challenging for
any RAID implementation since they create lots of partial writes. We chose this
benchmark to evaluate how our file-level RAID implementation handles small files.

The most important observation from the PostMark results is that RAID 4 is
much slower than RAID 1 with mirroring. The three main reasons for this slowdown
are as follows. (1) RAID 4 suffers from the partial-write problem we mentioned ear-
lier. It is important to note that such partial writes would translate into partial stripe
requests in a block-level RAID implementation. (2) Parity computation in RAID 4
is expensive compared to mirroring in RAID 1. Both block and file RAID imple-
mentations share these two problems. (3) Our implementation of RAID 4 negates
the advantages of vectored writes for small files.

To illustrate this problem, consider a vectored write request at the logical layer.
The algorithms used to process this request in our implementation are very similar to
a block-level RAID one. Each request is broken down into individual file requests,
which are further divided into constituent stripe requests, and each stripe request is
processed separately. In our current prototype, we implemented sequential process-
ing of stripe requests. Thus, if the workload consists of many small files, a vectored
write gets translated into single writes for each file, negating the benefit of vectoring
the write request.

The solution to all the aforementioned problems is simple in our case. Parity
amortizes the cost of redundancy only when write requests span multiple stripe units.
Thus, we are better off using RAID 1 for small files. As our RAID implementa-
tion is file-aware, we can monitor and collect file read/write statistics, and use it to
(re)assign appropriate RAID levels to files. Matching file access patterns to storage
configurations is future work.

2.7 Conclusion

Despite dramatic changes in the storage landscape, the interfaces between the layers
and the division of labor among layers in the traditional stack have remained the
same. We evaluated the traditional stack along several different dimensions, and
highlighted several major problems that plague the compatibility-driven integration

38 CHAPTER 2. LORIS

of RAID algorithms. We proposed Loris, a file-level storage stack, and evaluated
both reliability and performance aspects of our prototype.

3
Integrated System and Process Crash Recovery in

the Loris Storage Stack

Abstract

In this paper, we look at two important failure classes in the storage stack: system
crashes, where the whole system shuts down unexpectedly, and process crashes,
where a part of the storage stack software fails due to an implementation bug. We
investigate these two problems in the context of the Loris storage stack. We show
how restoring metadata consistency can provide a common first step for recovery
from both types of crashes. In addition, we present fine-grained and corruption-
resistant data resynchronization as the second step for system crash recovery, and
an in-memory roll-forward log that can provide strong guarantees as the second step
for process crash recovery in a microkernel setting. We implement our findings in
our Loris prototype, and implement a new crash-resistant on-device layout as part
of our proof of concept. The evaluation shows that our approach provides increased
reliability at a reasonable performance cost.

39

40 CHAPTER 3. INTEGRATED SYSTEM AND PROCESS CRASH RECOVERY

3.1 Introduction

In virtually any computer system, there is a component responsible for storing users’
data: the storage stack. A large part of the storage stack is software (usually) in the
operating system. While it is important that the storage stack has proper perfor-
mance, we argue that reliability is at least as important. After all, not dealing with
storage stack failures can translate directly into data loss. In this paper, we look at
two threats: system crashes, and storage stack software (process) crashes.

A system crash is a whole-system failure of a machine. The causes of such fail-
ures include power outages, hardware failures, and operating system kernel crashes.
In the event of a system crash, the storage stack does not get the opportunity to write
out dirty data in memory, or even complete the current operation. This may result
in inconsistent on-device data structures, which could lead to failure to reload these
data structures from disk after the system has restarted. That in turn could lead to
data loss.

Another major reliability threat comes from software bugs. Previous research
has suggested that the number of bugs in software is roughly linear in its number of
lines of code [111]. A full-fledged operating system storage stack can easily consist
of hundreds of thousands of lines of code, and this makes the presence of many bugs
highly probable. Any such bug has the potential to subvert the proper operation of
the storage stack and, again, cause data loss.

In previous work, we have designed a new storage stack called Loris [9]. This
storage stack has advantages in the areas of reliability, heterogeneity, and flexibility.
In this paper, we investigate how to add support in Loris for system crash recovery,
and for process crash recovery from transient failures in the lower layers of the stack,
without compromising Loris’ other reliability guarantees.

We show that the recovery procedure for both types of crashes require a single
shared first step, namely restoring consistency of all metadata maintained internally
by the storage stack. We argue that the storage stack should incorporate first-class
support for this, and to this end we add the concept of global consistent checkpoints
to Loris.

After this shared first step, each of the crash recovery procedures requires a dif-
ferent second step. For system crashes, recovery involves restoring proper redun-
dancy of (user) data, using a resynchronization procedure similar to that of tradi-
tional software RAID. We present a data resynchronization approach that is both
fine-grained and corruption-resistant. For process crashes, recovery involves an in-
memory log to roll forward from the last checkpoint to the current state. We employ
this approach in a microkernel environment to provide better recovery guarantees
than any previous work.

We implement these ideas in our Loris prototype. As part of this, we present
a new crash-resistant device layout and a corresponding software implementation
called “TwinFS.” We evaluate our work using performance benchmarks and relia-
bility tests, aiming to prove that our design can be adopted in environments where a

3.2. BACKGROUND: THE LORIS STORAGE STACK 41

File

system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software

RAID

(a) (b)

Figure 3.1: The figure shows (a) the layers of the traditional stack, and (b) the new arrangement
in Loris. The layers above the dotted line, and only those, are file-aware.

moderate performance overhead is acceptable, but high reliability is a requirement.
The rest of the paper is organized as follows. Sec. 3.2 describes the Loris storage

stack that we developed previously. In Sec. 3.3, we describe the two main problems
to address, and we sketch an architecture that integrates a solution for both. In
Sec. 3.4–3.6, we present the design and implementation of the three parts that make
up the solution. In Sec. 3.7, we evaluate the prototype. Sec. 3.8 covers related work.
Sec. 3.9 concludes and lists future work.

3.2 Background: the Loris storage stack

The traditional storage stack as found in most operating systems is shown in Fig. 3.1a.
A Virtual File System (VFS) layer multiplexes application calls across file systems.
File systems are generally designed to operate on one device, although a software
RAID layer may transparently add storage redundancy using multiple devices below
it. The actual devices are controlled by disk driver software.

The Loris stack was formed by first splitting the traditional file system into three
layers (naming, cache, and layout), and then swapping the layout layer (also called
the physical layer) and the traditional software RAID layer (forming the logical
layer). The VFS and disk driver layers are left unchanged. The result is depicted in
Fig. 3.1b.

The Loris stack is completely file-oriented: the four layers communicate in terms
of files only. Each file has a unique file identifier, and a small set of attributes associ-
ated with it. The layers use and implement the following operations: create, delete,
read, write, truncate, getattr, setattr, and sync.

42 CHAPTER 3. INTEGRATED SYSTEM AND PROCESS CRASH RECOVERY

Compared to the traditional stack, the Loris stack has reliability, heterogeneity,
and flexibility advantages [9]. We have built a Loris prototype on the MINIX 3
microkernel system [62], where all layers and file stores are separate user space
processes. We will now describe the four layers.

3.2.1 Layers of the stack

At the bottom, the physical layer consists of one or more file stores. Each file store
manages one underlying device, and maintains the layout on that device. It exposes
an independent set of physical files, each with a physical file ID chosen by the file
store. Each file store has a small local cache for the metadata specific to that file
store, which we call “layout metadata.” All file stores are required to implement
parental checksumming in their layout [9]. As a result, they can reliably detect all
whole-device failures as well as any form of (overt and silent) corruption.

Our prototype implements one file store called “PhysFS,” based on the traditional
UNIX file system. In PhysFS, the layout metadata structures form a virtual tree. All
parents in this hierarchy point to their children by means of safe block pointers. A
safe block pointer consists of the block number of the child block, and a checksum
of its contents. File metadata, including attributes, are stored in inodes. Inodes use
safe block pointers to point directly to data blocks, and to indirect blocks that contain
(safe) pointers to either data blocks or other indirect blocks. Free inodes and blocks
are tracked using inode and block bitmaps. The parental checksumming hierarchy
is completed with three special inodes that point to the blocks of the inode area and
bitmap areas. These inodes are stored in a root block, which is self-checksummed
and forms the root of the metadata tree.

The inode, bitmap, and root block metadata areas are preallocated and statically
sized. Out of all the layout metadata, only indirect blocks are allocated dynamically,
and stored together with data blocks in the data area.

The logical layer implements a file-based version of RAID, providing the ab-
straction of logical files. Each logical file is made up of one or more physical files
on different file stores. The logical layer multiplexes operations across the file stores
in a RAID-like fashion. For example, a two-way mirrored logical file is stored as
two identical physical files on different file stores (and thus devices). The logical
layer keeps a mapping, which for each logical file specifies: the RAID level, the
corresponding file stores and physical file IDs, and other RAID parameters such as
the stripe size. The logical layer stores the mapping in a special file that is mirrored
across all file stores. This file is part of the global metadata of the Loris stack, which
we call “stack metadata.”

The logical layer also implements RAID-like recovery mechanisms. If any of the
file stores report a checksum error, recovery is attempted. In case of permanent fail-
ure, operations will continue to be served as long as enough redundancy is available.
Redundancy guarantees follow the standard RAID failure model [113], although on
a per-file basis.

3.3. THE CASE FOR INTEGRATED RECOVERY 43

The cache layer implements in-memory caching of logical file data. It uses a
large amount of system memory for caching the contents of files.

The naming layer provides a POSIX abstraction by translating VFS operations
to Loris operations. This layer implements directories, which are stored using Loris
files. Lower layers are only aware that these directory files are part of the stack
metadata. The naming layer uses Loris’ file attributes to store POSIX attributes. It is
responsible for picking logical file IDs for new files, and for tracking open deleted
files.

3.3 The case for integrated recovery

In this section, we present the two challenges that we would like to address in the
Loris storage stack: recovery from system crashes (Sec. 3.3.1) and process crashes
(Sec. 3.3.2). We then show that we can exploit significant overlap between the solu-
tions to both problems (Sec. 3.3.3).

3.3.1 Recovering from system crashes

Metadata consistency

In the traditional storage stack, the file system typically implements a consistency
scheme. Such a scheme returns the on-device structures to a consistent state after
a system crash. Some limit themselves to metadata for performance reasons; oth-
ers also cover the user data. Well-known schemes include journaling [53], logging
[112], copy-on-write (CoW) [66], and soft updates [43].

All such schemes can be roughly described as periodically establishing consis-
tent restore points, checkpoints, that can be reloaded such that any potentially incon-
sistent changes made after it are discarded upon system crash recovery. For example:
copy-on-write schemes do this by writing a new root block; logging and journaling
schemes do this by writing a commit record, and soft-update schemes effectively
create a new checkpoint upon every metadata write.

In the Loris stack, each file store is free to implement a layout tailored to its
underlying device. Layout metadata structures (such as inodes) are thus managed
on a per-device basis. Consistency of these structures must therefore be managed
on a per-device basis as well. Thus, each file store is necessarily responsible for
managing its own local checkpoints.

However, it is not enough for each file store to restore its local layout metadata to
just any consistent state after a system crash. The higher layers of the stack rely on
the file stores in the physical layer to properly store stack metadata. For example, it
is crucial for the stack that all mirrored copies of directories and the mapping are in
sync and their contents are consistent with the file stores. Thus, the first step towards
system crash recovery is restoring global metadata consistency across all the file
stores, which includes both layout metadata and stack metadata.

44 CHAPTER 3. INTEGRATED SYSTEM AND PROCESS CRASH RECOVERY

There are two different approaches that we can adopt for this step. The first is to
allow file stores to take local checkpoints whenever they choose, and then bring them
back in sync at restore time. However, this approach imposes several requirements.
For example, bringing the file stores back in sync can only be done if the file stores
keep on-device logs that allow them to roll each other back or forward as appropriate.
This rules out consistency schemes that do not keep such a log (e.g., copy-on-write).
In addition, the file stores would have to become aware of consistency requirements
for stack metadata updates, for example between file creates and directory writes,
so as to create consistent local checkpoints. This effectively imposes stack-wide
support for atomic transactions.

A better alternative is to globally coordinate the creation and reloading of check-
points throughout the whole stack, and across all file stores. That means that all file
stores were in sync at the time that the local checkpoints were taken, and they are
thus again in sync if the same checkpoints are reloaded after a system restart. In
Loris, we can extend the sync call to establish such global checkpoints. The whole
stack is involved, so all layers get the chance to flush any pending stack metadata
changes. The only downside is that the sync call must be a stack-wide barrier oper-
ation: while the checkpoint is being taken, any new state changes could subvert its
consistency. Overall, this approach is preferable because it is simple to implement,
and gives each file store a large freedom in choosing a local consistency scheme that
is optimal for the underlying device.

Data resynchronization

The checkpointing system protects metadata, but for performance reasons it may
not fully cover user data. A system crash may thus cause inconsistency between
redundantly stored copies of the same data, due to a partially completed multidevice
write operation. For example, a data write call to a mirrored file may make it to one
mirror before a crash, but not to the other.

Traditional software RAID faces the same issue. For this reason, it typically
implements resynchronization, whereby all blocks from the devices are read in and
checked to find and fix any cross-device inconsistencies after a system crash. A
similar resynchronization process is also necessary for user data in Loris. Thus, the
second step towards system crash recovery is resynchronizing data.

However, traditional software RAID resynchronization suffers from two major
problems. First, the RAID layer has no knowledge about the file system or even
about liveness of blocks, and thus has to resort to scanning all devices in their en-
tirety, including all metadata, data, and unused blocks. This may take a prohibitively
long time–in the order of magnitude of hours to days. Second, the RAID layer can-
not tell whether an inconsistency is the result of the system crash or data corruption.
It may thus restore RAID consistency by overwriting a valid copy of data with a
corrupted one, causing data loss. This is known as the RAID “write hole.” As we
show later, we can significantly improve the approaches to solving both problems in

3.3. THE CASE FOR INTEGRATED RECOVERY 45

the Loris storage stack.

3.3.2 Recovering from process crashes

In a microkernel environment, most operating system components are implemented
as user space processes. Each such system process has its own address space and re-
strictions on inter-process communication (IPC), and as such, is an individual failure
domain. We use the term process crash to describe an observable failure in a system
process. A process is said to “crash” when it performs an illegal CPU or memory
operation, does not respond in time to periodic ping signals, performs disallowed
IPC, or exits prematurely, for example due to a failing assert. If the cause of the
crash is transient, repeating the operations leading up to the crash may not result in
a crash the next time. We only consider transient crashes.

MINIX 3 provides detection of process crashes and supports basic recovery.
When a process crashes, a fresh instance of the process is started. The internal
state of the crashed process is lost. This approach works well for MINIX 3’s device
driver processes (including the disk drivers in the storage stack), which have little to
no internal state [62]. However, other system components need to have their internal
state fully restored before they can continue normal operation.

In this work, we focus on process crash recovery of the lower two layers of
the Loris stack: the logical and physical layers. These layers form the largest part
of the entire stack, and typically contain large amounts of in-memory state–mainly
metadata structures that have been updated in memory as a result of application calls,
but have not yet made it to disk. We discuss the other layers in Sec. 3.9.

Our goal here is twofold. First, we want to provide recovery that is fully trans-
parent to applications. This means that system calls must not be aborted with an
error due to a process crash, and that the effects of earlier system calls must never
be lost. Second, we want to make no assumptions about what has happened inside
the crashed process prior to the crash. Thus, recovering the state from the crashed
process memory image is not an option, as this state may have been corrupted.

It is too costly to make a second in-memory copy of all process state and changes
to it; it is even more costly to constantly flush the latest state to disk. However, it is
possible to perform recovery using on-disk and in-memory state in combination. A
large part of the required state is on the device at any time, and the necessary remain-
ing part can be kept in memory until it is stored on disk. The recovery procedure
then consists of first reloading a previous state from disk, and afterwards replaying
from memory any state changes that have been made since.

3.3.3 Integrated recovery

We now show how both the recovery approaches can share the same first step. The
checkpointing system that forms the basis for system crash recovery can be used to
provide the first step toward process crash recovery as well. Thus, after a process

46 CHAPTER 3. INTEGRATED SYSTEM AND PROCESS CRASH RECOVERY

crash, the recovery starts by rolling back the logical and physical layers to the latest
checkpoint, discarding any state modified since then. The second step then consists
of rolling forward these layers from the latest checkpoint to the current state.

In the next three sections, we present the design and implementation of this over-
all approach in Loris. We explain each of the three necessary parts: restoring global
metadata consistency with checkpointing (Sec. 3.4), data resynchronization for sys-
tem crash recovery (Sec. 3.5), and in-memory roll-forward logging for process crash
recovery (Sec. 3.6).

3.4 Checkpointing

We will now describe the design and implementation of the checkpointing system in
Loris. As outlined, this system establishes global checkpoints by coordinating the
file stores’ creation of local checkpoints. For this work, we have developed a new
file store called “TwinFS,” which implements a new on-device layout with support
for local checkpoints. We start by describing this file store (Sec. 3.4.1). Then, we
define the requirements for file store consistency schemes in general (Sec. 3.4.2). Fi-
nally, we describe the procedures for establishing and reloading global checkpoints
(Sec. 3.4.3).

3.4.1 The TwinFS file store

TwinFS is based directly on our original PhysFS file store implementation as de-
scribed in Sec. 3.2.1. It adds the concept of checkpoints, by employing a copy-on-
write-like scheme for the blocks that are part of those checkpoints. We call such

U

U

(a) (b) (c)

Root

Inode

Indirect

Data

inode 1 inode 2

write

write

Figure 3.2: TwinFS hierarchy example. Each block’s left and right twins are shown; each latest
stable twin is grayed. The lines represent safe block pointers. As simplification, each inode block
contains only one inode. In (a), inode 1 has one indirect block pointing to a data block. In (b), this
data block is overwritten in-place, and its ancestors are updated with new checksums by writing to
the unstable (U) twins–up to but excluding the root block. In (c), a new checkpoint is established
by writing a new root block.

3.4. CHECKPOINTING 47

Boot block
Root blocks

Inode bitmap

Inodes Data area
Block

bitmap
Resync

log

Figure 3.3: High-level overview of the TwinFS on-device layout. The root, inode, and bitmap
blocks are metadata and thus protected. The data area contains both protected and unprotected
data blocks, as well as indirect blocks, which are metadata and thus protected. The
resynchronization log is described in Sec. 3.5.3.

blocks protected. At the very least, protected blocks are used to store all the stack
and layout metadata.

Each protected block has two preallocated on-device locations (“twins”). At any
time, one of these locations is used to store the “stable” version of the block: the
block as it was at the time of the last checkpoint. The other is used to store the
“unstable” version of the block: the most current version, which may be updated
several times before the next checkpoint is taken. When a checkpoint is taken, the
roles of all modified blocks are swapped: the unstable twin is marked stable, and
the previously stable twin will be used to store subsequent block updates. Unmod-
ified blocks are left untouched, so not all blocks switch twin sides between each
subsequent checkpoints. An example is shown in Fig. 3.2.

In theory, each of the two twins could be located anywhere on the device. We
simplify our implementation by hardcoding the block distance between each of the
two twins to a static twin offset. This way, we can represent the twin state of each
block using just two bits: one bit that identifies the last-modified twin (left or right),
and one bit that identifies whether the block has been modified since the last check-
point. The latter keeps the file store from having to track in memory which blocks
have been modified since the last checkpoint (and thus have already switched sides).

The two-bit twin state of each block is stored in the safe block pointer in its
parent. Marking a block as unstable thus implies recursively marking all parent
blocks as unstable, all the way up to the root of the hierarchy. Exactly the same
already happens in PhysFS due to updating the parental checksums. Hence, updating
the blocks’ twin state introduces no extra overhead. Note that unlike with true copy-
on-write schemes, the preallocation of the twins guarantees that no new blocks need
to be allocated in this process.

The overall TwinFS on-device layout is shown in Fig. 3.3. All layout metadata
blocks are protected using the “twinning” scheme. In the statically allocated meta-
data areas, this results in a repeated pattern of N left twins being followed by N
right twins, were N is the twin offset. These metadata areas are doubled in size as
a result. Indirect blocks in the data area are twinned as well. TwinFS can also pro-
tect the data blocks of selected files. First and foremost, this data block protection
is applied to the stack metadata files (logical mapping; directory files), since these
must be included in the checkpoints as per Sec. 3.4.2. As stated before, file data of

48 CHAPTER 3. INTEGRATED SYSTEM AND PROCESS CRASH RECOVERY

important user files can also be protected with this approach; however, it would be
costly (in performance and space usage) to protect all file data this way. Thus, in the
data area, the twin pairs of indirect blocks and protected data blocks are interspersed
with unprotected data blocks. When a protected block is created in the data area,
two physical disk block locations at a fixed separation must be allocated.

The root block of the layout scheme is “twinned” as well. Writing out a new
root block equals taking a new checkpoint, and this is done only as part of a sync
call. The root block is self-checksummed and contains a timestamp. A write cache
flush is performed on the underlying device both before and after writing out the root
block. Since the twin state of the root block cannot be stored anywhere, TwinFS has
to read in and verify the checksum of both root block twins at startup.

3.4.2 General consistency scheme requirements

During recovery, all file stores must agree on the checkpoint to reload. For some
file stores, this may be the penultimate checkpoint they have taken: it is possible
that a system or process failure occurs during the checkpointing operation, whereby
some file stores have finished establishing the checkpoint, and others have not. This
results in the following requirements for the consistency schemes employed by the
file stores: 1) it must always be possible to recover all (layout and stack) metadata to
the state in the last checkpoint; and, 2) right after taking one checkpoint locally, but
before this checkpoint has been finished across all file stores, it must remain possible
to restore the previous checkpoint as well.

TwinFS meets these requirements. At any time, one of the root block twins
identifies a stable checkpoint, since all of the metadata locations it refers to are stable
and thus are left intact at least until after taking the next checkpoint. Immediately
after taking a new checkpoint, both root block twins identify usable checkpoints,
and either can be reloaded. Once new “unstable” data has been written out, only the
latest checkpoint can be reloaded.

Even though we use only TwinFS in our prototype, each file store has the free-
dom to employ any consistency scheme that satisfies the stated requirements. This
includes several of the more well-known consistency schemes:

• Copy-on-write consistency schemes effectively implement checkpoints by per-
sisting new root nodes of the metadata tree. A minimum of two root nodes is
enough.

• For journaling schemes, each transaction has to span between two check-
points, and taking a checkpoint amounts to committing the current transaction.
Copying from the journal to the original location may commence only once
taking the checkpoint has finished globally.

• Logging schemes could be used as is, as long as the recovery procedure re-
stores the latest checkpoint without performing any roll-forward on metadata.

3.5. DATA RESYNCHRONIZATION 49

• However, soft update schemes rely on frequently updating metadata in-place.
This makes rollback impossible. Any such scheme is not suitable.

For consistency schemes that can overwrite data blocks in-place, such as some
forms of journaling, there is an additional requirement: a data block must never be
overwritten with contents of one file, if according to the last checkpoint this block
was assigned to another file. If this were allowed, the new data could be read from the
old file after a checkpoint restore, which could constitute a security violation. While
parental checksumming helps to protect against this case, it does not provide a secure
solution. In TwinFS, blocks that are freed are not reused until a new checkpoint is
taken. This equally applies to protected and unprotected blocks.

3.4.3 Taking and reloading checkpoints

New global checkpoints are established using the Loris sync operation, which trav-
els from the naming layer down the stack. This call causes all layers to flush pending
data and stack metadata updates, and tells the file stores to create a new checkpoint.
Sync calls are initiated upon application request (with POSIX’ sync or fsync), peri-
odically, and at system shutdown. During the sync operation, other state-changing
Loris operations are deferred.

Upon startup, the logical layer queries all file stores for valid checkpoints. In
response to this, all file stores return the timestamps of their valid checkpoints. If
the system shut down cleanly, or crashed while no sync call was ongoing, all file
stores will share the same latest checkpoint timestamp. If the system crashed dur-
ing a sync call, not all file stores may have the latest checkpoint, but they will all
have the penultimate one. After all file stores have reported their available check-
point timestamps, the logical layer instructs them to load the most recent common
checkpoint.

3.5 Data resynchronization

Some consistency schemes include all data in the checkpoints. Examples would be
a pure copy-on-write or log-structured layout. Journaling and twinning layouts may
or may not. For those that do not, data resynchronization may be needed to restore
full consistency after a system crash.

In Sec. 3.3.1, we listed two problems in traditional RAID resynchronization. We
now show that the Loris stack offers the opportunity to improve on both problems:
the large area to scan (Sec. 3.5.1) and the possibility of corruption (Sec. 3.5.2). We
then describe how TwinFS implements support for data resynchronization (Sec. 3.5.3),
and we outline the full resynchronization procedure (Sec. 3.5.4).

50 CHAPTER 3. INTEGRATED SYSTEM AND PROCESS CRASH RECOVERY

3.5.1 Limiting the areas to scan

In the Loris stack, we can very narrowly define the areas to which data resynchro-
nization should be applied. First of all, since the file stores are completely file-based,
unused parts of the disk are inherently excluded from resynchronization. Further-
more, resynchronization only involves data files. The layout metadata and the stack
metadata files are already covered by the checkpointing system.

Second, Loris’ per-file policies allow certain files to be stored with more re-
dundancy than others. Files that are stored on one device only, need not be resyn-
chronized. Moreover, the per-file policy system allows the user to assign a level of
importance to a file. Files that are deemed especially important by the user, can be
included in the checkpoints. This excludes them from resynchronization.

Finally, resynchronization is needed only for data blocks that have been overwrit-
ten in-place since the last checkpoint. After all, not-in-place updates are simply dis-
carded when restoring a checkpoint. Since the security requirement from Sec. 3.4.2
imposes that no file data can be overwritten with another file’s data, resynchroniza-
tion can be limited to in-place overwrites within the same file.

3.5.2 Verifying data

If a data block is overwritten in-place, and the last checkpoint is restored afterwards,
the parental checksum of the block will no longer match. The file store can then
no longer discern whether the block was merely overwritten, or has been subject of
corruption. Thus, it has to either discard the data block, resulting in data loss, or
ignore the checksum, risking to pass corrupted data to the application. For a reliable
stack, neither is acceptable.

The file store must therefore make sure that when a data block is overwritten in-
place, its new parental checksum has already been written to disk. The file store thus
has to persist this information outside the checkpoints. This can be done by means
of a log of “checksum records.” Depending on the consistency scheme, this may be
a dedicated resynchronization log, or be integrated in the main journal or main log.
Before a data block is overwritten, the file store persists a record that contains the
new checksum for the block. After restoring the last checkpoint, the file store can
scan the log for these records.

The checksum records have two purposes. First, it allows the file store to tell
whether the contents of an overwritten data block are valid or corrupted. The block
contents are considered valid if the block checksum matches one of the recorded
checksums. After all, a system failure may occur between writing the record and
writing the data block, in which case an earlier checksum is still valid. This check-
sum is possibly in an earlier checksum record and otherwise in the last checkpointed
copy of the inode.

Second, it allows the file store to tell exactly which blocks have been overwritten
and thus should be subject to resynchronization. This limits resynchronization ex-

3.5. DATA RESYNCHRONIZATION 51

actly to the areas defined in the previous section. However, even though files that are
stored without redundancy also require no resynchronization, checksum records also
have to be generated for those files, because the corruption concern applies equally
to them.

If a system crash resulted in a torn write of a data block, none of the checksums
will match. This case cannot be distinguished from other forms of corruption, and
the data block will be lost. Given sufficient redundancy, it can be restored from
other file stores. In the worst case however, every device suffers from a torn write.
By including their file data in the checkpoints, stack metadata files and important
user data files are protected from this problem.

3.5.3 The TwinFS resynchronization log

Since TwinFS does not include all data blocks in its checkpoints, it may end up over-
writing unprotected data blocks in-place. Thus, TwinFS must perform data resyn-
chronization. To this end, we add a dedicated resynchronization log to it, which uses
a reserved device area to store checksum records.

Each checksum record contains a physical file ID, a file block offset, and the
new block checksum. Pending checksum records are aggregated into “log blocks,”
which are self-checksummed and contain the corresponding checkpoint timestamp.
In order to let file stores generate and aggregate checksum records ahead of the actual
write operations, we add a prewrite Loris call. This call is sent down from the cache
to the physical layer when an application performs a write call, providing an early
copy of the data to the file stores. Whenever TwinFS receives a write operation
that overwrites unprotected blocks, it ensures that the corresponding log blocks have
been flushed to the device first.

After a checkpoint has been reloaded, TwinFS goes through the log area, and
processes log blocks that have both a valid checksum and a matching checkpoint
timestamp. It performs two actions on the records in each valid log block. First, it
compares the checksum in the record to the computed checksum of the correspond-
ing data block. If those match, it updates the data block’s safe block pointer (in
the file inode or an indirect block) with this checksum, effectively marking the data
block as not corrupted. Second, it reports the file byte range from the record to the
logical layer, for the purpose of resynchronization across file stores.

3.5.4 Resynchronization procedure

After the file stores have checked local data checksums, the next step is resynchro-
nization across file stores. After all, the redundantly stored copies may still be out
of sync.

The resynchronization procedure is performed by the logical layer as part of
system crash recovery, right after restoring the appropriate checkpoint. The logical
layer queries all file stores for a list of physical file IDs and byte ranges that are

52 CHAPTER 3. INTEGRATED SYSTEM AND PROCESS CRASH RECOVERY

to be resynchronized. In the worst case, resynchronization involves all data from
all unprotected, redundantly stored files; in the common case, only a few files and
blocks will be involved. File stores that include all data in their checkpoints always
report an empty set.

The logical layer then maps each reported (physical) file ID to a logical file
ID. We do this by storing the logical file ID as an attribute of each physical file.
The logical layer reads in the reported byte ranges from all file stores involved in
storing this logical file, and optionally writes back resynchronized data to some of
them. In the case of (RAID1-like) mirroring, all mirrors are synchronized to the
contents from the first file store that does not report a checksum error. In the case of
(RAID4/5-like) parity-striping, the parity is recomputed, unless one of the file stores
reports a checksum error. In that case, that file store’s contents are recomputed. If
more checksum errors are reported than supported by the RAID failure model, the
affected byte ranges are marked as bad, and will result in an error being returned to
the application when being read later.

By disregarding data copies with checksum errors before performing resynchro-
nization across file stores, we solve the write hole problem. We do not offer guaran-
tees about which valid data copy is restored, however. Content-level data consistency
is thus left to applications, as with standard RAID.

3.6 In-memory roll-forward logging

The process crash recovery procedure consists of two steps: first restoring the last
checkpoint, and then rolling forward the lower layers by replaying operations. The
cache layer, which we currently assume to be a stable point in our stack, performs
the second step, by keeping an in-memory log of operations. We describe how this
log interacts with the checkpointing system (Sec. 3.6.1), the operation of logging
and replay (Sec. 3.6.2), and the resulting assumptions and guarantees for process
crash recovery (Sec. 3.6.3).

3.6.1 Interaction with checkpointing

When any of the processes in the lower two layers crashes, we choose to restart all
of them, including all file stores. This has two advantages. First, this saves us from
adding extra custom recovery code in those processes. Upon their restart, they will
simply cooperate in restoring the latest checkpoint as part of their normal startup
procedure. Second, there are no corner cases to handle when multiple processes
crash at once.

The logical layer can detect when any file store or itself has restarted. First, when
a Loris process is started, it will report its presence to the next layer up the stack. An
unexpected presence notification from a file store thus indicates that a file store has
restarted. Second, when a MINIX 3 system process crashes, it is restarted with a flag
indicating that it crashed. If the logical layer itself restarts, this flag will be set.

3.6. IN-MEMORY ROLL-FORWARD LOGGING 53

Upon detecting a file store crash, the logical layer commits suicide (gracefully),
forcing itself to restart. When it comes back up after a restart, the restart flag will be
set; this may be the a result of either a local crash or committing suicide. The logical
layer then kills and thus restarts all file stores. The result is that regardless of where a
crash (or multiple concurrent crashes) happened, both the logical and physical layers
will end up being restarted with a fresh state.

After that, the logical layer will perform the standard checkpoint reloading pro-
cedure as part of its startup procedure. However, when the logical layer’s restart
flag is set, it skips the unnecessary data resynchronization phase: any in-file over-
writes that took place after taking the latest checkpoint but before the crash, will be
performed again.

3.6.2 Logging and replay

At all times, the cache keeps an in-memory log of operations performed after taking
the last checkpoint. This log is cleared upon each successful sync call. All Loris
operations that modify state in the lower layers are stored in the log: create, delete,
write, truncate, and setattr. Since the cache uses pages as the smallest unit of storage,
the new version of an entire page is stored as part of the log entry for a Loris write
operation. Multiple writes to the same page are merged, and pages are removed
from the log as appropriate upon Loris truncate and delete calls. As long as a page
is in the main cache, the log only keeps a pointer to it; a copy is made for the log
when the page is evicted from the main cache. If the total size of the log exceeds a
configurable threshold, the cache makes an upcall to the naming layer to trigger an
early sync. Note that the naming layer’s subsequent flush will first cause the log to
expand further (but see Sec. 3.9 on future work).

After startup, the logical layer always announces its presence to the cache layer.
The cache layer can tell from an unexpected presence announcement that the logical
layer has restarted. The cache layer then cancels all ongoing downcalls, replays the
in-memory log by issuing all operations in the log in sequence, and, upon success,
restarts the previously ongoing calls. None of this is exposed to applications in any
way. If the replay procedure fails, it is retried for a predefined number of times.
Upon consistent failure, application-transparent recovery becomes impossible, and
the entire stack is shut down to prevent further data loss.

There is one exception. It may happen that the system crashes before a sync call
completes, but after all file stores have established a new checkpoint. The newer
checkpoint would then be reloaded, causing unexpected failures during replay. For
this reason, the logical layer informs the cache layer about checkpoint timestamps,
and upon a mismatch after a crash, the cache clears its log instead of replaying it.

54 CHAPTER 3. INTEGRATED SYSTEM AND PROCESS CRASH RECOVERY

B
enchm

ark
PhysFS

PhysFS+df
Tw

inFS-0
Tw

inFS-4
Tw

inFS-8
Tw

inFS-16
Tw

inFS-32
PostM

ark
(transaction

tim
e,sec)

1097
1086

1101
1192

1158
1144

1150
FileB

ench
File

Server(ops/sec)
349.53

350.25
372.18

343.78
344.16

344.16
343.47

FileB
ench

W
eb

Server(Z
ipf)(ops/sec)

549.06
548.01

571.78
535.94

536.04
540.82

543.57
O

penSSH
build

(sec)
618.78

620.20
629.23

630.96
630.48

630.41
631.88

Table
3.1:

Transaction
tim

e
in

seconds
forPostM

ark
(low

eris
better),operations

persecond
forFile

S
erverand

W
eb

S
erver(higheris

better),and
w

allclock
tim

e
forO

penS
S

H
build

(low
eris

better).
Perform

ance
is

show
n

forP
hysFS

,P
hysFS

w
ith

delayed
freeing,and

Tw
inFS

w
ith

various
tw

in
block

offsets.

3.7. EVALUATION 55

3.6.3 Assumptions and guarantees

Due to the process isolation offered by the microkernel environment, the only way
in which failures can propagate, is through inter-process communication between
processes. Moreover, since we completely restart the logical and physical layers, we
throw out all of their internal state, including any state that has been corrupted as
part of the failure.

As a result, we make only two assumptions about the behavior of any failing pro-
cess: 1) no “bad” (corrupted) results are passed up to the cache; 2) no bad (meta)data
may be written to the devices, unless they are discarded again once a checkpoint is
restored. The second point implies that writing out corrupted unstable blocks is
allowed in the failure model, as long as a crash happens before these blocks are
made stable. This facilitates performing internal integrity checks before taking a
new checkpoint.

As long as the two assumptions are not violated, this approach guarantees proper
recovery from any bad behavior in the lower layers. This includes: arbitrary mem-
ory overwrites (wild writes), including heap and stack corruption; arbitrary function
calls; infinite loops; and, arbitrary allocation of resources available to the processes,
including memory.

3.7 Evaluation

We now present a performance and reliability evaluation of our prototype. All of the
following experiments were conducted on an Intel Core2Duo E8600 PC, with 4GB
of RAM, and two 500GB 7200RPM Western Digital Caviar Blue (WD5000AKS)
SATA hard drives for testing purposes. The tests were run on the first 8GB of the
disks. All benchmarks were run on MINIX 3. In order to stress the lower layers, the
cache layer was given a small (64MB) buffer cache. A sync call is made once every
five seconds.

3.7.1 Performance evaluation

For performance evaluation, we used these macrobenchmarks: PostMark, altered
to perform a sync call before the transactions phases, configured to perform 80,000
transactions on 40,000 files in 10 directories, with file sizes between 4KB and 28KB,
using 4KB I/O operations; FileBench File Server, altered to use the same randomly
chosen random seed for each round of experiments, configured with 10,000 files
at an average of 20 files per directory; FileBench Web Server, altered to pick files
using a Zipf distribution pattern in order to introduce locality, configured with 25,000
files with an average of 20 per directory; and finally, an OpenSSH build test which
unpacks, configures and builds OpenSSH.

56 CHAPTER 3. INTEGRATED SYSTEM AND PROCESS CRASH RECOVERY

TwinFS

We started by evaluating the performance of TwinFS, on a single disk, initially with-
out a resynchronization log. Application data was unprotected (not twinned). We
compared various TwinFS configurations to the original PhysFS file store imple-
mentation. We did not succeed in time to get a journaling file store to perform well
enough for a head-on comparison to another crash-consistent layout.

In early experiments, TwinFS kept outperforming PhysFS. This turned out to
be due to TwinFS’ delayed block freeing, which resulted in more favorable block
allocation patterns. We modified PhysFS to perform the same delayed freeing; we
refer to this version as “PhysFS+df.”

For TwinFS, we varied the hardcoded offset between the left and right twin of
all pairs. A twin offset of 1 block means the twins are adjacent on the device. We
show the results for offsets of 4, 8, 16, and 32 blocks; other twin offsets did not
result in overall more favorable results. For comparison purposes, we also tested a
twin offset of 0, causing all blocks to be updated in-place. This effectively reduces
TwinFS to PhysFS+df, with one major difference: TwinFS issues device write cache
flushes when writing the root block.

Table 3.1 shows the median performance result out of five runs for each config-
uration and benchmark. For all tests, the cache size was too small to contain the
working set. This resulted in long run times and a significant amount of I/O. Sur-
prisingly, in some tests, TwinFS-0 performed better than PhysFS+df. We confirmed
that this is due entirely to the added write cache flush call–an oddity of the disk used.

Compared to the best of the crash-unsafe alternatives, TwinFS with a twin off-
set of 16 blocks yielded the overall best performance in our tests (with an over-
head of 2–8%), although only by small margins compared to the other twin offsets.
Microbenchmarks showed that performance degrades when otherwise contiguous
metadata blocks use a mix of left and right twins, destroying contiguity. When this
is not the case, performance goes up with larger twin offsets, because in that case
the stretches of contiguous blocks are larger as well.

Data resynchronization

We used the same single-disk configuration and the same set of benchmarks to eval-
uate the overhead of the TwinFS resynchronization log. For each benchmark, we
also measured the maximum amount of data that would have to be resynchronized
after a system crash, if all the files were stored with redundancy.

The resulting performance numbers are shown in Table. 3.2. The extra run-time
overhead was negligible. Also, the worst-case amount of data to resynchronize in
case of a crash is very small in all tests–we confirmed that the resulting resync times
are negligible (sub-second) even if all files were mirrored on two disks. Finally (not
shown), none of the benchmarks ended up writing more than a handful of resync log
blocks between any two checkpoints, suggesting that TwinFS requires only a small

3.7. EVALUATION 57

Benchmark T-4 T-8 T-16 T-32 Peak
PostMark 1197 1161 1146 1153 1663 KB
File Server 342.61 345.74 345.83 342.04 1327 KB
Web Server 530.25 536.86 546.52 539.03 4 KB
OpenSSH 632.23 632.53 631.90 632.33 1266 KB

Table 3.2: The same benchmarks, now for TwinFS with the resync log enabled. Also shown is the
worst-case size of the user data to resynchronize if all data were stored with redundancy.

log area. Note that in our benchmarks, most in-place overwrites were the result of
appending data to log files. Web Server only appends block-aligned chunks to its
log, resulting in almost no data being overwritten.

Overall, the prewrite solution allowed for proper aggregation of checksum records.
However, it proved not to be ideal, since it complicates parity precomputation for
parity-striped files. We now believe that a better solution is to let the file stores
cache small numbers of data blocks for short times.

The cache log

Next, we tested the overhead of the cache log, both in performance overhead and in
resource usage. We configured Loris to mirror all files on two disks, using TwinFS
with a twin offset of 16 blocks (and, although unused, a resynchronization log) on
both mirrors. We did not bound the cache log size; rather, we measured the maxi-
mum amount of memory needed for the log between any two checkpoints. To keep
the comparison fair, we do not let the cache save on I/O by reusing (meta)data stored
in the in-memory log if it already evicted the primary copy; otherwise, this would
speed up the performance due to a bigger effective total cache size. Table 3.3 shows
the results.

As shown, the mirroring case added little overhead to the single-disk case. The
cache log added almost no visible overhead on top of that. The memory usage for
the log was significant, but this is expected to get relatively smaller with larger cache
sizes, since more data pages will be shared between the main cache and the log in
that case.

3.7.2 Reliability evaluation

For the reliability evaluation, we used the same configuration as for the cache log
test.

Kill tests

We tested both the TwinFS checkpointing system and the process crash recovery
procedure at once, by killing the processes in the lower two Loris layers. Each
kill was performed by injecting a trap instruction at the process program counter.

58 CHAPTER 3. INTEGRATED SYSTEM AND PROCESS CRASH RECOVERY

We repeatedly ran the OpenSSH benchmark, killing one of the processes at random
intervals–once every twenty seconds on average.

We performed 10,701 kills this way. In all cases, the crash was hidden com-
pletely from the application layer, and the benchmark completed successfully. The
median cache log replay time was 0.22 seconds; the maximum was 6.5 seconds. This
depended only on the size of the log. However, the logical and physical layers have
to refill their local caches from disk after each restart; this caused an overall bench-
mark performance degradation of up to 44%. Of course, we do not expect crashes to
occur this often in practice. In 85 cases, the cache refrained from replaying its log
due to a crash at the very end of a sync. In 88 cases, a TwinFS instance had to reload
its penultimate checkpoint.

Targeted fault injection

In addition, we manually injected a number of less-trivial process faults, based on
bugs we experienced in practice while developing Loris.

Stack overrun: In early Loris versions, thread stacks had no guard pages. If the
stack for one thread’s execution path was too small, part of the next thread’s stack
would be overwritten. That would cause a crash in the next thread, but only if that
thread was active. This bug occasionally triggered in TwinFS with deep recursive
parent block updates.

Heap corruption: In one case, a static array in the logical layer was too small
for the maximum amount of data stored in it, and this would sometimes result in
other variables on the heap to be overwritten. An assert would then go off when one
of the corrupted fields was used afterwards.

Deadlock: A typical source of transient failures is threads contending for shared
resources. Any programming errors in mutual exclusion code can cause race condi-
tions. During TwinFS development, we ran into a case where multiple threads would
concurrently try to acquire a large number of data buffers from a shared pool for a
write operation, resulting in buffer exhaustion and a deadlock between the threads.
This would trigger call timeouts after a while.

We simulated these and 12 other comparable bugs in the latest Loris version.
Each bug eventually triggered, and caused a process crash. In all cases, the recovery
mechanism performed successful recovery, and the system kept running.

3.8 Related work

We list the most directly related work on system and process crash recovery.

3.8.1 System crash recovery

TwinFS can be described as a hierarchical version of doublefs [61], or a selective
copy-on-write file store where each protected block has two preallocated copies.

3.8. RELATED WORK 59

Benchmark No cache log With cache log Memory usage
PostMark 1132 1150 170 MB
File Server 337.79 337.70 192 MB
Web Server 531.85 540.60 112 MB
OpenSSH 635.05 634.28 230 MB

Table 3.3: The same benchmarks, now with two TwinFS-16 instances (with resync log) and all
files mirrored across these two instances. Also shown is the peak memory usage for the cache
log.

As such, this layout shares several advantages with copy-on-write file systems: no
need to write out metadata updates more than once, and no metadata recovery code.
At the same time, TwinFS does not share some of their disadvantages: high frag-
mentation, cascaded metadata allocation, and difficulty to track free space. Finally,
the implementation is fairly simple. It does however require more on-device space.
Compared to doublefs, TwinFS uses the hierarchy to determine which block copy
to use, eliminating the necessity to read in both copies on every read. Intra-device
redundancy, like Stable Storage [90], could be added as an orthogonal feature.

We are not aware of work that involves global consistency across arbitrary local
heterogeneous file/object stores. A similar problem can be found in fan-out stackable
file systems that require their own metadata storage. An example is RAIF [75],
which does not fully address this problem.

Several solutions have been proposed to limit the areas of resynchronization in
traditional software RAID. Most comparable to our work is journal-guided resyn-
chronization [34], which proposes extending existing file system journals with records
for data resynchronization. Our checksum records add checksumming to this, allow-
ing the resynchronization procedure to determine not only what to resynchronize, but
also which of the redundantly stored copies (not) to use. The checksum log is similar
to the hash log used for general data integrity in [133].

The write hole can be eliminated by never overwriting data, thus avoiding the
need for resynchronization altogether. This approach is employed by for example
ZFS [136].

3.8.2 Process crash recovery

Little research has focused on storage stack reliability in microkernel environments.
Studies that do (e.g., [31, 126]), depart much more radically from the traditional
storage stack model, leaving open the question whether a reasonably efficient POSIX-
compliant system could be built on top.

Membrane [138] uses checkpoints and in-memory logging to recover from crashes
in existing file systems on Linux. We use the same basic approach, but can offer
stronger guarantees because of the microkernel-provided process isolation, allowing
recovery from a broader class of failures. This does come at an extra performance

60 CHAPTER 3. INTEGRATED SYSTEM AND PROCESS CRASH RECOVERY

cost; ongoing research aims to reduce that cost significantly by exploiting multicore
architectures. Compared to Membrane, we protect the rather complex equivalent of
the RAID layer. On the other hand, Membrane protects the equivalent of our naming
layer. By leaving out the naming layer in this work, we can make fewer assumptions
about the implementation of the layers we do protect. For example, the file stores
are not required to generate the same physical file ID upon retried create operations,
and open deleted files are not a special case.

Toward the other end of the spectrum, Re-FUSE [139] can recover from crashes
in a more diverse set of file systems, at the cost of making more assumptions about
their behavior.

3.9 Conclusion and future work

In this paper, we have made a case for integrated support for recovery from system
and process crashes in the Loris storage stack, using a single shared base: restoring
global metadata consistency by means of checkpointing. On top of this, we have
presented a fast and reliable approach to data resynchronization for recovery from
system crashes, and recovery from transient process crashes in the lower two layers
of the stack with relatively few assumptions. Our proof-of-concept implementation
shows that these additions increase the overall reliability of our prototype, at a rea-
sonable performance cost.

Dealing with process crashes in other layers in the stack is part of future work,
as sketched in [149]. For the naming layer, this involves making sure that every
VFS call immediately flushes its state changes down to the cache. As a result, the
cache will always be consistent with respect to the naming layer’s stack metadata.
That in turn means the cache can perform a sync operation at any time, allowing
the cache log’s memory size threshold to be strictly enforced (see Sec. 3.6.2). The
cache layer itself is deemed a stable point in the stack; still, we are working on a
new crash recovery technique for the cache, even though we have to make stronger
assumptions about the failures that can occur.

One unsolved problem in this work is efficient support for fsync and transactions.
We intend to investigate the implications of adding support for those. This will likely
result in exploring the other option laid out in Sec. 3.3.1.

4
Battling Bad Bits with Checksums in the Loris Page

Cache

Abstract

In this paper, we aim to improve the reliability of a central part of the operating
system storage stack: the page cache. We consider two reliability threats: mem-
ory errors, where bits in DRAM are flipped due to cosmic rays, and software bugs,
where programming errors may ultimately result in data corruption and crashes. We
argue that by making use of checksums, we can significantly reduce the probabil-
ity that either threat results in any application-visible effects. In particular, we can
use checksums to detect memory corruption as well as validate the integrity of the
cache’s internal state for recovery after a crash. We show that in many cases, we can
avoid the overhead of computing checksums especially for these purposes. We im-
plement our ideas in the Loris storage stack. Our analysis and evaluation show that
our approach improves the overall reliability of the cache at relatively little added
cost.

61

62 CHAPTER 4. BATTLING BAD BITS

4.1 Introduction

Reliability of operating systems is important because a failure in the operating sys-
tem can affect all running applications on the system. The storage stack is the part
of the operating system that deals with maintaining the user’s data. Reliability of the
storage stack is particularly important, because a failure in its components has the
potential to destroy the only copy of important user data. This is especially true for
the page cache: this component caches file data, but also holds file changes that have
already been written by applications but have not yet made it to permanent storage.
In this paper, we take a look at the page cache in the light of two reliability threats:
memory errors and software bugs.

Memory errors, in particular those caused by external factors such as cosmic
rays, may affect application and operating system memory anywhere at any time.
Machines without error-correcting memory hardware are fully exposed to such er-
rors. The page cache typically uses all of free memory for caching purposes, and
is therefore relatively likely to get hit. Ideally, we would like the cache to detect
memory corruption with a high probability before it gets the chance to spread to
applications.

Software bugs are a different, well-known source of reliability problems. Bugs
may cause arbitrary behavior when triggered. Ideally, we would like to recover
from the effects of software bugs in the cache, in an application-transparent way.
However, recovery can succeed only if the necessary internal state of the cache can
be recovered, and the difficulty is assessing that this state has not been corrupted as
a result of the crash.

In this work, we claim that we can address both these problems at little extra
cost, by making use of specific information present in the storage stack. Specifi-
cally, we reuse the checksums already employed by the storage stack to detect disk
corruption. If the page cache is brought in the loop regarding these checksums, it
can reuse them for runtime verification of cached pages against memory errors, and
for integrity assessment of the cache’s internal state after a crash. This allows the
cache to catch memory corruption with a high probability, and to recover from a
crash when possible–all completely transparent to the running applications. We im-
plement our ideas in the Loris storage stack, which we developed in previous work
[9]. Our evaluation shows that the two solutions are not independent, and in fact
interact in an overall beneficial way.

The rest of the paper is organized as follows. In Sec. 4.2 we describe our Loris
storage stack. In Sec. 4.3, we analyze the two reliability threats, argue that the cache
is especially important in respect to the threats, and show that checksumming has
the potential to help alleviate both. We then detail our approach to use checksums
against memory errors (Sec. 4.4) and against software bugs (Sec. 4.5). Sec. 4.6
describes our implementation. In Sec. 4.7, we evaluate our solutions. We list related
work in Sec. 4.8, and conclude in Sec. 4.9.

4.2. BACKGROUND: THE LORIS STACK 63

File

system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software

RAID

(a) (b)

Figure 4.1: The figure shows (a) the layers of the traditional stack and (b) the new arrangement in
Loris. The layers above the dotted line are file aware; those below are not.

4.2 Background: the Loris stack

Fig. 4.1a depicts the traditional operating system storage stack. Applications send
requests to the Virtual File System (VFS) layer, which passes them to an actual file
system. The file system operates on a single device; the RAID layer below may how-
ever transparently multiplex these operations across several devices for performance
and redundancy purposes. Disk drivers are used to talk to the actual hardware.

In previous work, we have developed a new storage stack called Loris. It was
formed by splitting up the traditional file system into three individual layers (a nam-
ing, a cache, and a layout layer), and swapping the layout layer with the traditional
RAID layer, forming the physical and logical layers. The VFS and driver layers have
been left as is. The result is depicted in Fig. 4.1b. This new stack has advantages in
the areas of reliability, heterogeneity, and flexibility [9].

The four new layers communicate using files. Each file has a unique identifier
and a set of associated attributes. The four layers support the following operations:
create, read, write, truncate, delete, getattr, setattr, and sync.

At the bottom, the physical layer consists of one or more file stores. Each file
store is responsible for one underlying device, and determines the layout on that
device. It manages an independent set of physical files on its device, converting file
operations from above to block operations below. Each file store has a small cache
for the metadata of its layout. All file stores are required to implement a parental
checksumming scheme in their layout [9]. As a result, the contents of the devices are
fully covered by checksums, so that all forms of disk corruption are guaranteed to
be detected.

64 CHAPTER 4. BATTLING BAD BITS

The logical layer is the file-based equivalent of the traditional RAID layer. It
exposes a logical file abstraction to the layers above, multiplexing operations on files
across the file stores according to per-file RAID-like policies. Thus, each logical file
has an associated policy and is made up of one or more physical files on different
file stores. The logical layer stores this per-file information in a special mapping
file, which is mirrored across all devices. It also implements RAID-like recovery for
when an underlying file store reports a checksum or device failure. Our prototype
implements file-based equivalents of RAID 0, 1, 4, and 5.

The cache layer implements a page cache, caching both file data pages and file
attributes. It uses a large amount of memory for caching purposes, staging and
evicting parts of files according to predefined policies. For performance reasons,
it does not pass on incoming create, setattr, and write operations directly to lower
layers; instead, it delays them to reduce request costs and to aggregate changes.

The naming layer converts POSIX operations to Loris file operations. It man-
ages directories, which are treated as normal files by the lower layers. It uses Loris
attributes to store the POSIX attributes of files.

We have implemented a prototype of the Loris stack on the MINIX 3 microkernel
operating system. On this platform, all the layers of the stack (and all the file stores)
are implemented as separate userspace processes.

4.3 The case for checksumming in the cache

In this section, we discuss two reliability issues: memory errors (Sec. 4.3.1) and
software bugs (Sec. 4.3.2). We state why it is important to address these problems
specifically in the Loris page cache, and we show that in both cases, we can signifi-
cantly reduce the potential risks by making use of checksums.

4.3.1 Memory errors

The problem: Various studies have shown that dynamic random-access memory
(DRAM) is susceptible to errors [107, 108, 169]. Such memory errors constitute ar-
bitrary corruption in the system’s main memory at unpredictable times and locations;
unsurprisingly, software does not deal well with this. Memory errors are found to be
responsible for a significant fraction of system failures in the field [123].

Memory errors are categorized as either soft or hard. Soft errors are transient
changes in memory state (bitflips) caused by external factors; in particular, cosmic
rays [169]. Soft memory errors are generally assumed to be distributed randomly
in both space (i.e., affected memory location) and time. Various lab and field tests
have suggested that soft errors are a serious problem [107, 108], and error rates in
the 200-5000 FIT (Failures In Time) per Mbit range have been cited [95, 145]. More
recent field studies found lower soft-error rates [95, 124].

Hard errors are caused by physical hardware faults, and may manifest themselves
intermittently or permanently (stuck bits). The same recent field studies found hard

4.3. THE CASE FOR CHECKSUMMING IN THE CACHE 65

errors to be more common than soft errors [95, 124], although little is known about
their exact cause. These studies observed that a relative minority of memory modules
see the vast majority of errors, and that there is a strong correlation between the
errors in both location and time [69, 124].

To counter the effects of memory errors, DRAM modules with error-correcting
codes (ECC) have been developed. Typical ECC memory has single error correction
and double error detection (SEC/DED) capability; the Chipkill memory family can
also cope with whole-chip failures [32]. ECC memory can deal well with in par-
ticular soft errors. However, many computer systems are not equipped with ECC
memory, primarily because of the added cost. This leaves them utterly exposed to
memory errors. In a significant number of cases, these memory errors will end up
causing serious damage to the running system [101]. Therefore, we believe that
there is room for software approaches that can detect memory errors before they
cause damage.

In this work, we consider only soft errors, on systems without ECC memory. All
non-ECC memory is vulnerable to soft errors to some degree, and software solutions
have the potential to overcome such problems. In contrast, not even SEC/DED mem-
ory can correct all hard errors [37, 69], and given that only a small subset of memory
modules experiences such errors, the only real remedy for hard errors may thus be
replacement of faulty modules. At the same time, we believe that any solution for
soft errors can also help detect hard errors, although perhaps not as effectively.

Like hardware ECC memory, software approaches may use some form of redun-
dancy (checksums, full copies, etc.) to detect and possibly correct memory corrup-
tion. However, such approaches are inherently imperfect: not every memory access
can be guarded (e.g., device DMA), whereas any memory access can hit a bitflip.
Software approaches can therefore only lower the probability of being affected by
memory corruption, and more extensive forms of redundancy come at greater cost in
terms of both performance and resource usage. Given the low probability of memory
corruption, significant extra cost is typically not justified.

Therefore, we propose to start by significantly reducing the chance of undetected
memory corruption while adding little extra performance and resource costs. We
argue that the operating system page cache is the right place to start.

Why the cache: First of all, modern operating systems use all available mem-
ory (i.e., not used by applications) for caching purposes, so a large fraction of main
memory is typically used by the cache for data pages. With a random spatial distri-
bution of memory corruption, these data pages are therefore relatively likely to get
hit by a soft error. Second, the operating system cache is shared by all applications.
Memory corruption in the cache may affect the system integrity beyond just a single
application. While this applies to all components of the operating system, measure-
ments on our own systems revealed that the cache’s pages typically use over 95%
of all memory in use by the operating system. Third, in many cases we can recover
from detected corruption without the overhead of keeping copies in memory: for
clean data, there is already a valid copy on disk, so we can restore the data in the

66 CHAPTER 4. BATTLING BAD BITS

cache from there.
The case for checksumming: In order to detect memory corruption in the

cached data pages, we propose to use checksums. As we will show in Sec. 4.4,
we can obtain checksums for the page data essentially for free, and that only leaves
the verification aspect.

4.3.2 Software bugs

The problem: Another major source of reliability problems is software bugs. Bugs
may cause arbitrary behavior during software execution. Previous research suggests
that the number of bugs is a linear function of the number of lines of software source
code [111] and that 0.5–6 bugs per thousand lines of code can be expected even in
well-written software [57].

The operating system is of particular importance in this regard because a failure
in the operating system may affect all running applications on the system. Microkernel-
based operating systems allow failures to be contained, since most parts of the op-
erating system are implemented as isolated system processes running in user mode.
In that case, many software bugs in the operating system will manifest themselves
as observable failures in the containing system process (“process crashes”). If the
cause of the failure was transient–for example, a race condition–the system then may
be able to recover transparently.

In the MINIX 3 operating system, crashed system processes can be restarted
[62]. This is necessary but not sufficient for application-transparent recovery: most
system processes have internal state, and after a restart, they must recover this state.
Preferably, the state would be recovered from other system processes, so that the
memory image of the crashed process need not be used for state recovery. However,
this is not always possible.

Why the cache: The storage stack components of the operating system are di-
rectly responsible for storing user’s data. Therefore, we believe that these parts
deserve extra attention. In previous work, we have outlined how the system can sur-
vive process crashes in the Loris layers above and below the cache, without requiring
reuse of internal state of the crashed processes [149]. This however leaves the cache
layer, for which we will show such recovery is not possible.

The strict separation of the layers of the Loris stack into separate processes, and
the process isolation provided by the underlying microkernel, ensure that the cache
cannot be taken down as a result of crashes in the rest of the storage stack. However,
the cache itself may crash. The current implementation of the Loris cache, including
supporting library routines, is well in excess of 10,000 lines of code, and makes
heavy use of nonpreemptive multithreading. It is therefore likely to contain dozens
of bugs.

The case for checksumming: The cache is a crucial piece of the storage stack,
and typically contains the only copy of significant amounts of application-generated
state: dirty file data and other delayed file operations. If the cache crashes, this state

4.4. DEALING WITH MEMORY ERRORS 67

cannot be restored from external sources, and the cache can thus be recovered only
if the crashed cache process’s state is left in a proper condition. The main question
is then how to assess this condition after a crash. To this end, we propose that the
cache keep checksums of its crucial state during normal run time. As we will show
in Sec. 4.5, we can generate checksums for a large part of this state at very little
added cost.

4.4 Dealing with memory errors

The Loris file stores require checksums for all data in order to detect disk corruption.
In this section, we discuss reusing those checksums for detecting memory errors in
the cache. Since the file stores have to have a checksum for each block on disk, the
cache can in principle get the checksums for all its clean pages for free. This obviates
the need for generation of checksums specifically against memory corruption, and
only leaves the verification.

Our goal is to reduce the window of vulnerability of undetected memory errors,
while at the same time incurring little overhead. We focus exclusively on clean pages
in this section, since clean pages may stay in the cache indefinitely, whereas dirty
pages will be flushed to disk after (typically) at most 30 seconds, thus making them
clean as well. We further discuss memory corruption in dirty pages in Sec. 4.5.

In this section, we first analyze whether the checksums used against disk cor-
ruption are usable against memory corruption at all (Sec. 4.4.1), and discuss how
the cache can obtain on-disk checksums (Sec. 4.4.2). We then present a number of
verification strategies (Sec. 4.4.3). Finally, we consider memory corruption in other
memory of the cache and in other parts of the storage stack (Sec. 4.4.4).

4.4.1 Suitability of on-disk checksums

There may be significant computational overhead involved in verification of check-
sums. Thus, we first consider whether the on-disk checksums are the best choice for
use against memory errors at all.

The Loris file stores use a checksum type from the family of Cyclic Redundancy
Check (CRC) codes. Compared to simpler checksums such as exclusive OR (XOR),
CRC codes are complex and traditionally implemented in software, and thus ex-
pensive in their use. However, it appears that an increasing number of platforms
incorporates support for CRC in hardware [70, 135], closing the performance gap
between XOR and CRC checksum computation.

At the same time, CRC codes are much stronger than XOR. XOR checksums
have a Hamming Distance (HD) of 2, thus guaranteeing detection of one bit error
only. The Loris file stores use the CRC-32C polynomial, which has a HD value of
4 for 5244 to 131072 bits [87], thus guaranteeing detection of up to three bit errors
per block of the typical page and block size of 4096 bytes plus the checksum itself.

68 CHAPTER 4. BATTLING BAD BITS

In addition, CRC codes are guaranteed to detect burst errors in length of up to the
polynomial width.

This extra strength not only helps in detecting a wider range of on-disk errors,
but also helps in detecting memory errors. A single cosmic ray may affect multiple
adjacent memory cells at once [37], and cells within either the same row or column
are likely to fall on the same page. The on-disk checksums are very likely to detect
such corruption, whereas XOR-based checksums are not.

4.4.2 Propagation of checksums

We can involve the cache in the checksumming, by propagating checksums between
the cache and the file stores. The most basic approach works as follows. Immediately
before issuing a write operation to lower layers, the cache computes the checksum of
each involved data page, and sends those checksums along with the write call. The
file stores involved need not compute the checksum themselves any longer, and after
the write, the cache will have the checksum for that page until the page is changed
or evicted. In addition, when the cache issues a read operation for data, the file
store always has to obtain and verify the checksum of the data anyway, in order to
be able to detect and recover from disk corruption before the data reaches the cache.
However, the file store now propagates up the verified checksum along with the data,
so that the cache has the checksum from that point on at well.

4.4.3 Verification strategies

We now outline several strategies that the cache can use for checksum verification.
They offer different tradeoffs between coverage against memory errors and overhead
from verification. We note again that we can always recover after detection: all the
pages involved are clean, and so a corrupted page can simply be read back from disk.

Background checker: On systems that see little overall storage activity, data
may be held in the page cache for a long time. In general, the lifetime of data in the
cache, and thus its vulnerability to errors, is potentially unbounded [167]. A single
soft error may already get close to the limits of guaranteed detection of the CRC
checksum; accumulation of multiple independent errors on a single page may be
undetectable. To remedy this, the cache can slowly verify pages in the background.
The expected time of accumulation is rather long even with high FIT/Mbit rates,
but the cost of performing a slow background check is very low as well and puts a
hard bound on the window of vulnerability. However, such background verification
is independent from actual page accesses, and therefore ineffective at catching a
single soft error before the affected page is accessed. Other strategies thus have to
be considered in addition.

Check on every read: The cache could verify the checksum of a page upon
every incoming read call involving that page. Combined with a background checker,
this virtually closes the vulnerability window for clean pages. However, it comes at

4.4. DEALING WITH MEMORY ERRORS 69

a steep computational cost. Even for small subpage reads, the cache can only verify
the checksum of the entire containing page. An application that reads from a file in
small sequential chunks will force the cache to recheck the same pages very often
with little time in between, resulting in significant CPU overhead and almost no gain.

Check on read after minimum last-check time: In order to alleviate this is-
sue, the cache can prevent the same page from being rechecked too often. The
cache could recheck the page’s checksum only if the last check was at least a certain
minimum time ago. This eliminates duplicate checks within that time frame, while
ensuring that even frequently accessed pages will occasionally be rechecked.

Check on read after minimum last-use time: One could argue that there is no
point for the cache to detect a memory error, if there is a high probability that that
error has already been propagated to an application. From this perspective, there is
no gain in rechecking a page that has been accessed recently before. Thus, a page’s
checksum could be checked only if there has been at least a certain amount of time
since the last access. This approach leans even further towards the performance end
of the spectrum, but may be less effective in practice: the application may not have
actually hit the memory error on the earlier read (for example, due to small reads);
also, different applications may access the same page.

Checking memory-mapped files: The options for verification of memory-mapped
pages are limited, since the operating system is only involved in the first read from
each page. Depending on the applications, memory-mapped I/O may not be all that
common [54]. However, operating systems typically use memory-mapped files for
shared libraries, and verification can thus help protect the integrity of important parts
of running applications. The cache can use more generic techniques to reduce the
vulnerability window of mapped pages. For example, it can perform more frequent
background checks on these pages, or monitor them to trap after long times of no
activity [35], at the extra cost and reduced accuracy of the polling-based monitoring.

4.4.4 Other memory

The cache’s pool of data pages make up by far the largest fraction of memory used
by the cache, and indeed by the entire Loris stack altogether. However, the cache’s
internal state comprises more than its data pages, and the remainder is worth at least
some consideration as well.

Particularly noteworthy are the cache’s data structures that describe the actual
data pages, as every data page has to have such a corresponding data structure.
However, this structure is much smaller than the page itself. For example, while
not particularly optimized for size, the Loris page descriptor structure is currently
48 bytes, and thus about a factor 85 smaller than corresponding 4KB-page of data.
The cache’s data structures to track file objects and their attributes are similar in
total size. Besides these, the cache has a long tail of smaller structures and global
variables.

It may still be worthwhile to protect these parts of cache memory as well. Even

70 CHAPTER 4. BATTLING BAD BITS

though they are less likely to be hit by soft errors, their corruption may affect the be-
havior of the cache itself–comparable to the effects of software bugs. More runtime
checks on internal correctness can be added (for example with assert statements),
but it is hard to reason about the coverage of this technique.

As an alternative, we attempted to implement checksumming for the internal data
structures of the cache. We found that even with the simple design of the Loris cache
prototype, manually adding support for checksumming of data structures added a
prohibitive amount of complexity to it. While some parts were straightforward (e.g.,
linked-list macros and mutex operations were good places to start), a substantial
amount of ground was left to cover with manual checksum update and verification
statements.

We now believe that the solution lies in compiler support, in the form of programmer-
guided (annotation-based) automatic checksumming of data structures, for exam-
ple using the LLVM compiler framework. This would be similar to automatic ap-
proaches proposed for use against software bugs [48], but requires manual guidance
so as not to automatically double-checksum the data pages as well. We believe the
cache would be an interesting use case for such a technique, and we intend to work
on this in future work.

Both asserts and semi-automatic checksumming would only enable error detec-
tion. In Sec. 4.5, we show that our proposed recovery system for software bugs can
equally help recover from detected memory errors.

Finally, we note that the techniques presented in this entire section are also ap-
plicable to other layers of the Loris stack. For example, each file store has its own
small metadata cache, and the checksum verification approaches for the page cache
can be applied directly to this cache as well, although possibly with a different level
of effectiveness. Any future semi-automatic checksumming solution may in fact be
applied to large parts of the entire operating system, including the (small but crucial)
microkernel.

4.5 Dealing with software bugs

In this section, we look at failures due to software bugs in the cache. Since MINIX 3
already provides several means of detecting misbehavior resulting from software
bugs, we are concerned only with recovery. We propose a recovery approach that
extends the checksum propagation from Sec. 4.4.2. In principle, it is otherwise fully
independent from the memory errors solution from Sec. 4.4. However, we also show
that there is a beneficial interaction between the two solutions if they are both used
at the same time.

We first describe our assumptions regarding software bugs (Sec. 4.5.1). We
then show how any recovery procedure needs a way to verify the integrity of the
crashed cache’s internal records of delayed operations, how this verification can be
performed, and that checksums of all dirty pages are required for it (Sec. 4.5.2). We

4.5. DEALING WITH SOFTWARE BUGS 71

discuss checksumming dirty pages next (Sec. 4.5.3), and then sketch the crash re-
covery procedure (Sec. 4.5.4). Finally, we show the benefits of checksumming dirty
pages for memory error detection (Sec. 4.5.5).

4.5.1 Assumptions

Software bugs may cause arbitrary behavior. This includes scenarios where cor-
rupted results escape detection and reach the application, in which case application-
transparent recovery is impossible. Thus, we have to make assumptions about the
errors we target.

First, we assume that if a software bug triggers in the cache, it will lead to a
detectable failure; for example, a CPU exception, a failed assertion, or a bad inter-
process call. In this case, the system can shut down the cache process, considering
it to have crashed. Previous research on errors in operating systems suggests that a
large majority of errors, if manifested in any way at all, indeed cause a detectable
failure–silent failures are rare [51].

Second, we assume that the crash occurs within the execution of the requests that
were active when the bug was triggered. This means that no bad results are prop-
agated before the detection of the failure. Similarly, previous research has shown
that fault propagation as the result of software bugs is relatively unlikely to occur
[51, 77].

However, we do not assume that the failure was necessarily fail-stop, and want
to attempt recovery even if (for example) arbitrary memory was overwritten within
the cache. These assumptions are similar to those made in other contemporary work
[31, 48, 93].

4.5.2 The Dirty State Store

As stated before, the cache typically has the only copy of many delayed file mod-
ification operations. This is the part of the cache state that cannot be recovered
from elsewhere, and thus, the memory of the crashed cache process must be used
to attempt recovery of such state. Thus, the first step for any recovery procedure is
salvaging the delayed operations present within the cache at the time of the crash.

The cache supports three different types of delayed file modifications: create,
setattr, and write (i.e., dirty pages). In order to assess the feasibility of recovery, the
recovery procedure must be able to enumerate all delayed operations in the crashed
cache process’s memory image, and verify that they have not been corrupted as part
of the crash.

To this end, we propose that the cache use an internal store to keep track of such
dirty state. We call this store the Dirty State Store (DSS). It is a small and passive
part of the cache, and exposes a very narrow API to the main cache code. Using
this API, delayed operations can be added to the store as new application requests
arrive, and removed from it as changes are flushed to disk. The store uses its own

72 CHAPTER 4. BATTLING BAD BITS

(very basic) data structures to keep track of the operations, using a separate memory
region.

However, this region is still part of the cache’s address space, and any accidental
overwrites from the main cache code could violate the integrity of the DSS. For
this purpose, the DSS protects its data structures with checksums (XOR suffices for
this). Thus, wild writes result in a checksum mismatch. The checksums need to be
generated at runtime, but need never be verified unless the cache crashes.

We believe that the narrow and strictly checked API, the separate memory re-
gion, the checksumming of all parts involved, and the relative simplicity of the DSS
allow us to put trust in the contents of the DSS if after a crash its checksums all
match. Therefore, the recovery procedure can use the DSS memory to exhaustively
enumerate and verify all delayed operations. The only requirement is that the DSS
is kept up-to-date at all times, which means that its API must be used as part of each
request handled by the cache.

While the file create and setattr operations can be duplicated in the DSS at little
extra cost, keeping a copy of each dirty page in the DSS is not feasible: a substantial
part of the cache’s memory usage, and indeed of the memory in the system overall,
may consist of dirty pages. Therefore, the DSS simply contains a pointer to the
actual dirty page, along with a checksum of the contents of the page.

4.5.3 Checksumming dirty pages

The DSS thus requires an up-to-date checksum for each tracked (and thus, each
dirty) page in cache. In terms of runtime overhead, checksumming of dirty pages
dwarfs checksumming of the DSS data structures; this is where we return to interac-
tion between in-memory and on-disk checksums.

In many cases, a page is modified only once and then flushed to disk sometime
later. In such a case, performing the checksum computation upon the modifica-
tion rather than the flush does not introduce any extra computational cost: the same
checksum computation is simply performed a bit earlier. Thus, actual overhead is
incurred only when the page is either modified again before the flush (due to another
write operation), or it is discarded before the flush altogether (due to a truncate or
delete operation).

Previous work suggests that cancelled writes (due to full-page overwrites, trun-
cates, and deletes) are generally not dominant in workloads; for example, [18] re-
ports a fraction of cancelled data bytes in the 4–27% range. This leaves subpage
overwrites, to which we can apply two optimizations.

First of all, we find that a major source of subpage overwrites comes from file
appends, thereby “overwriting” an unused part of the page. Many checksum types,
including the CRC family, allow checksums to be computed incrementally. There-
fore, instead of tracking only whole-page checksums, the cache can remember the
size of the used part of each page (i.e., always the full page size, except for the last
page of each file), and track the checksum of that part only–until the page is flushed.

4.5. DEALING WITH SOFTWARE BUGS 73

For appends, the checksum can then be updated using only the new part of the page,
thus avoiding checksum recomputation of the existing part.

Second, for small subpage overwrites, a CRC checksum can be updated for only
the modified part of the page, by computing the checksum for just the old and the
new parts with precomputed zero leads and trails, and XORing these partial check-
sums into the original checksum. Our initial tests show that this method can be more
efficient than full page checksum recomputation.

4.5.4 Recovery procedure

With the DSS in place, we can now describe the overall crash recovery procedure.
The recovery procedure is assumed to have full access to the memory image of
the crashed cache process. Using the DSS and its checksums, the procedure starts
by assessing whether all the delayed operations can be recovered from the crashed
cache process. If this is possible, then the following steps are taken.

1. The recovered file modification operations are flushed down to lower layers.
The result is that the cache is completely “clean” with respect to delayed op-
erations.

2. All of the crashed cache’s state is discarded, and the new instance of the cache
starts with a clean slate.

3. The naming layer is notified that it should replay all ongoing requests. The
Loris operations are all idempotent, so this is always safe to do, no matter
what happened before the crash.

After that, the storage stack can resume normal operation, and applications will
never notice that anything went wrong. However, if the recovery procedure finds
that recovery of the delayed operations is not possible, or if replaying the ongoing
requests repeatedly results in a crash of the cache, then recovery is not possible, and
the system halts.

4.5.5 Consequences for memory errors

Our approach for dealing with software bugs yields two important positive effects in
relation to memory errors.

The availability of checksums for dirty pages allows us to check these pages for
memory errors as well, using the same verification techniques described in Sec. 4.4.3.
In fact, in practice this simply means that we no longer have to make an exception
for dirty pages. Moreover, since the checksums computed for the dirty pages are
used directly as on-disk checksums, the result of an undetected memory error be-
tween the in-memory modification and flush to disk of a page, is that the memory
error will be detected upon the next read from disk. In all these cases however, we
can not recover the page, so whenever it is read later, the stack has to report an I/O

74 CHAPTER 4. BATTLING BAD BITS

error to the caller. At the very least, this prevents corrupted data from reaching the
application.

Additionally, as we noted before, memory errors may corrupt the cache’s internal
data structures, and even the program code. The result is that a memory error may
cause the cache to crash. The crash recovery system can and will not make any
distinction regarding the cause of the cache, and thus, the system will attempt to
recover the cache in this case as well. As a result, the cache’s primary data structures
and code will be reset, wiping out any previous memory errors. Thus, the cache is
able to survive crashes resulting from not only software bugs, but memory errors as
well.

4.6 Implementation

We have implemented our ideas in the cache layer of our Loris prototype, on the
MINIX 3 microkernel operating system. We briefly list what we implemented.

Memory errors: We have extended the Loris communication library to support
propagation of checksums, and we have implemented basic generation and tracking
of checksums in the cache layer. We have implemented the strategies described
in Sec. 4.4.3 for detecting memory errors in cached pages, except those involving
memory-mapped files, as MINIX 3 currently does not support those.

Software bugs: We have modified the cache to track checksums for dirty pages
as well, including the append optimization (but not the partial-rechecksum optimiza-
tion) described in Sec. 4.5.3. In addition, we have implemented the DSS. It offers a
very narrow API of five calls (file create/setattr/flush, page write/flush) in under 200
lines of code, and the API calls were easy to add to the main cache code. MINIX 3
implements restarting processes after a crash, and optionally allows specified mem-
ory regions to survive process crashes. The restarted cache instance can perform
the rest of the recovery procedure (as per Sec. 4.5.4) fully by itself, by verifying the
checksums of the DSS and dirty pages, flushing down all dirty operations to lower
layers, freeing the surviving memory, and requesting the naming layer to reissue any
ongoing calls.

4.7 Evaluation

We evaluate our work on an Intel Xeon W3565 workstation, with 4GB of RAM, and
a 500GB 7200RPM Seagate Barracuda SATA hard drive.

4.7.1 Microbenchmarks

We start with microbenchmarking the cost of basic read and write calls into the cache
(without checksumming). We make calls directly from within the cache layer itself,
rather than from an external source program: context switching is not optimized

4.7. EVALUATION 75

Operation Size (bytes) Time (ns)
Read 1 802
” 4096 920
” 8192 1463
” 16386 2547
Write 1 799
” 4096 822
” 8192 1251
” 16384 2544

Table 4.1: Microbenchmarks for read and write calls of various sizes.

for performance on MINIX 3, and the overhead of context-switching through the
other storage stack layers would otherwise reduce the relative cost of checksumming.
Thus, the resulting relatively low times are worst case for us, and possibly more
representative for other operating systems (we got very similar numbers in a userland
benchmark on Linux). All pages involved are already cached in the cache layer,
so no other layers are involved at all. The results are shown in Table 4.1. The
(nanosecond) times are averages for a million iterations.

We also measure checksum computation for a single page, using the most op-
timized software and hardware CRC implementations that we could find. These
measurements are shown in Table 4.2. They are representative for the additional
cost of computing the checksum for a single page involved in a read and/or write
operation. Thus, as can be seen, if checksumming of pages were added to the read
and/or write calls, this would account for a substantial fraction of their time. We
believe these overheads are not prohibitive: again, they are worst case, and applica-
tions are often not overly sensitive to such overheads [146]. However, the overheads
are high enough to warrant exploring strategies that reduce the number of checksum
operations.

4.7.2 Macrobenchmarks

Benchmarks: We perform further testing by means of macrobenchmarks. We use
the following benchmarks in our experiments:

• PostMark (1.51), configured to perform 80K transactions on 40K files in 10
directories, with 4–28KB file sizes and 512B unbuffered I/O operations.

• FileBench (1.4.8.fsl.0.8) File Server, single-threaded, but otherwise with its
default configuration, run for 30 minutes at once.

• FileBench Web Server, single-threaded, with 25,000 files, directory width 50,
file size 32KB, and defaults otherwise, also with 30-minute runs. For Web
Server, we use a modified FileBench version which accesses the files using
a Zipf distribution rather than the default round-robin approach. With this

76 CHAPTER 4. BATTLING BAD BITS

Operation Size (bytes) Time (ns)
CRC-32C in software [1] 4096 967
CRC-32C in hardware [71] 4096 205

Table 4.2: Microbenchmarks for page checksum computation.

(we believe, more realistic) distribution, we avoid that each cache page sees
exactly the same access interval.

• An OpenSSH build test, which unpacks, configures and builds OpenSSH in a
chroot environment.

The Loris page cache is given static size of 1GB of memory, and the tests were run
on the first 32GB of the disk. All tests were run at least five times; average numbers
are reported. For PostMark and FileBench, we consider the run phase only.

Table 4.3 shows statistics about the benchmark runs. The first column shows
the percentage of error consumption [101]: the probability that if an error occurs
anywhere in the cache’s 1GB of memory any time during the benchmark run, the
error will be read back, and thus propagate to an application or to permanent stor-
age. These are the errors that matter; other errors simply end up being discarded.
While the percentages may seem low, their upper bounds are the memory usage of
the benchmark runs, reported in the second column. Thus, about half of the errors
occurring in memory used by PostMark would be consumed, whereas this would be
a tenth with the OpenSSH benchmark. The remaining columns of the table show
read/write ratios (on a per-call and per-page basis) and the overall cache hit ratio.

Overhead and protection: We measure the overhead and memory error protec-
tion of our verification strategies these macrobenchmarks. For the overhead (O%),
we count the sum of all page accesses by all incoming read and/or write calls, and
per verification strategy, we report the percentage of page accesses that result in
an extra checksum computation for that page. Thus, the higher the percentage, the
higher the checksumming overhead. For the protection (P%), for each page we mea-
sure the time windows in which a memory error on that page would be propagated
to the application or to permanent storage, and we sum the time windows of all
pages together; per verification strategy, we measure the overall fraction of this to-
tal time where a memory error occurrence would be caught by the strategy. Thus,
given a random memory error in the cache that would be consumed, the resulting
percentage represents the probability that this error will be detected before reaching
an application.

We list the results for the following verification strategies and time intervals:
check on every read (ER); check on read after minimum last-check time (LC) of
a MINIX 3 clock tick (1/60th of a second), 1 second, and 30 seconds; and, check
on read after minimum last-use time (LU) with the same time thresholds. We have
omitted the background checker results. As stated in Sec. 4.4.3, the background
checker cannot stand on its own as a verification strategy, and our experiments show

4.7. EVALUATION 77

that it indeed adds negligible protection for active workloads, unless configured to
be prohibitively aggressive.

We first test our solution for memory errors from Sec. 4.4, which covers only
clean pages. The results are shown in Table 4.4. The protection is below 100% even
if every read is verified, because all techniques only cover clean pages, and all bench-
marks involve at least some dirty data. The last-check and last-use strategies show
that delaying checksumming by as little as one clock tick can significantly reduce
the number of extra checksum checks, while keeping the protection at almost the
same level. This is true especially for PostMark and OpenSSH, where the smaller
(often subpage) I/O calls make rapid repeated page accesses common, thus resulting
in overheads going down quickly. The per-tick strategies for File Server and Web
Server maintain a high overhead because of the large (multipage) I/O granularity of
these benchmarks. Higher time thresholds lower the overhead by much; the protec-
tion also decreases but remains substantial. There is little difference between the two
strategies’ results.

We repeat the same tests after adding our solution for software bugs from Sec. 4.5
on top of the memory error solution. This shows not only the extra overhead for
checksumming upon write calls, but also the extra memory error protection resulting
from having checksums of dirty pages. The results are shown in Table 4.5. We note
again that we cannot recover from memory errors in dirty pages, but we do prevent
corrupted data from reaching the application.

In this test, the overhead increases significantly because reads from dirty pages
can now be checked as well, and the protection increases accordingly. These in-
creases are shown by the new baseline, and reflected in the per-strategy numbers as
well. Looking at the baseline, PostMark often reads back its own written data be-
fore it is flushed, and thus ends up with a high increase in protection. File Server
has relatively the most writes, and thus ends up with a large increase in overhead–
and, to a lesser extent, protection. Even with the every-read strategy, 100% protec-
tion is still not achieved: this is due to subpage writes causing entire pages to be
rechecksummed, thereby losing the ability to detect previous memory errors in the
unchanged page parts. We can solve this with the partial rechecksumming described
in Sec. 4.5.3: this method preserves checksum errors across partial updates.

Benchmark Err. cons. Usage Read call Read page Hit
PostMark 26% 54% 75% 75% 97%
File Server 18% 81% 37% 57% 41%
Web Server 23% 98% 93% 97% 91%
OpenSSH 10% 100% 83% 97% 98%

Table 4.3: Macrobenchmark statistics: error consumption, total memory usage, read percentage
of all read/write calls, read percentage of read/write page accesses made as part of calls, and
page cache hit ratio.

78 CHAPTER 4. BATTLING BAD BITS

B
enchm

ark
B

aseline
E

R
L

C
-tick

L
C

-1sec
L

C
-30sec

L
U

-tick
L

U
-1sec

L
U

-30sec
O

%
P%

O
%

P%
O

%
P%

O
%

P%
O

%
P%

O
%

P%
O

%
P%

O
%

P%
PostM

ark
0

0
21

49
4

49
2

49
2

48
4

49
2

49
2

48
File

Server
0

0
46

72
28

72
27

72
12

51
28

72
27

72
8

40
W

eb
Server

0
0

97
96

80
96

42
95

13
74

80
96

36
95

8
66

O
penSSH

0
0

99
96

13
94

2
71

0
47

13
94

0
52

0
45

Table
4.4:

O
verhead

and
protection

againstm
em

ory
corruption,using

various
verification

strategies
on

clean
pages.

B
enchm

ark
B

aseline
E

R
L

C
-tick

L
C

-1sec
L

C
-30sec

L
U

-tick
L

U
-1sec

L
U

-30sec
O

%
P%

O
%

P%
O

%
P%

O
%

P%
O

%
P%

O
%

P%
O

%
P%

O
%

P%
PostM

ark
4

40
97

91
52

91
8

91
6

88
52

91
7

91
6

88
File

Server
41

20
88

99
70

99
69

99
52

76
70

99
69

99
49

66
W

eb
Server

0
3

98
99

81
99

43
99

14
77

81
99

37
98

9
70

O
penSSH

0
3

99
99

13
98

2
74

0
50

13
98

0
55

0
48

Table
4.5:

O
verhead

and
protection

againstm
em

ory
corruption,this

tim
e

also
checksum

m
ing

dirty
pages

im
m

ediately.

4.7. EVALUATION 79

Performance: The overall performance of the benchmarks is shown in Table 4.6.
The numbers represent run times of the benchmarking phases, relative to the un-
modified Loris implementation (thus, lower is better). The “clean only” columns
represent Loris configurations that check only clean pages for memory errors, and
correspond to the first three configurations in Table 4.4: the baseline (BL) that imple-
ments no memory check and thus only adds checksum propagation; a page check on
every read (ER); and, a page check after at least one clock tick of not checking that
page (LC-tick or LCt). The “clean and dirty” columns add checksumming on writes
and the DSS keeping overhead, and thus correspond to the first three configurations
of Table 4.5.

The baselines show that the checksum propagation has no overhead at all, and
checksumming pages as they are written adds only little overhead. Checking check-
sums on every read has a clear performance impact (up to 9% for OpenSSH). How-
ever, the LC-tick strategy reduces the overhead to at most 1%. We believe that this
overhead is acceptably low, especially given that LC-tick still offers strong protec-
tion against memory errors.

4.7.3 Fault injection

We evaluated the effectiveness of our DSS solution against software bugs by means
of software fault injection, using the methodology described in [64]. We ran the
OpenSSH benchmark 80 times, each time injecting a set of 100 random faults into
the cache process at once at a random time during the benchmark. After each com-
pleted run, we checked the file system contents against those of a normal run to
ensure that no corruption was propagated.

In 74 of the 80 cases, the cache crashed as a result of the fault injection, but
was able to recover using the DSS. In all these cases, the benchmark completed
and the final check passed. In the remaining six cases, other parts of the storage
stack crashed because of deviating behavior of the cache. These cases violate our
assumptions, but may still be recoverable if we harden these other layers. In no
cases did the cache detect an internal checksum mismatch in the DSS or its dirty
pages. Thus, the checksums had no added value in this experiment. We believe this
is mainly because the OpenSSH benchmark is not write-intensive.

We then switched to the more write-intensive PostMark benchmark. We first

Benchmark Clean only Clean and dirty
BL ER LCt BL ER LCt

PostMark 1.00 1.03 1.00 1.01 1.07 1.01
File Server 1.00 1.03 1.01 1.01 1.02 1.00
Web Server 1.00 1.00 1.01 1.01 1.01 1.01
OpenSSH 1.00 1.09 1.01 1.00 1.09 1.01

Table 4.6: Performance relative to unmodified Loris.

80 CHAPTER 4. BATTLING BAD BITS

changed it to verify the results of all its system calls, so as to detect any propagated
corruption. We then ran it 80 times, each time injecting 100 faults of the destination
type. This fault type simulates corruption by altering the destination of random
instructions [64]. This time, the cache crashed 79 times. In 75 cases, the cache
recovered and the benchmark completed successfully. In the other four cases, the
cache detected a DSS or page checksum mismatch, and decided that it could not
recover. Without the DSS and page checksums, the restarted cache would have
propagated corruption in these cases. Finally, in the 80th case, one of the other
layers crashed.

4.8 Related work

We list the most directly related research on memory errors and software bugs.

4.8.1 Memory errors

We are not aware of any previous research that evaluates the use of disk checksums
to counter memory corruption on a single system. A Lustre design document shows
how servers send ZFS disk checksums along with file data to ensure network traffic
integrity, noting that with approach, the clients will detect any memory corruption
in the server cache as a side effect [137]. Zhang et al [167] study disk and memory
corruption effects on ZFS, and find that neither ZFS nor ext2 deal well with local
memory corruption; we build on their suggestions in this work.

Generic software memory corruption detection and recovery techniques have
been proposed [35, 39, 127]. However, these approaches are unable to leverage spe-
cific knowledge about the data they operate on, and thus require higher checksum
generation costs, offer less effective detection strategies, and/or require more run-
time resources for eventual recovery. Nevertheless, they can still be applied to other
parts of system and application memory.

4.8.2 Software bugs

We are not aware of any work specifically addressing recovery from bug-induced
errors in the page cache. Again, more generic techniques can be applied. These are
typically rollback based. For example, the Akeso system [93] tracks Linux kernel
state changes on a per-request basis, committing the changes only at the end of the
request. Compiler-based techniques are used to prevent arbitrary memory corrup-
tion. When applied to the page cache, this results in expensive copies of all dirty
data; the authors show a substantial overhead in write-intensive workloads. A sim-
ilar technique uses microkernels for better scalability [48], but has the same basic
overheads.

CuriOS’ Server State Regions (SSRs) address a similar problem by making client
state available to a microkernel system server only during a request from that client

4.9. CONCLUSION 81

[31]. If the server crashes, only the active client is killed. We believe that SSRs are
not well-suited for a page cache, as it inherently shares pages between clients.

The Rio file cache [27] protects its pages by remapping them read-only when
executing kernel code outside the page cache routines. This approach does not help
if the cache routines themselves contain bugs, nor does it help detect memory errors.
Due to space constraints, we omit a large body of other work on software bugs, but
we note that many approaches (e.g., language-based ones) can not deal with memory
errors.

4.9 Conclusion

In this paper, we have shown that by using specific knowledge about the operation of
the storage stack, we can effectively deal with certain reliability threats at a relatively
low cost. We have addressed the threats of memory errors and software bugs in the
page cache, and shown that there is a two-way interaction between the solutions.

Even though we have focused on the Loris storage stack in this work, we believe
that the techniques presented here are sufficiently generic that they can be applied
elsewhere: the techniques to detect memory errors can be applied in virtually any
page cache that can be involved in on-disk checksums, and the techniques to recover
from software bugs can be applied on any other microkernel.

5
Transaction-based Process Crash Recovery of File

System Namespace Modules

Abstract

In this paper, we describe the emerging concept of namespace modules: operating
system components that are responsible for constructing a hierarchical file system
namespace based on one or more individual underlying file objects. We show that
the likely presence of software bugs in such modules calls for the ability to recover
from crashes, but that the current state of the art falls short of the desired behavior.
We then introduce a crash recovery solution that is based on transactions, and detail
the requirements for a system to implement this solution. We apply our solution to
two different use cases: the primary namespace module for a storage stack, and an
extension module that exposes the contents of scientific data files. Our evaluation
shows that the transaction system has low overhead and significantly adds to the
robustness of the namespace modules.

83

84 CHAPTER 5. TRANSACTION-BASED PROCESS CRASH RECOVERY

5.1 Introduction

Relatively recent developments have brought about a new concept in operating sys-
tem storage stacks, namely namespace modules: software components that construct
and manage a hierarchical file system namespace, using one or more file objects
managed by an object storage layer below. Traditionally, namespace management
has been an integral part of file systems, but there are two developments that have
resulted in the isolation of such functionality into a separate module.

First, after the success of distributed storage stacks that separate metadata (and
thus namespace) management from object storage for scalability [46], such archi-
tectures are now being introduced on single-system storage stacks as well, mainly
to make up for inherent reliability problems with block-level RAID in traditional
storage stacks [8].

Second, with user space file system frameworks such as FUSE [2], it has become
relatively easy to write namespace modules that expose the inner structure of indi-
vidual files using a hierarchical model. While such modules can be used for internal
maintenance of such files, a recent case study [54] has shown by that current-day
file formats can be highly complex, and suggests that important information for the
storage stack is lost by storing these files as a single blob. Thus, there is a case to
be made for use these namespace modules as the primary means of access to such
complex individual files.

Due to the complexity resulting from (in particular) multithreading for high per-
formance, and the large amount of code typically required for proper parsing and
manipulation of complex file structures, both these types of namespace modules
are likely to contain software bugs. If triggered, these bugs cause a runtime failure
within the namespace module, typically with severely damaging consequences for
both the running applications and the underlying storage. While namespace mod-
ules are often already isolated in user space processes (e.g., [2, 9]), this is only a first
step toward dealing with failures, and we claim that current situation leaves several
properties to be desired: 1) application-transparent recovery from transient crashes,
2) fine-grained request failure in the case of repeated failures, and 3) preservation of
integrity of the underlying file objects.

In this paper, we present a crash recovery solution for namespace modules, based
primarily on atomic transactions. In particular, we show that by using transactions
between the namespace module and the object storage layer, we can not only provide
recovery from fail-stop crashes with the three aforementioned properties, but also
use semantic information in the transactions to minimize the runtime overhead.

We implement the transaction framework in our own storage stack, and apply it
to two example namespace modules: the stack’s primary POSIX namespace module,
and a new extension module that allows the internal namespace of HDF5 scientific
data files [58] to be mounted into the standard file system hierarchy. Our evaluation
confirms that our prototype implementation has relatively low runtime overhead and
allows for full recovery from large numbers of injected faults.

5.2. MOTIVATION 85

The rest of the paper is structured as follows. In Sec. 5.2, we describe the mo-
tivation for this work, elaborating on both the emergence of namespace modules as
a concept, and the need to improve on the current situation with respect to crash
recovery of such modules. In Sec. 5.3, we present the design of our transaction-
based solution. In Sec. 5.4, describe the storage stack we use as test platform, the
implementation of the transaction framework on this platform, the changes made to
the original POSIX namespace module to make it recoverable, and the new HDF5
namespace module with recovery support. Sec. 5.5 presents the evaluation of our
implementation, assessing both the resulting reliability improvement and the perfor-
mance impact. In Sec. 5.6, we list related work. Finally, we conclude with future
work in Sec. 5.7.

5.2 Motivation

In this section, we describe the motivation of our work: the emerging concept of
namespace modules (Sec. 5.2.1) and the need for a better solution for recovery from
bug-induced crashes of such namespace modules (Sec. 5.2.2).

5.2.1 Namespace modules as an emerging concept

Within the storage stack part of the operating system, one layer of functionality that
appears to be increasingly common is what we call the namespace layer: a layer in
the storage stack that, based on one or more underlying individual file objects and
their contents, constructs a namespace view for use by applications. This names-
pace layer can typically be found directly under the operating system’s Virtual File
System (VFS) layer, where it exposes a hierarchical file system namespace that is
accessible through a standardized interface. This interface is most commonly the
POSIX application programming interface (API) [5], and thus, the hierarchy is made
up of files, directories, links, and so on. Instances of the namespace layer, which we
call namespace modules, thus translate file system requests coming from VFS, into
individual file object operations on the lower layers of the storage stack. We identify
two main types of namespace modules.

Primary namespace modules

The first type of namespace modules is emerging as a direct result of a shift in storage
stack architectures. The traditional storage stack has a single file system layer which
converts file system operations to block operations. The lower layers thus operate on
a block basis, and this block interface mixes both file data and namespace metadata.
Redundant storage across devices (RAID) is performed at the block level. This
model is depicted in Fig. 5.1a. More recently, storage architectures have started
to separate the management of the namespace and related file metadata, from the
storage of actual file data. In this model, depicted in Fig. 5.1b, the lower layer

86 CHAPTER 5. TRANSACTION-BASED PROCESS CRASH RECOVERY

exposes an abstraction of individual file objects. We refer to this lower layer as the
object storage layer. It typically implements redundant storage at the object level,
making the translation to block operations only at the lowest (device) level. On top
of the object storage layer, the namespace layer is responsible for constructing a file
system namespace out of the collection of individual objects. We call instances of
this layer primary namespace modules, as they are the primary managers of the
underlying storage.

This general concept was introduced in the distributed storage world [46]. It has
since been widely adopted in distributed storage systems (e.g., [15, 29, 160]), and
has sparked the development and standardization of object-based storage devices [6].
The main reason for this architecture is scalability, as the decoupling management
of metadata from the storage of data allows the object storage layer to be distributed
across a large number of fully independent data storage nodes.

However, the object-based architecture is now also being introduced in storage
stack designs for single systems, both in research (e.g., hFAD [125] and our own
Loris storage stack [9]) and in the real world (e.g., ZFS [136]). Even though scala-
bility is not a major concern on a single system, there are several other advantages
of this new architecture. Most importantly, since cross-device redundancy is now
implemented at the object level rather than the block level, this redundancy func-
tionality can now make use of object information. This allows the storage stack to
not only solve fundamental reliability problems present in block-level RAID, but

File
system

VFS

Namespace

VFS

Object
storage

Disk driverDisk driver

Software
RAID

(a) (b)

ApplicationApplication

(1)

(2)

(3)

Figure 5.1: The figure shows the layers of (a) the traditional storage stack and (b) the
object-based storage arrangement. The dotted lines delineate interface abstractions between
layers: (1) the file system interface, (2) the object interface, not found in the traditional stack, and
(3) the block interface.

5.2. MOTIVATION 87

also recover more files in case of a large number of concurrent device failures, and
even store individual files with user-specified levels of redundancy [8]. In addition,
the separation of the namespace layer allows it to be replaced easily and without
affecting the underlying storage [148]. Furthermore, it allows for the introduction of
several additional namespace modules that together manage the primary object stor-
age space, thereby offering a variety of rich interfaces to the application in addition
to the standard POSIX API [125].

Because of these advantages, we expect that the object-based storage architecture
will see even more widespread adoption on single systems, and thus, that primary
namespace modules will become more prevalent as well.

Extension namespace modules

At the same time, new user space file system frameworks such as FUSE [2] and
PUFFS [3] have resulted in the emergence of a second type: extension namespace
modules that expose the internal structure of a single file, by mapping its contents
to the standard hierarchical file system model, allowing the file to be mounted into
the system’s file hierarchy. These modules thus “break open” the underlying file in a
way that makes the file contents available to the end user and moreover, to any tool
that uses the standard POSIX API.

Such modules are additions to the normal file system hierarchy, and typically
loaded on demand. They can be written for any files of which the contents can be
mapped to the standard namespace interface; for example, archive files, document
files, and scientific data files. They can be used for inspection and maintenance
of files generated by other applications, but also as the primary means of creation,
manipulation, and usage of those files. As such, these namespace modules can serve
to standardize access to these files between applications. In addition, a recent case
study of complex file formats [54] suggests that storing complex files as binary blobs
prevents the application from expressing its desires to the storage stack, for example
to guarantee atomicity of operations on the file. This then forces the application
to perform relatively expensive file system operations (such as full file copies and
frequent fsync calls) to maintain such guarantees. Exposing the internal hierarchy
of complex files through a namespace module would allow applications to better
express their intentions to the operating system.

Even though stackable file systems [59] and Hurd translators [23] have been
around for a long time, the new frameworks make development of namespace mod-
ules of this type accessible to a wide range of developers (and not just kernel devel-
opers), also on commonly used operating systems. In systems like FUSE however,
the provider of the underlying file object is the entire storage stack, and the POSIX

API is used for access to the file. We will show in Sec. 5.4 that differently structured
storage stacks can allow extensions to talk directly to the object storage layer.

88 CHAPTER 5. TRANSACTION-BASED PROCESS CRASH RECOVERY

Hybrid cases

However, we believe that the two aforementioned types of namespace modules are
in fact not so different, especially when considering virtualization. We are working
toward a lightweight virtualization system that allows multiple namespace modules–
one per virtual environment–to share a single object storage layer, thereby eliminat-
ing much of the redundancy found in contemporary virtualization systems [149].
These virtual environments contain individual applications, and thus have private
sets of files and are created and destroyed on demand. The namespace modules in
such virtual environments can thus be classified as either type.

5.2.2 The reliability problem

All these namespace modules can represent a substantial amount of error-prone code
in the operating system layer. The primary namespace modules make up a crucial
part of the storage stack. Unlike most parts of the object storage layer, the names-
pace layer has to process many application requests immediately, before any oper-
ation caching comes into play. The desire for high performance typically translates
into extensive use of multithreading, which is a well-known source of reliability
problems, especially so in file system code [97].

In contrast, extension namespace modules are not crucial to the storage stack it-
self, nor are they performance critical; however, they are expected to interpret com-
plex file formats. Worse yet, since these namespace modules must be able to handles
files they have not created themselves, they have to deal correctly with arbitrary con-
tents in the underlying file. This requires either substantial amounts of newly written
code, or the inclusion of an external parser library of which the quality is not always
known. Previous studies have suggested that the number of bugs in a piece of soft-
ware is largely a function of its source code size, reporting numbers in the range
of 0.5–6 bugs per 1,000 lines of code [57, 111]. Thus, neither type of namespace
module can be expected to be bug free.

With the possibility that software bugs can cause namespace modules to crash
as a given, the first concern is then the stability of the operating system in general.
This issue can be addressed by placing the namespace module in an isolated user-
space process, as is done in microkernel operating systems as well as by user space
frameworks such as FUSE. However, even in such systems, no attempts are made
to recover the namespace module after it has crashed. At best, applications receive
I/O errors for all requests that involve the crashed module. While this protects the
operating system from damage extending beyond the boundaries of the module, we
believe that this is insufficient, for three reasons.

First, the application is always exposed to the crash, even when the cause of the
crash was transient. As indicated, such crashes could be the result of race conditions
in a multithreaded environment. If the namespace module could be restarted after
a crash, and the calls could be reissued, the transient crash would not occur again.

5.3. DESIGN 89

This would allow for crash recovery that is fully transparent to the applications.
Second, the entire namespace module is shut down after the crash, even if the

crash was the result of a software bug in a specific code path of a request handler.
For example, many file system bugs are found in error handling code [97], which
triggers only exceptional conditions. In that case, repeating the call after recovery
would thus crash the namespace module in the same way. However, if the system
could recognize this case and fail only the corresponding application call for that
particular request, all other requests (and thus, applications) can continue to make
use of the namespace module.

Third, namespace modules typically translate single incoming application re-
quests into multiple related object operations sent down to the object storage layer.
For example, creation of a new file typically involves two steps: the creation of the
new file object, and addition of the name record to its containing directory object. To
maintain consistency of the underlying storage, such a set of operations is supposed
to be atomic. However, it is possible that a namespace module sends down an in-
complete subset of the operations, and then crashes. It will then leave the underlying
storage in an inconsistent state. This also prevents subsequent recovery.

Thus, we argue that a proper crash recovery system for namespace modules can
and should 1) recover the modules in an application-transparent way from transient
failures, 2) fail only specific system calls in the case of repeated failures, and 3) never
let fail-stop [14] crashes introduce corruption in the underlying storage. At the same
time, namespace modules can be assumed to crash only in exceptional situations,
and thus, such a system should have low overhead during normal runtime. In the
rest of the paper, we will describe our approach to meeting these requirements.

5.3 Design

We will now present the design of a solution that is based on transactions. We start
by stating our assumptions about the operating environment and failures (Sec. 5.3.1).
We then show how transactions form the basis of our recovery system (Sec. 5.3.2),
and the changes needed to the object storage layer (Sec. 5.3.3) and the VFS layer
(Sec. 5.3.4). Finally, we list the requirements for namespace modules themselves
(Sec. 5.3.5).

5.3.1 Assumptions

We assume that the namespace layer is positioned below the VFS layer and on top
of an object storage layer, indeed as depicted in Fig. 5.1b. As such, the main pur-
pose of a namespace module is to process typical requests coming in from the VFS
layer [84]. The module handles each request by performing a number of operations
on individual objects the storage layer below. Typical object operations are creation
and deletion of an object; read, write, and truncate operations on the object; and,

90 CHAPTER 5. TRANSACTION-BASED PROCESS CRASH RECOVERY

retrieval and modification of attributes associated with the object. While the names-
pace module may use input from outside the storage stack (e.g., the current time of
day), any modifications it makes as a result of a VFS request must involve stored ob-
jects only. In the case of extension namespace modules, only one underlying object
is involved, and thus, no object creation or deletion will take place. We believe that
these assumptions are sufficiently generic that they cover any single-system object-
based storage architecture, as well as namespace modules in frameworks such as
FUSE.

Software bugs may cause arbitrary behavior, including undetected propagation of
corrupted results to the application or storage. Thus, we have to limit our solution to
a subset of all possible failures. For failure isolation, we assume that the namespace
module runs in a separate user space process, and that a basic infrastructure is in
place to restart this process cleanly if it has crashed. Furthermore, we assume the
following failure model. First, all failures are detectable, either by the module itself
or the outside system. Previous research has suggested that silent failures are rare
[51]. Second, failures are detected before corrupted results are propagated outside
the process. Similarly, previous studies suggest that fault propagation is rare [51, 77].
This failure model covers more cases than fail-stop [14], because it also allows for
wild memory overwrites as long as the overwritten memory is either not accessed by
another process or (for example) protected by a checksum. In addition, the process
isolation limits the impact of resource leaks. The failure model matches that of other
contemporary work in this area [31, 48, 93, 139].

5.3.2 Transactions and recovery

Given these assumptions, it is easy to see how one can introduce a system of atomic
transactions. In the course of processing a VFS request, all operations that modify
underlying objects can be bundled into a single transaction, which is sent down to
the object storage layer at the end of that request. Thus, each VFS request that
spawns any object modifications at all, results in one such transaction. The request
will only finish once either the transaction has been fully committed in the object
storage layer, or it has been aborted due to an error, with no changes made to the
underlying storage.

Such a transaction system has two effects for crash recovery. First, each transac-
tion is atomic, and thus the object storage layer commits either the entire transaction
or no part of it. In addition, each transaction makes a transition from one consistent
state to another. Thus, there is no possibility that a crash of the namespace mod-
ule causes inconsistency in the underlying storage. This covers the third point from
Sec. 5.2.2, and paves the way for covering the first two points. Note that we do not
discuss isolation between transactions in this work: while it is crucial that proper
isolation is provided if multiple concurrent transactions can exist, a similar require-
ment exists in the original situation, and we believe that solutions for this are too
implementation specific to be generalized.

5.3. DESIGN 91

Second, since the namespace layer must commit the transaction before the end
of processing the VFS request, it can not have any pending changes in its memory
that do not pertain to VFS requests that are currently ongoing. Thus, a crash of
the namespace module will at most result in loss of pending state for the ongoing
requests only. As a result, if the namespace module crashes and is restarted, the
underlying storage layer is guaranteed to reflect all the changes made by previously
completed VFS requests. For each currently ongoing VFS request, either none or all
of its changes have been committed already–after all, it is possible that the names-
pace module crashes either before or after each corresponding transaction has been
committed. As we will show in the next subsections, these conditions are sufficient
to allow the namespace module to guarantee correct recovery from a crash, as long
as some additional requirements are met.

5.3.3 Support in the object storage layer

The transactions are sent as atomic units to the layer below the namespace module:
the object storage layer. In general, this layer is expected to provide a cache for ob-
ject data and operations. Thus, while it must process each transaction right away, the
transactions need not be persisted on a device immediately–a successful transaction
requires only that the modifications have been taken in by the cache. In rare cases,
the transaction may result in a failure at the object storage layer. For example, this
layer may encounter a general out-of-space condition, or an integrity problem with
data that needs to be read in to perform the transaction (e.g., for a partial write to
a block). In that case, the entire transaction must be aborted, and an error must be
returned to the namespace module.

We argue that due to the semantic information available in the transactions, the
object storage layer need not implement full support for rollback of the operations
in the transaction. All actions required to guarantee the successful execution of the
transaction, such as checking available resources and reading in data blocks for par-
tial writes, can be done before the actual transaction is executed. For example, write
operations need not make expensive memory copies for rollback after a later failure.
In multithreaded environments, some minimal rollback support may be needed, such
as reserving space beforehand and canceling the reservation on failure. However, the
actual operations will be deferred for performance reasons (e.g., delayed writes), and
hence any device failure will be detected long after the corresponding operation has
been acknowledged–this is the same in the traditional situation. Thus, by avoiding
the need for rollback, the transaction support in the object storage layer has minimal
overhead.

There is one exception to the above: the application may request direct I/O, in
which case the object storage layer must complete the transaction only once the
changes have been persisted on a device. The transaction must then fail atomically
if any of its operations cannot be committed to the device immediately. In that case,
full rollback support is required. However, the rollback overhead is likely to be

92 CHAPTER 5. TRANSACTION-BASED PROCESS CRASH RECOVERY

masked by the cost of the immediate device I/O. It should be noted that abstractions
within the object storage layer may prevent rollback of some combinations of opera-
tions: while object create, write, and set-attribute operations can be undone, truncate
and delete operations can not. For transactions that contain only one operation of
the latter category, this operation can be performed last. We have not found any sce-
nario where multiple such operations would be sent down in a single transaction by
a namespace module.

5.3.4 Support in the VFS layer

The VFS layer must implement the necessary support for recovery after a namespace
module has crashed and restarted. The first step is resynchronization of the names-
pace module to the current state of VFS, which reflects the result of all completed
requests, and of none of the requests that were still ongoing to that module at the
time of the crash. As part of this step, the recovery procedure in VFS must issue
requests to reopen any other previously opened files and restore any mount points,
for example.

As the second step, VFS must reissue all requests that were ongoing at the time
of the crash. In particular, VFS should reissue them one by one, for two reasons:
1) for transient failures caused by race conditions, serial execution prevents such
race conditions from happening again, and 2) for repeated failures caused by a bad
implementation of a request handler, serial reexecution allows VFS to pinpoint the
request that causes another crash, and abort just that request. This cleanly covers the
first and second points from Sec. 5.2.2.

Especially in multithreaded environments, for some requests, the corresponding
transaction may have already have been committed in the object storage layer be-
fore the crash. Thus, the namespace module needs a way to recognize whether a
request has already been completed or not. To this end, at the very minimum, each
VFS request must have a unique identifier that stays the same upon repetition of the
request.

5.3.5 Requirements for namespace modules

With this infrastructure in place, a namespace module can recover from all failures
in our failure model, as long as it adheres to the following four requirements.

First, the namespace module may not defer any modifications to objects until
after finishing the corresponding VFS request. All operations must be part of the re-
quest’s transaction. We believe that for namespace modules, this is not a prohibitive
requirement. Unlike file systems, namespace modules generally sit on top of the
storage stack’s main cache, and thus, this will incur little to no extra device I/O.

Second, the namespace module must deal correctly with transaction failures re-
ported by the object storage layer. In particular, if the module maintains its own
read caches (e.g., for file attributes or directory data), then either these caches must

5.4. IMPLEMENTATION 93

be updated (pessimistically) only after the transaction succeeds, or any (optimistic)
modification before transaction commit must be rolled back. Since transaction fail-
ures in the object storage layer are expected to be highly exceptional (see Sec. 5.3.3),
even more drastic approaches can be taken in this case, as we will show in Sec. 5.4.4.

Third, the namespace module must not expect that its modifications are visible to
the lower layers before the transaction is committed. For example, it must not expect
that an object read operation will reflect changes made by an earlier object write
operation within the same request, as the write operation will be deferred as part of
the transaction. This requirement can be fulfilled by the transaction framework, or
by optimistic modification of local caches.

Fourth, the namespace module must handle repeated requests correctly. If a
request’s transaction was committed before a crash, but VFS never received the re-
quest’s reply, then VFS will reissue the request after the restart. Idempotent requests
can simply be performed again, but the same does not apply to nonidempotent re-
quests. For example, a “create file” request from VFS that succeeded the first time,
would fail with a file-exists error the second time. Thus, after a restart, the names-
pace module must recognize any such requests for which the transactions have al-
ready been committed. For atomicity reasons, this information must be saved as part
of the transaction, and thus be maintained by the object storage layer. In our case
studies (Sec. 5.4) we present an approach that requires no further extensions to the
object storage layer.

In some cases, more than just the request identifier must be saved. For example,
any results that had not yet been copied to VFS or the application, must be copied
upon repeat. In addition, recall that VFS will restore a restarted namespace module
to the state before the ongoing requests. Thus, any internal state changes resulting
from repeated requests (e.g., adjusting open counts of files) must be replayed as well.

5.4 Implementation

We now describe the implementation of our design. We introduce our previously
developed Loris storage stack (Sec. 5.4.1), the infrastructure changes we made to it
to support transactions (Sec. 5.4.2), the modifications we made to make its primary
namespace module restartable (Sec. 5.4.3), and a new restartable extension names-
pace module developed for this work (Sec. 5.4.4).

5.4.1 Background: the Loris storage stack

In previous work, we have come up with a new object-based operating system stor-
age stack [9], by applying two modifications to the traditional storage stack. First,
we split up the traditional file system into three separate layers: a namespace layer,
a cache layer, and a device layout (physical) layer. Second, we swapped the physi-
cal layer with the traditional RAID layer (now the logical layer). We call this new

94 CHAPTER 5. TRANSACTION-BASED PROCESS CRASH RECOVERY

arrangement the Loris storage stack; it is shown in Fig. 5.2b. The VFS and device
driver layers are unchanged. The four new layers communicate in terms of objects,
which are file-like storage containers that consist of a unique identifier, a variable
amount of byte data, and a set of associated attributes. The lower three layers can
together be viewed as an object store. We will now briefly describe the four layers.

Analogous to what we described in Sec. 5.2.1, the namespace layer is responsi-
ble for the translation of VFS file system requests to file object operations. We cur-
rently have a single namespace module: the primary implementation of the POSIX

namespace for our storage stack. This module stores both files and directories as ob-
jects; lower layers are not aware of the concept of directories. It uses object attributes
to store POSIX attributes of files. It maintains two extra objects for its metadata: a
bitmap to track in-use object identifiers, and a list of open deleted files needed for
system crash recovery.

Below the namespace layer is the cache layer, where object data and attributes
are cached, and various operations are deferred, for performance. This layer uses
a large amount of system memory for this purpose, staging and evicting data as
necessary. Below it, the logical layer implements the equivalent of the traditional
RAID layer, but on a per-object basis. Each object has an associated policy that
determines its RAID-like policy. For example, an object can be mirrored or striped
across a number of devices. The logical layer constructs single “logical” objects out
of one or more “physical” objects stored in the physical layer. This layer consists
of physical modules that each manage the layout of one underlying device, thus
translating object operations to block operations.

As we already sketched in Sec. 5.2.1, the new arrangement has several structural

Namespace

VFS

Object
storage

Disk driver

(a)

Namespace

VFS

Disk driver

(b)

Cache

Logical

Physical

Figure 5.2: The figure shows (a) the generic object-based storage architecture from Fig. 5.1b,
and (b) the layers of the Loris storage stack.

5.4. IMPLEMENTATION 95

advantages, mainly for reliability and flexibility, as a result of the logical layer now
operating at the object level. We have implemented our prototype of the Loris stack
on the MINIX 3 microkernel operating system. In this environment, each module of
each layer is a separate process running in user space.

5.4.2 Infrastructure changes

We implemented the transaction infrastructure described in Sec. 5.3.3 in the cache
layer. Layers below the cache layer need not be aware of transactions. The transac-
tion is fully maintained within the namespace module until it is committed, at which
point it is sent down to the cache layer in its entirety. This saves on interprocess
communication and hides local transaction aborts from the lower layer. We added
a new “commit transaction” operation type to the communication protocol between
the namespace layer and the cache layer, consisting of a set of one or more oper-
ations on objects. The cache ensures atomic execution of the transaction. Since
our storage stack prototype does not yet support direct I/O, we did not add rollback
support.

We also implemented the necessary changes in the VFS component, as per 5.3.4.
We added identifiers to all VFS requests. Since VFS internally uses threads that
block on requests to file systems, these identifiers consist of the combination of a
thread number and a per-thread counter. Furthermore, MINIX 3 already supports
crash detection and stateless restarts of system operating processes [63]. Thus, we
only had to implement a recovery procedure in VFS: if it detects that a namespace
module has been restarted, it first issues a number of requests that restore the previ-
ous state in the namespace module with respect to open files and mount points. It
then instructs each thread waiting for a reply from that namespace module, to resend
its request. This is done serially; if a repeated call triggers a new crash, VFS fails the
corresponding application call with an I/O error. After reissuing all requests, normal
operation resumes.

5.4.3 Case study: the POSIX namespace module

As our first case study, we modified the original POSIX namespace module of the
Loris stack to incorporate proper transaction support. Internally, this namespace
module consists of three sublayers: 1) a dispatch sublayer, which receives VFS re-
quests, dispatches worker threads for them, and sends replies; 2) a logic sublayer,
which implements the handlers for each of the VFS request types; and, 3) a caching
sublayer, which consists of caches for its stored metadata (directory data, file at-
tributes, in-use object identifiers, open deleted files). The adaptation of this module
to the transaction system allowed us to assess the development effort of applying
the transaction system to a module that has not been designed with transactions in
mind. In particular, we wanted to know to which extent the “heart” of the module
was affected: the logic sublayer. In addition, this use case allowed us to measure the

96 CHAPTER 5. TRANSACTION-BASED PROCESS CRASH RECOVERY

performance impact on a primary namespace module.
We started by adding basic support for transactions. Each worker thread now

starts a transaction before invoking a request handler. All object modification oper-
ations performed by the handler are added to the current thread’s transaction. Upon
return from the handler, the transaction is committed, unless the request failed or the
transaction is empty. The POSIX namespace module will never make any changes
to objects as the result of a failing VFS request, and thus, if the request failed, the
transaction is aborted.

We then changed the module to meet the additional requirements listed in Sec. 5.3.5.
To satisfy the first requirement, we made the caching sublayer write-through, thus
making its caches flush their changes immediately as part of the current transaction.
To cover the second and third requirements, we decided to update these caches opti-
mistically during the execution of request handlers. This way, we avoided changing
the request handlers to track their own uncommitted changes. The only code change
to the logic sublayer here was to allow rollback of changes to file attributes, since
these were simply assignments to fields in a structure. We wrapped such assignments
in macros that create a shadow record of the original value upon the first assignment
in each request.

For the fourth requirement, we changed the namespace module to maintain records
that contain the necessary information to skip repeated requests. We call such
records request recovery records. Each record corresponds to a particular VFS re-
quest, and contains the request identifier, the reply fields expected by VFS for the
request (e.g., an updated file size in the case of a “file write” request), and any file
open count change that resulted from the request. We had to add a small number of
calls to the logic sublayer to track the latter.

In order to store these records across requests, we changed the namespace mod-
ule to create an extra object in the object store whenever it is started. The object
is destroyed upon clean shutdown. Each request writes the corresponding request
recovery record to this object as part of its transaction.

After a crash, the namespace module is restarted, and it will find that the object
still exists. It then reloads the records from the object. Subsequently, while pro-
cessing VFS requests, it compares each incoming request identifier to its records in
memory. If there is match, the request is skipped: any file open count change in the
record is reapplied, and a success code is sent back to VFS along with the stored
reply fields in the record. Any memory copies to VFS or the application (e.g., the
data for a “file read” request) are performed before the transaction is committed1;
these need not be saved or repeated.

Maintaining request recovery records incurs little extra overhead. By using the
VFS thread number embedded in the request identifier, we can aggressively recycle
record entries in the object. As a result, the object is small in size and updated
frequently, and thus expected to remain in the cache layer’s (RAM) cache at all times.

1The transaction may still fail, but the POSIX standard does not require that application memory buffer
contents be preserved upon call failure.

5.4. IMPLEMENTATION 97

Therefore, updating a record as part of an existing transaction is cheap. Requests that
end up in failure will not commit their transaction, and read-only operations will not
create a transaction at all. Thus, no record needs to be saved in these two cases: the
requests can safely be repeated. Therefore, maintaining these records never requires
extra transactions.

In summary, fulfilling the first three requirements required changes to the caching
sublayer only, except for small changes in the logic sublayer to be able to roll back
updates. Fulfilling the fourth requirement required changes to the dispatch sub-
layer only, except for a few added calls to track file open count changes in the logic
sublayer. Overall we did indeed not have to make substantial changes to the logic
sublayer.

5.4.4 Case study: the HDF5 namespace module

For the second case study, we developed a new extension namespace module from
scratch. This namespace module allows one to explore and manage the contents of a
scientific data file, by mounting a representation of its internal hierarchy in the local
system’s general file hierarchy. While we do not expect our implementation to be
used for the generation of such files, we believe that offering access to the contents
of such a file through the normal POSIX API will help users in maintenance of such
files, allowing them to use existing and familiar POSIX tools to not only explore the
file, but also to make corrections to the file’s internal organization.

For this module, we chose HDF5, a commonly used file format for scientific data
[58]. HDF5 files are internally structured as filesystem-like hierarchies, with support
for regular data files (data spaces), directories (groups), soft and hard links, an object
attribute system much like POSIX extended attributes, and so on. The contents of the
data spaces do not always map well to the standard byte-oriented POSIX read and
write calls, but we expect such an extension module to be used for managing the
hierarchy rather than the actual data.

We based our implementation on the official HDF5 open-source library imple-
mentation [58]. This library is single threaded, and thus, so is our namespace mod-
ule. We added a relatively thin layer that maps the VFS requests to HDF5 operations.
In addition, the namespace module intercepts all I/O calls made by the library, and
converts them into Loris operations on the underlying object. The namespace mod-
ule can be mounted by specifying a HDF5 file and a mount point, and then operates
below VFS and on top of the cache layer, next to any other namespace module in the
namespace layer.

After completing an initial version, we added basic transaction support, and
made the module recoverable by implementing the requirements from Sec. 5.3.5.
Satisfying the first requirement was not as straightforward as we hoped. While the
library provides a function to flush its caches to the underlying file (H5Fflush), as
it turned out, this function does not guarantee that the file can be reopened in read-
write mode afterwards. Thus, we had to resort to making the library close and reopen

98 CHAPTER 5. TRANSACTION-BASED PROCESS CRASH RECOVERY

the underlying file between each two requests. To lessen the performance impact of
the library’s resulting constant file data reloads, we added a small read cache to the
I/O handling sublayer of the namespace module. Again, optimistic updating of this
cache fulfills the third requirement.

Meeting the second requirement was problematic at a more fundamental level.
Since all intercepted I/O calls have to be deferred until transaction commit time,
the I/O interception code has to report preliminary success to the library. If the
transaction then fails in the cache layer, there is no longer a way to revert internal
state changes in the library that resulted from the earlier perceived success. Given
that transaction failures in the cache layer are rare and hard to deal with sensibly, we
opted for a drastic solution that works in all cases: upon getting a transaction failure
from the cache layer, the namespace module sends an error back to VFS, and then
purposely crashes. As a result, the library will reload the pre-request state from the
underlying object upon restart, and VFS will not repeat the request; operation can
then continue.

We covered the fourth requirement with a similar request recovery record system
as for the POSIX namespace module. We avoid creating a separate object in the
lower storage layer, instead storing the information in a temporary data space within
the HDF5 file. For this namespace module, the records contain some additional
information. For example, the library may make changes to the underlying file even
when it fails a particular call. Therefore, we also have to create a request recovery
record for failing requests, and thus, each record has to contain the resulting error
code as well.

In summary, this case study shows that it is feasible for an extension namespace
module to meet the requirements for recovery, even when embedding a library of
which the internals are largely unknown. We expect that our approach can be reused
in many other extension namespace modules.

5.5 Evaluation

In this section, we evaluate our work. In Sec. 5.5.1, we evaluate the performance
of both the the POSIX namespace module and the HDF5 module. In Sec. 5.5.2, we
perform fault injection experiments to evaluate the robustness of both modules.

5.5.1 Performance

The POSIX namespace module

We started by subjecting the POSIX namespace module to microbenchmarks (omit-
ted due to lack of space). Initial performance results were not impressive; this turned
out to be the effect of file access time updates. These updates resulted in generation
of a transaction for each (otherwise read-only) “file read” request, and this caused

5.5. EVALUATION 99

B
en

ch
m

ar
k

U
ni

t
B

et
te

r
if.

.
O

ri
gi

na
l

N
o

w
ri

te
ba

ck
Tr

an
sa

ct
io

ns
R

ec
ov

er
ab

le
M

IN
IX

3
bu

ild
se

co
nd

s
lo

w
er

70
3

(1
.0

0)
70

1
(1

.0
0)

69
8

(0
.9

9)
69

8
(0

.9
9)

O
pe

nS
SH

bu
ild

se
co

nd
s

lo
w

er
53

2
(1

.0
0)

53
6

(1
.0

1)
54

1
(1

.0
2)

54
5

(1
.0

2)
Po

st
M

ar
k

tr
an

s.
/s

ec
.

hi
gh

er
82

5
(1

.0
0)

77
6

(0
.9

4)
82

3
(1

.0
0)

82
5

(1
.0

0)
Fi

le
Se

rv
er

IO
P

S
hi

gh
er

12
65

(1
.0

0)
12

44
(0

.9
8)

12
43

(0
.9

8)
12

79
(1

.0
1)

W
eb

Se
rv

er
(Z

ip
f)

IO
P

S
hi

gh
er

12
91

5
(1

.0
0)

12
97

3
(1

.0
0)

13
04

4
(1

.0
1)

13
06

7
(1

.0
1)

Ta
bl

e
5.

1:
M

ac
ro

be
nc

hm
ar

k
pe

rfo
rm

an
ce

of
th

e
P

O
S

IX
na

m
es

pa
ce

m
od

ul
e,

co
m

pa
rin

g
fo

ur
ve

rs
io

ns
us

in
g

fiv
e

be
nc

hm
ar

ks
,a

nd
sh

ow
in

g
bo

th
ab

so
lu

te
an

d
re

la
tiv

e
nu

m
be

rs
.

100 CHAPTER 5. TRANSACTION-BASED PROCESS CRASH RECOVERY

high interprocess communication (IPC) overheads. We believe that maintaining ac-
curate access times is not essential in most environments, and in all experiments we
turned file access times updates off. With this change, all microbenchmarks showed
low overheads.

We then ran a number of macrobenchmarks, on four different versions of the
POSIX namespace module. First, the unmodified version forms our baseline for the
benchmarks (Original). Second, we changed the module’s caching sublayer to flush
all object modifications down to the cache layer within the scope of the request (No
writeback). Thus, this version shows the overhead of the extra operations resulting
from the immediate flushing. Third, we added transaction tracking and rollback
support to the namespace module (Transactions). These changes are expected to add
some more overhead. However, the transaction system now bundles all modifying
operations of each request into a single transaction, which is sent down as a unit
to the cache layer. As a result, this version should have reduced IPC overhead.
Fourth and finally, we added support for request recovery records, thus fulfilling all
requirements to allow for crash recovery (Recoverable).

We used the following benchmarks and configurations: a MINIX 3 source com-
pilation in a chroot environment; an OpenSSH build test which unpacks, configures,
and builds OpenSSH, also in a chroot environment; PostMark, with 80K transactions
on 40K files in 10 directories, 4–28KB file sizes, and 4K I/O sizes; FileBench File
Server, with its default configuration, run for 30 minutes at once; and, FileBench
Web Server, modified to access its files using a Zipf distribution in order to be more
realistic, also run for 30 minutes.

The experiments were conducted on an Intel Core 2 Duo E8600 PC, with 4GB of
RAM, and a 500GB 7200RPM Western Digital Caviar Blue (WD5000AKS) SATA
hard drive, running MINIX 3.2.1. The tests were run with 1GB of cache memory in
the cache layer, and on the first 32GB of the disk. For the PostMark and File Bench
tests, we consider the run phase only. We report the average of at least ten runs.

The results are shown in Table 5.1. Compared to the original namespace module,
the recoverable version has an overhead of 0–2% across the benchmarks, with some
benchmarks even showing a small performance improvement. Removing writeback
caching had the biggest impact on PostMark, but the transactions effectively can-
celed this out by reducing IPC overhead. Reduced IPC overheads also explain the
other small performance improvements; MINIX 3 is not particularly optimized in this
regard. As predicted, maintenance of request recovery records added no significant
overhead in any of the benchmarks. Overall, we believe that the runtime overheads
are sufficiently low for a process crash recovery system for the primary namespace
module of storage stack.

The HDF5 namespace module

The HDF5 namespace module was written from scratch and primarily intended for
human-driven maintenance. However, our basic support for reading and writing

5.5. EVALUATION 101

Original Flush Reopen Transactions Recoverable
631 (1.00) 530 (0.83) 38 (0.06) 37 (0.06) 36 (0.06)

Table 5.2: Macrobenchmark performance of the HDF5 namespace module, comparing five
versions using PostMark, showing both absolute and relative transactions-per-second numbers.

data spaces proved sufficient to run PostMark on it. Thus, we were able to get some
performance measurements here as well. We tested five versions: the initial version
(Original); a version that calls H5Fflush to flush the library caches to the underlying
file after each request (Flush), which as we noted is not sufficient to retain read-write
consistency; a version that reopens the underlying file between requests to flush all
changes (Reopen); a version that adds transaction support to that (Transactions), and
the final version that also adds request recovery records (Recoverable).

The results are shown in Table 5.2. As can be seen, constantly reopening the un-
derlying file results in a serious performance penalty. Our tests show that almost all
this time is spent by the library on creating and destroying internal data structures–it
is simply not optimized for this kind of usage. If calling H5Fflush had been suffi-
cient, this overhead would have been limited to about 17%. Thus, we conclude that
while it is possible to meet recovery requirements in an extension namespace mod-
ule even if it uses a preexisting library as is, if this library has not been optimized
for these requirements, the resulting performance may suffer. We maintain that per-
formance is not critical for an extension namespace module, unless it is intended as
primary means of access to the file–in that case, it is worth optimizing any included
library as well.

5.5.2 Reliability

We assessed the reliability of our implementation by performing a number of fault
injection experiments on the POSIX and the HDF5 namespace modules. We injected
faults in each module while a benchmark was running in a continuous loop.

For the POSIX namespace module, we used two benchmarks. The first is Post-
Mark, which we modified to verify the results of all its calls. As part of this, we
made it write known patterns in its write calls, and verify the data returned from
its read calls accordingly. The second is the OpenSSH benchmark, with an added
verification step for the compiled binaries at the end. For the HDF5 module, we used
the same modified version of PostMark. In addition, since the OpenSSH benchmark
expects more from the file system than the HDF5 module can offer (e.g., device
nodes), we instead wrote and used a custom benchmark which performs a number
of hierarchy manipulation operations in a loop.

We limited ourselves to fail-stop fault injection, as there is no easy way to inject
faults that match exactly the failure model from Sec. 5.3.1. In order to maximize
fault injection coverage, we injected fail-stop faults into the namespace module pro-
cess in two different ways: 1) killing the process at random times by sending it a fatal

102 CHAPTER 5. TRANSACTION-BASED PROCESS CRASH RECOVERY

Module Benchm. “kill” injection “swifi” injection
I C R I C R

POSIX PostMark 1500 1500 1500 1500 1500 1500
POSIX OpenSSH 1500 1500 1500 1500 1500 1500
HDF5 PostMark 1500 1500 1500 1500 1500 1500
HDF5 Custom 1500 1500 1500 1500 1500 1500

Table 5.3: Fault injection results, showing for each namespace module, benchmark, and types of
fault injection, the number of times fault injection took place (I), the number of crashes (C), and
the number of successful recoveries (R).

signal (“kill”); 2) using a software fault injection tool to overwrite a limited, random
set of CPU instructions in the process with instructions that generate an exception
(“swifi”). While the latter eliminates skew introduced by process scheduling, the for-
mer adds more multithreading-like coverage of these (single-threaded) benchmark
runs, as the module may now also be killed while it is in the middle of performing
an operation. We note that without our changes, all fail-stop failures would be fatal
to the namespace module.

For each of the combinations, we injected faults 1500 times. For the “swifi” fault
injection, we injected 100 faults each time. The results are shown in Table 5.3. In
all cases, all injections caused the namespace module to crash. More importantly,
all crashes were followed by successful recovery, and none of the benchmarks were
affected by the fault injection in any way. We believe that this is a good indica-
tion that our implementation works and can indeed achieve the intended reliability
improvement.

5.6 Related work

The closest to our work is Re-FUSE [139], which provides recovery from fail-stop
process crashes in FUSE file systems. It logs the system calls (and their results)
made by the FUSE file system while processing each file system request. After a
crash, the file system is restarted and the pending request is repeated. The file sys-
tem is then expected to perform exactly the same system calls, for which Re-FUSE
replays the original results–after completion, normal operation can resume. Like our
solution, Re-FUSE requires that the file system defer no operations across requests.
In contrast to our work, Re-FUSE also allows use of nonstorage resources like net-
work connections. However, it requires strict determinism from the file system, and
offers no guarantees in multithreaded environments. As stated, we believe that mul-
tithreading in particular is not only a requirement for high performance, but also
one of the main sources of transient failures. In addition, Re-FUSE can not cleanly
recover the underlying resources in the case of a repeating crash; under the same fail-
ure assumptions, our system prevents inconsistencies. Compared to both our work
and Re-FUSE, other process recovery solutions for file systems either require more

5.7. CONCLUSION AND FUTURE WORK 103

resources and processing (e.g., Membrane [138]), or provide more invasive recovery
(e.g., CuriOS [31]).

The use of transactions as the basis for recovery from operating system failures
is not new (e.g., [48, 93]). While these approaches can recover from failures in larger
parts of the operating system, we believe they have two main disadvantages: 1) they
require extensive changes to the entire operating system, and 2) the generality of
the solution makes it harder to apply domain-specific optimizations. For example,
we stipulate that the high overheads on file write operations in Akeso [93] are due
to extra memory copies necessary for its rollback system. Our system can mostly
avoid this.

Other work has explored exposing transactions to applications (e.g., [115, 132]).
While such systems add more overhead, it should be possible to combine them with
our solution.

Previous work suggested microrebooting of isolated components to recover from
fail-stop crashes [24]. Our work could be seen as an instance of this concept, al-
though by focusing on the storage stack, we address different aspects of the problem.

ZFS implements a namespace module in the form of its ZFS Posix Layer (ZPL)
[136]. It uses per-request transactions from this layer to ensure atomicity of its
modifications in the lower layers. However, the ZPL is not a separate process, and
we are not aware of work on process crash recovery of ZFS.

5.7 Conclusion and future work

In this work, we have described and evaluated a way to improve the reliability of a
key component in the next generation of operating system storage stacks. There is
however more work to be done in this context.

So far, we have taken the POSIX interface and thus the presence of a VFS layer
as a given. In future work, we intend to focus on namespace modules that bypass
VFS and expose an API directly to user applications, exploring the requirements for
making such modules recoverable as well.

As sketched in Sec. 5.2.1, another future goal is to have multiple primary names-
pace modules in virtual environments, on top of a single shared object storage layer.
In order to deal with hostile modules, we intend to implement on-the-fly verification
that transactions retain the overall integrity of the storage system. This is similar
to other recent work [41]. However, by working at the object level, we have more
semantic information available to achieve this.

6
Towards a Flexible, Lightweight Virtualization

Alternative

Abstract

In recent times, two virtualization approaches have become dominant: hardware-
level and operating system-level virtualization. They differ by where they draw the
virtualization boundary between the virtualizing and the virtualized part of the sys-
tem, resulting in vastly different properties. We argue that these two approaches are
extremes in a continuum, and that boundaries in between the extremes may combine
several good properties of both. We propose abstractions to make up one such new
virtualization boundary, which combines hardware-level flexibility with OS-level
resource sharing. We implement and evaluate a first prototype.

105

106 CHAPTER 6. A FLEXIBLE, LIGHTWEIGHT VIRTUALIZATION ALTERNATIVE

6.1 Introduction

The concept of virtualization in computer systems has been around for a long time,
but it has gained widespread adoption only in the last fifteen years. It is used to save
on hardware and energy costs by consolidating multiple workloads onto a single
system without compromising on isolation, as well as to create host-independent
environments for users and applications.

In these recent times, two virtualization approaches have established themselves
as dominant: hardware-level and operating system-level (OS-level) virtualization.
The two are fundamentally different in where they draw the virtualization bound-
ary: the abstraction level at which the virtualized part of the system is separated
from the virtualizing infrastructure. The boundary for hardware-level virtualization
is low in the system stack, at the machine hardware interface level. For OS-level
virtualization it is relatively high, at the operating system application interface level.
This boundary determines important properties of the virtualization system: the for-
mer is generally thought of as more flexible and better isolated; the latter as faster
and more lightweight.

In this paper, we take a top-down look at the virtualization boundary. We ar-
gue that the two existing approaches are extremes in a continuum with a relatively
unexplored yet promising middle ground. This middle ground offers the potential
to combine several of the good properties from both sides. We propose a set of
“mid-level” abstractions to form a new virtualization boundary, where the virtualiz-
ing infrastructure provides object-based storage, page caching and mapping, mem-
ory management, and scheduling, whereas any higher-level abstractions are imple-
mented within each virtual environment. We argue that this approach offers a viable
alternative, providing flexible, lightweight virtual environments for users and appli-
cations. We implement the core of our ideas in a microkernel-based prototype.

The rest of the paper is laid out as follows. In Sec. 6.2 we describe virtualization
boundaries as a continuum. In Sec. 6.3 we propose and discuss a new alternative.
We describe our prototype in Sec. 6.4 and its evaluation in Sec. 6.5. Sec. 6.6 lists
related work. We conclude in Sec. 6.7.

6.2 Virtualization as a continuum

Reduced to its most basic form, any virtualization system consists of two parts. The
domains are the environments being virtualized, with (at least) user applications
in them. The host comprises all system components facilitating the virtualization
of such domains. We refer to the abstraction level defining the separation between
these parts as the virtualization boundary.

In this paper, we consider only virtualization in which unchanged applications
can run using machine-native instructions (as opposed to e.g. Java [12] and NaCl
[165]), and in which domains are considered untrusted. In this space, two approaches

6.2. VIRTUALIZATION AS A CONTINUUM 107

have become dominant: hardware-level virtualization (Sec. 6.2.1) and OS-level vir-
tualization (Sec. 6.2.2). We argue that these are extremes in a continuum of virtu-
alization boundaries, in which new alternatives have the potential to combine good
properties of both (Sec. 6.2.3).

6.2.1 Hardware-level virtualization

Hardware-level virtualization [19, 22, 49, 163] places the virtualization boundary as
low in the system stack as practically feasible. A host layer (virtual machine monitor
or hypervisor) provides its domains (virtual machines) with abstractions that are
either equal to a real machine or very close to it: privileged CPU operations, memory
page tables, virtual storage and network devices, etc. The low boundary allows a
full software stack (OS and applications) to run inside a domain with minimal or no
changes. The result is strong isolation, and full freedom for the OS in each domain
to implement arbitrary high-level abstractions.

However, the OS adds to the domain’s footprint, while typically exploiting only
a part of its flexibility. Several fundamental abstractions are common across OSes:
processes, storage caches, memory regions, etc. Reimplementing these in isola-
tion leads to duplication and missed opportunities for global optimization. Only
the host side can solve these issues, but the low boundary creates a semantic gap
[26]: the host lacks necessary knowledge about the higher-level abstractions within
the domains. Many ad-hoc techniques have been proposed to work around this gap
[44, 73, 91, 103, 104, 158].

6.2.2 Operating system-level virtualization

In contrast, with OS-level virtualization [76, 110, 117, 131, 166], the operating sys-
tem itself has been modified to be the virtualization host. The domains (containers)
consist of application processes only–all system functionality is in the OS. Each do-
main gets a virtualized view of the OS resources: the file system hierarchy, process
identifiers, network addresses, etc. Since the OS doubles as the host, there is no re-
dundancy between domains and resources can be optimized globally. Thus, OS-level
virtualization is relatively lightweight.

However, merging the host role into the OS has downsides as well. First, it
eliminates all the flexibility found in hardware-level virtualization: the domains have
to make do with the abstractions offered by the OS. Second, the merge removes an
isolation boundary; failures and security problems in the OS may now affect the
entire system rather than a single domain.

6.2.3 The case for new alternatives

The placement of the virtualization boundary in the software stack clearly has im-
portant consequences. However, we argue that the two described approaches are

108 CHAPTER 6. A FLEXIBLE, LIGHTWEIGHT VIRTUALIZATION ALTERNATIVE

extremes in a continuum. With the boundary as low in the software stack as pos-
sible, hardware-level virtualization represents one end of the spectrum. OS-level
virtualization represents the other end, with the boundary as high as possible with-
out affecting applications. That leaves a wide range of choices in between these
extremes.

In a middle-ground approach, the host layer provides abstractions to its domains
that are higher-level than those of hardware, and yet lower-level than those of OSes.
Each domain then contains a system layer which uses those “mid-level” abstractions
to construct the desired interface for its applications, as illustrated in Fig. 6.1. This
way, we have the potential to reduce the footprint of the domains while retaining
much of their flexibility and isolation. The only point that we must compromise on,
is the ability to run existing operating systems.

6.3 A new virtualization design

In this section, we present the design of a new point in the virtualization continuum.
We first state our design goals (Sec. 6.3.1). We then present the abstractions making
up the new virtualization boundary (Sec. 6.3.2). Finally, we discuss the properties
of our design (Sec. 6.3.3).

6.3.1 Design goals

Our goal is to establish a new set of abstractions implemented in the host system and
exposed to the domains. Each domain’s system layer may use those abstractions to
construct an interface for its applications. In principle, the domain should be able
to achieve binary compatibility with existing applications. With that constraint as a
given, we set the following subgoals.

First, the abstraction level should be high enough to bridge the semantic gap.

(a)

app app

hypervisor

OS

app app

system

OS
host

app app

(b) (c)

Figure 6.1: A schematic diagram of (a) hardware-level virtualization, (c) OS-level virtualization,
and (b) our new alternative. The dashed line shows the virtualization boundary.

6.3. A NEW VIRTUALIZATION DESIGN 109

In particular, the new abstractions should allow for lightweight domains, mainly
by reducing resource duplication. In many cases, the domains running on a single
host will bear great similarity, because they implement the same application inter-
face, and thus can share programs, libraries, and data, both in memory and on disk.
The abstractions should make sharing of such resources a natural result rather than
an afterthought, but with copy-on-write (CoW) semantics to retain full isolation.
Bridging the semantic gap should also allow for other global optimizations gener-
ally found in OS-level virtualization only.

Second, the new abstractions should be sufficiently low-level to give the system
layer in each domain substantial flexibility in implementing (or omitting) high-level
abstractions for its applications. The host system should expose only abstractions
that are well established as fundamental building blocks for operating systems and
thus practically used in all domains.

Third, it should be possible to provide the new abstractions through a minimal
interface. The virtualization boundary doubles as a boundary for fault and security
isolation. A simple, narrow interface reduces complexity and security risks in the
host system.

6.3.2 Abstractions

Based on these goals, we propose the following abstractions, starting with storage
and going from there.

Object-level storage

For storage, hardware-level virtualization typically exposes a block-level virtual disk
abstraction, while OS-level virtualization typically exposes a full-blown file system
abstraction. We argue that neither is optimal.

Block-level storage again suffers from a semantic gap. Since algorithms at the
block level lack filesystem-level information, block-level storage is plagued by fun-
damental reliability issues [88] and missed opportunities for optimization [33, 74],
also in the context of virtualization [143]. In addition, virtual disks are intrinsically
heavyweight: they are statically sized and the smallest unit of content sharing be-
tween domains is the whole virtual disk.

However, file systems represent the other end of the spectrum. They impose a
specific naming structure and constraints, thus adding host complexity while taking
away flexibility from the domain, in terms of semantics (e.g., POSIX vs Win32 file
deletion), configuration (e.g., access time updates or not), and the ability to optimize
metadata management for application needs [148].

Instead, we propose an object storage model [38, 46, 152], in which the host
exposes an abstraction of objects: variable-size byte containers, each with a unique
identifier and a set of associated attributes. An object can be created, deleted, read
from, written to, truncated, and have its attributes be retrieved and manipulated. This

110 CHAPTER 6. A FLEXIBLE, LIGHTWEIGHT VIRTUALIZATION ALTERNATIVE

small set of operations makes up the core of the storage interface implemented by
an object store in the host.

The object model imposes no structure between objects. It is left to the system
layer in each domain to tie together its objects into a namespace. The basic approach
is to use one object per file in the file system. Directories may be implemented as
one object each, or with centralized objects [148], for example. With no hierarchy
or metadata management defined at the object level, each domain may implement
the file system abstractions appropriate for its user applications.

The details of storage management are left to the centralized object store. This
store maintains and persists the global set of objects, on local or possibly networked
storage. It gives each domain its own virtualized view of the set of objects, by
keeping a per-domain mapping of local object identifiers to global objects.

The mapping facilitates storage space sharing similar to block-level CoW stor-
age. The object store can map several per-domain identifiers to a single underlying
object. Upon creation, a domain’s initial mapping typically points to a set of preex-
isting objects. Such objects remain shared until a domain changes them, at which
point it gets a private copy, thus retaining full isolation. As a result, the domains’ ob-
ject spaces will only ever diverge; to overcome this, the store can employ lightweight
object-level deduplication to merge objects that become identical later. It can also
implement finer-grained sharing and deduplication, for which it can use object-level
hints.

Thus, overall, the object-based storage abstraction enables both per-domain meta-
data management flexibility and fine-grained cross-domain storage sharing. At the
same time, the storage implementation details are fully confined to the host side,
where the object-level information can be used to improve global decisions.

Object page caching and mapping

Next, we propose to extend the consolidation of shared storage objects to memory,
in the form of a centralized page cache. Positioning the page cache in the host’s
object store yields several advantages. First, cache pages can be associated with
their underlying global object, thus avoiding in-memory duplication of cached data
between domains altogether. Second, a centralized page cache can employ global
optimization strategies such as domain working set size estimation [73, 83, 98, 99]
and exclusive caching on a second-level SSD cache.

With the page cache on the host side, the final step is to allow the cached pages to
be CoW-mapped into domains, so as to let domains implement support for memory-
mapped files. As a result, if multiple domains map pages from the same underlying
global objects, these domains all end up with a copy-on-write mapping to the same
physical page. This allows memory sharing of application and library code in par-
ticular.

Overall, the caching and sharing eliminates a substantial fraction of interdomain
memory redundancy [25, 85] without the expense of explicit deduplication.

6.3. A NEW VIRTUALIZATION DESIGN 111

Address spaces, threads, and IPC

As supporting infrastructure, we propose that the host expose a number of microkernel-
inspired abstractions: address spaces, threads of execution, and interprocess commu-
nication (IPC) [56, 142].

Thus, the host side becomes fully responsible for maintaining virtual memory
and scheduling. It exposes an interface that allows for memory mapping, unmap-
ping, granting, sharing, and copying, as well as creation and manipulation of threads.
Centralized memory management not only simplifies the interface to our proposed
memory mapping abstraction, but also facilitates centralized page fault and swap
handling without the problem of double paging [50]. Centralized scheduling allows
for global optimizations as well [82, 89, 141].

From the perspective of the host, each domain now consists of one or more pro-
cesses making up its system layer, and a set of processes making up its application
layer. In order to let these entities communicate, the host exposes IPC primitives,
with access restricted as appropriate. The IPC primitives may also be used to imple-
ment additional required functionality for the domain system layer, such as timers
and exceptions. We refrain from defining the exact primitives; such choices should
be driven by low-level performance considerations and may be platform dependent.

Other abstractions

Physical resources typically require a driver and appropriate multiplexing function-
ality in the host. The main remaining resource is networking. Because of the state
complexity of networking protocols, we believe the TCP/IP stack should be inside
the domains. The abstractions exposed by the host can therefore simply be in terms
of “send packet” and “receive packet,” implemented by a host-side network packet
multiplexer.

6.3.3 Properties

We now discuss several properties of our proposed virtualization approach and its
implementations.

Flexibility and security

The system layer of each domain is free to implement any abstractions not exposed
by the host. For a typical POSIX domain, this would include abstractions such as:
process identifiers and hierarchies; signals; file descriptors; the file system hierar-
chy; pseudoterminals; sockets; network and pseudo file systems. A domain may
implement the minimal subset needed by its applications to minimize the domain’s
footprint and its system layer’s attack surface, or a set of experimental abstractions
to cater to an esoteric application’s needs, or a specific set of abstractions for com-
patibility with a legacy application, etc.

112 CHAPTER 6. A FLEXIBLE, LIGHTWEIGHT VIRTUALIZATION ALTERNATIVE

Compared to OS-level virtualization, our approach shares two advantages with
hardware-level virtualization. First, a privileged user gets full administrative control
over her domain, including the ability to load arbitrary extensions into the domain’s
system layer. Second, the host abstractions are available only to the domain’s system
layer, resulting in two-level security isolation: in order for an unprivileged attacker
to escape from her domain, she would first have to compromise the domain’s system
layer, and then compromise the host system from there.

Performance versus subsystem isolation

Our design imposes no internal structure on the system layers on either side of the
virtualization boundary. The host side may be implemented as a single kernel, or as a
microkernel with several isolated user-mode subsystems. Independently, the system
layer of each domain may be implemented as a single user-mode process, or as
multiple isolated subsystems. On both sides this is a tradeoff between performance
and fault isolation.

We leave open whether a monolithic implementation on both sides can achieve
low-level performance on par with other virtualization architectures. For example,
since the page cache is in the host system, an application has to go through its do-
main’s system layer to the page cache in order to access cached data. In a straight-
forward implementation, this would several extra context switches compared to the
other architectures. Future research will have to reveal to which extent any resulting
overheads can be alleviated, for example with a small domain-local cache, memory
mapping based approaches, or asynchronous operations [67, 106, 130].

For the host system, the resulting size of the trusted computing base (TCB) will
be somewhere between that of hardware-level and OS-level virtualization. A micro-
kernel implementation would allow for a minimal TCB for security-sensitive do-
mains by isolating them from unneeded host subsystems, similar to Härtig et al [55].

Resource accounting and isolation

A proper virtualization system must give each domain a share of the system re-
sources and prevent interference between domains [19, 52, 94, 131]. This problem
is smaller when the host side provides fewer services: any resources used within a
domain can easily be accounted to that domain, but the host must account its own
resource usage to the appropriate domain explicitly. Our approach takes a middle
ground: explicit accounting is needed for the object store and the memory manager,
but not for higher-level resources. We expect to be able to leverage existing OS-level
virtualization algorithms.

Checkpointing and migration

For common virtualization functionality such as checkpoint/restart and live migra-
tion [28, 110], our solution benefits from the middle ground. Compared to OS-level

6.4. OUR PROTOTYPE 113

naming

cache

logical

physical

disk drv

net mux

net drv

VM

sched

microkernel

TCP/IP

VFSPM

...

app appinit

U
ser

S
ystem

D
om

ain
H

ost

Figure 6.2: The components of our prototype.

virtualization, our host system provides fewer abstractions, and therefore less state
to extract and restore explicitly. Compared to hardware-level virtualization, our cen-
tral memory and storage management simplify the solution. The domains do not
manage their own free memory, and any domain-specific pages in the page cache
can be evicted at any time. Thus, the footprint of a domain can be minimized by the
host at any time, obviating the need for ballooning [158].

6.4 Our prototype

We have built an initial prototype on the MINIX 3 microkernel operating system
[142]. MINIX 3’s microkernel implements a small set of privileged operations. This
set includes low-level IPC facilities, which identify processes by global endpoint
numbers. On top of the microkernel, POSIX abstractions are implemented in iso-
lated user-mode processes called services. The most important services are: VM, the
virtual memory service, which manages physical memory and creates page tables;
SCHED, a scheduling policy service; PM, the process manager, which manages pro-
cess IDs and signals; and VFS, the virtual file system service, which manages open
file descriptors, working directories, and mounted file systems. PM and VFS provide
the main POSIX abstractions to application processes, whereas VM and SCHED are
not exposed to applications directly. Other services provide file systems, a TCP/IP
stack, pseudoterminals, SysV IPC, etc. Hardware interaction is made possible with
device driver services.

114 CHAPTER 6. A FLEXIBLE, LIGHTWEIGHT VIRTUALIZATION ALTERNATIVE

In prior work, we have developed a new object-based storage stack called Loris
[9], which replaces the traditional file system and RAID layers positioned between
VFS and disk drivers with four new, separate layers. Below VFS, the naming layer
implements VFS requests, file naming, directories, and attributes. It stores files
and directories as objects, using the object store implemented in the layers below:
the cache layer, an object-based page cache; the logical layer, which adds RAID-
like per-object redundancy; and, the physical layer, which manages the layout of
underlying devices on a per-device basis and converts object operations to block
operations. The object store uses the model and operations from Sec. 6.3.2.

We modified MINIX 3 and Loris to implement our virtualization concept. A vir-
tualization boundary is drawn between the system services such that the host system
consists of the microkernel, the VM and SCHED services, the lower three Loris lay-
ers, and all hardware driver services. Each domain has a system layer consisting of
a private instance of PM, VFS, the Loris naming layer, and any of the other POSIX

services as needed by its applications. The user application layer of the domain con-
sists of a copy of the init user process and any actual application processes. The
result is shown in Fig. 6.2.

Since endpoints were both global and hardcoded (e.g., PM has endpoint 0), we
modified the kernel to virtualize endpoints using a mapping between global and
domain-local endpoints. Thus, each PM instance has a domain-local endpoint of 0,
but all PM instances have different global endpoints. The mapping also determines
which host services are visible to each domain. We note that a microkernel with
relativity of reference for IPC (e.g., object capabilities) would not require such a
change.

We modified the Loris cache layer to support object-granular copy-on-write. To
this end, we added per-domain mappings from domain-local to global object iden-
tifiers, as explained in Sec. 6.3.2, and global-object reference count tracking. An
out-of-band interface is used to create and delete mappings for domains. We did not
change the VM service in a similar way, as it already had support for copy-on-write
memory.

We did change VM, SCHED, and the Loris cache to be domain-aware. These
host services use a shared kernel page to look up any caller’s domain by endpoint.
In addition, we wrote a virtual LAN network multiplexer and a multiplexing console
driver for the host system. We have not implemented support for resource isolation,
checkpointing, migration, or storage deduplication at this time.

For implementation simplicity, there is an administrative domain which is able
to set up other domains. Creating a domain consists of loading an initial object
mapping into the Loris cache. Starting a domain consists of allocating a domain in
the kernel, loading a bootstrapping subset of system services and init, mapping
these processes into the new domain, and starting them.

6.5. EVALUATION 115

Benchmark Unit Baseline EV EV,C
OpenSSH seconds 393 1.01 1.02
AppLevel seconds 621 1.01 1.01
FileServer ops/sec 1178 0.98 0.98
WebServer ops/sec 13717 0.97 0.96

Table 6.1: Macrobenchmark results.

6.5 Evaluation

For now, we believe that publishing microbenchmarks is not useful: neither MINIX 3
nor our new changes have been optimized for low-level performance. Instead, we
provide statistics on memory usage and sharing, startup times, and storage mac-
robenchmark results. We used an Intel Core 2 Duo E8600 PC with 4 GB of RAM
and a 500 GB 7200RPM Western Digital Caviar Blue SATA disk.

We tested our system with 250 full POSIX domains at once. Each domain consists
of 13 service processes that make up the domain’s system layer, plus init, a login
daemon, and an OpenSSH daemon. The domains can all access (only) the following
host services: VM, SCHED, the Loris cache layer, the virtual LAN driver, and the
console multiplexing driver.

Each of these domains uses 3148 KB of data memory, which includes process
heaps and stacks in the domain as well as host-side memory such as kernel process
structures and page tables. In addition, the domains use 2944 KB of text memory,
which is shared between all domains. Even with only around 3.7 GB of the ma-
chine’s total memory being usable due to device mappings in 32-bit mode, the de-
scribed setup leaves around 3.0 GB of memory available for additional applications
and caching.

Creating and loading a CoW object mapping for a new domain, based on a sub-
tree of the administrative domain’s file tree (emulating chroot), takes 32 ms. Start-
ing a domain to its login prompt, including OpenSSH, takes 53 ms. Shutting down
a domain takes 4 ms.

We used storage macrobenchmarks to evaluate the performance impact of our
main changes. Table 6.1 shows absolute performance numbers for unmodified MINIX 3,
and relative numbers for the kernel’s new endpoint virtualization (EV) and EV com-
bined with CoW support in the Loris cache (EV,C). For the OpenSSH and AppLevel
(MINIX 3) build benchmarks, lower is better. For FileBench’s fileserver and web-
server, higher is better. The exact configurations are described elsewhere [152].

The benchmarks show some overhead, caused mainly by new CPU cache and
TLB misses. Optimizations should reduce these; all algorithms are constant-time.

116 CHAPTER 6. A FLEXIBLE, LIGHTWEIGHT VIRTUALIZATION ALTERNATIVE

6.6 Related Work

Roscoe et al [121] argue in favor of revisiting the hardware-level virtualization
boundary. However, so far, proposals to expose higher-level abstractions [36, 114,
118, 164] generally keep the low-level boundary in order to support existing OSes.
Decomposing monolithic OSes [45, 106] may eventually help port them to our ar-
chitecture.

One exception is Zoochory [72], a proposal for a middle-ground split of the stor-
age stack in virtualized environments. However, the proposal focuses on virtualization-
unrelated advantages of rearranging the storage stack–ground we have covered in
previous work as well [9, 11, 148]. They propose that the host system’s storage in-
terface be based on content-addressable storage (CAS); our object interface would
allow but not enforce that the host side of the storage stack implement CAS. How-
ever, our redesign goes beyond the storage interface alone, and thus requires more
invasive changes.

Our work shows similarity to several microkernel-based projects. L4Linux uses
task and memory region abstractions to separate virtualized processes from a vir-
tualized Linux kernel [56]. Several L4-based projects combine microkernel fea-
tures with virtualization without further changing the virtualization boundary [55,
60, 159]. The Hurd OS has “subhurds” [4]: virtual environments with long-term
plans similar to ours [21]. Fluke [40] shares several goals with our approach, but
its support for recursion requires high-level abstractions to be defined at the lowest
level. New microkernel-based abstractions are also used for multicore scalability
[86, 161].

We have previously presented an early sketch of our idea [149], focusing instead
on its potential to improve reliability.

6.7 Conclusion

In this paper, we have established a new point in the spectrum of virtualization
boundaries. Our alternative appears to have sufficiently interesting properties to
warrant further exploration. However, with respect to virtualization architectures,
we believe that the final word has not been said, and we encourage research into
other alternatives in this design space.

7
Putting the Pieces Together: The Construction of a

Reliable Virtualizing Object-Based Storage Stack

Abstract

The operating system storage stack is an important software component, but it faces
several reliability threats. The research community has come up with many solutions
to address individual parts of this reliability problem. However, when considering
the bigger picture of constructing a highly reliable storage stack out of these individ-
ual solutions, new questions arise regarding the feasibility, complexity, reliability,
and performance of such a combination. In previous works, we have designed a
new storage stack called Loris, and developed several individual reliability improve-
ments for it. In this work, we investigate the integration of these improvements with
each other and with new functionality, in two steps. First, we add new virtualiza-
tion extensions to Loris which challenge assumptions we made in our previous work
on reliability. Second, we combine all our extensions to form a reliable, virtualizing
storage stack. We evaluate the resulting stack in terms of performance and reliability.

117

118 CHAPTER 7. PUTTING THE PIECES TOGETHER

7.1 Introduction

All computer systems are vulnerable to various faults, originating from both software
and hardware. Such faults have the potential to completely subvert the operation of
the system. Given that prevention and hardware protection are often infeasible or
too costly, reliability can be improved using software-based isolation, detection, and
recovery techniques. The storage component of the operating system is of particular
interest in this regard: it is relied upon by all applications, it is highly complex, and
it uses several resources which may fail in various ways. Since applications expect
the storage stack to operate perfectly, unhandled failures in this stack may result in
loss of user data.

The storage stack faces several important reliability threats. The most well-
known threat is a whole-system failure, where the entire system goes down unex-
pectedly. The underlying storage hardware may experience a storage device failure,
which may range from fail-stop failures to various forms of silent data corruption.
Since the storage stack typically uses a large amount of available RAM for caching
purposes, it is also vulnerable to memory corruption from sources such as cosmic
rays. Finally, the complexity of the storage stack makes it susceptible to failures due
to software bugs.

As a result, there has been much research on improving the reliability of the stor-
age stack in various ways (e.g., [9, 17, 27, 31, 41, 53, 112, 138, 139, 150, 151, 152]).
Such research typically focuses on a single reliability threat, limits itself to a single
part of the storage stack, and often makes various assumptions about the component
being protected. The result is extra reliability with low runtime overhead but with a
limited scope. As such, while these efforts provide essential pieces towards making
the storage stack more reliable, a top-down look at constructing a highly reliable
storage stack raises new, important questions:

• Can a combination of individual techniques provide significant reliability cov-
erage of the entire stack?

• How do these techniques hold up in the light of new functionality that may
violate previous assumptions?

• What advantages, limitations, and complexity result from integrating various
pieces with each other?

• What is the performance and reliability of such a combination of individual
low-overhead techniques?

We believe that we are in a good position to provide initial answers to these
questions. We have previously designed a storage stack called Loris, which is lay-
ered in a more modular way than the traditional storage stack [9]. In subsequent
work, we have looked at the aforementioned reliability threats by considering indi-
vidual layers of the stack in isolation [150, 151, 152]. By exploiting the specifics of

7.2. BACKGROUND 119

the design of these layers, we were able to provide individual solutions that provide
strong reliability and add little overhead.

In this paper, we attempt to answer the above questions, in two steps. In recent
work, we have presented a new approach to virtualization [154]; our first step in this
paper consists of implementing support for this form of virtualization to Loris. In
particular, we extend Loris with object virtualization, copy-on-write, and deduplica-
tion functionality, thereby forming vLoris. In addition to its intrinsic value, this first
step serves two purposes. First, it improves reliability by placing the upper layers of
the storage stack in their own failure domain. Second, the new functionality provides
a good test case for the assumptions in our earlier work on reliability.

In the second step, we combine our earlier individual works on reliability with
each other and with the new virtualization support, thus forming a virtualizing stor-
age stack which is at least as reliable as the sum of the individual pieces. This new
version of Loris, rvLoris, provides various levels of robustness against the four men-
tioned reliability threats across all its layers. However, given that we made strong
assumptions about the layers in previous work, this integration effort required re-
solving several new issues. We describe the resulting changes that we had to make.
Finally, we provide answers to the posed questions by evaluating the design, com-
plexity, performance, and reliability of rvLoris.

The rest of the paper is laid out as follows. Sec. 7.2 provides a necessarily elab-
orate overview of our relevant previous work on Loris, reliability, and virtualiza-
tion. In Sec. 7.3, we describe the virtualization extensions that make up vLoris. In
Sec. 7.4, we describe our efforts to integrate all reliability and virtualization features
to form rvLoris. In Sec. 7.5, we evaluate the performance and reliability of all our
changes. Sec. 7.6 describes related work, and Sec. 7.7 concludes.

7.2 Background

In this section, we describe the prior work on which this paper builds: the Loris
storage stack (Sec. 7.2.1), our reliability extensions to it (Sec. 7.2.2 to 7.2.4), and the
role of Loris in our new approach to virtualization (Sec. 7.2.5).

7.2.1 The Loris storage stack

The basis of all our work is a new object-based storage stack called Loris [9]. This
stack replaces the file system and software RAID layers of the traditional storage
stack (Fig. 7.1a) with four new layers (Fig. 7.1b). These four layers communicate
among each other in terms of objects: storage containers which are made up of a
unique identifier, a variable amount of byte data, and a set of associated attributes.
Each of the three lower layers exposes the following object operations to the layer
above it: create, delete, read, write, truncate, getattr, setattr. In addi-
tion, a sync operation flushes all dirty state. Loris offers advantages in the areas of
reliability, flexibility, and heterogeneity [9].

120 CHAPTER 7. PUTTING THE PIECES TOGETHER

File
system

VFS

Physical

Naming

VFS

Cache

Logical

Disk driverDisk driver

Software
RAID

(a) (b)

Naming

VFS

Cache

Logical

Disk driver

(c)

Physical

ApplicationApplication

do
m

ai
ns

ho
st

Application

Figure 7.1: A schematic diagram of the layers of (a) the traditional storage stack, (b) the Loris
storage stack, and (c) the Loris stack with virtualization.

At the bottom, the physical layer manages the layout of underlying storage de-
vices, exposing a physical object abstraction to the layers above. The physical layer
consists of one or more modules, each managing the layout of a single underlying de-
vice using a layout suitable for that device type. The physical modules are required
to support parental checksumming to detect all forms of disk corruption [9, 88]. Our
initial physical module, PhysFS, implements a layout based on the traditional UNIX

file system, using inodes to store the objects with their attributes and data.
The logical layer adds support for RAID-like per-object redundancy. It exposes

a logical object abstraction to the layers above. Each logical object has an individ-
ual RAID-like policy and is made up of one or more objects on different physical
modules. For example, an object may be mirrored or striped across some or all de-
vices. The logical layer maintains a mapping from each logical object to its policy
and physical objects. It stores the mapping in a metadata object: an object which
contains storage stack metadata and is mirrored across all devices. When a physical
module reports a checksumming error, the logical layer uses the per-object redun-
dancy to restore a known-good copy of the object. In the absence of redundancy, it
still prevents propagation of corrupted data.

The cache layer uses available system memory to cache pages of object data. It
also caches object attributes, and defers flushing dirty pages and object create and
setattr operations for improved performance. Due to its limited role, the cache is
by far the least complex layer of the stack.

Together, these lower three layers effectively implement an object store. On top

7.2. BACKGROUND 121

of these layers, the naming layer constructs a POSIX file system hierarchy out of the
loose objects. It processes requests from the Virtual File System layer (VFS) and
implements support for file naming, directories, and POSIX attributes. It stores files
and directories as objects, and POSIX attributes as object attributes.

We have implemented the Loris storage stack in the MINIX 3 microkernel operat-
ing system [142]. As a result, all layers and modules of the storage stack are isolated
user-mode processes, limited in their interprocess communication (IPC) in accor-
dance with the principle of least authority. MINIX 3 has facilities to detect crashes in
user-mode operating system processes and to start a clean copy of a failing process,
although recovery of both state and ongoing requests is left to the process itself. The
infrastructure by itself is sufficient to recover from failures in device drivers [62].

Summarizing, in terms of reliability, Loris can detect and recover from storage
device failures by design, and MINIX 3 provides the necessary (but not sufficient) in-
frastructure to detect and recover from software failures (“crashes”). In subsequent,
separate projects, we have further improved the robustness of Loris, and we describe
these projects next.

7.2.2 Improved reliability in the physical and logical layers

In previous work [150], we argue that the storage stack should provide a unified
infrastructure to recover both from whole-system failures and from crashes in the
logical and physical module processes. For both failure types, recovery relies on
the creation of consistent on-disk recovery points. A recovery point is created with
the sync operation, which goes down the entire stack, during which all layers flush
their dirty state to the layers below. Finally, at the physical layer, all modules create
a recovery point on their devices. As proof of concept, we developed a new physical
module, TwinFS, which supports such on-disk recovery points.

This infrastructure, when combined with cross-device data synchronization, guar-
antees recovery to the last recovery point after a whole-system failure. The same
infrastructure allows for recovery of a crash in the lower two layers, when combined
with an in-memory log in the cache layer.

The in-memory log records all modifying operations sent down to the lower
layers since the last recovery point was created. It is cleared after a sync call. If
one of the processes in the logical or physical layer crashes, all modules in this layer
are restarted, and thus together restore to the last recovery point. After that, the
cache layer replays the log, thereby bringing back the lower layers to the latest state.
This approach provides transparent recovery with strong guarantees from transient
crashes in the lower layers, and automatically covers any new features in these layers
as well.

We exploit two properties of object storage to reduce logging complexity and
overhead. First, since all objects are independent from each other, the log need not
keep track of the order of operations between different objects. Second, operations
that are later obsoleted (e.g., a write followed by a truncate) can be eliminated

122 CHAPTER 7. PUTTING THE PIECES TOGETHER

from the log, so that the operations need not be replayed in chronological order.
Our evaluation shows that TwinFS adds a performance overhead of around 5–

8 %. The log adds little performance overhead, but does require a large amount of
extra memory, mainly to log pages that have been flushed and then evicted from the
cache layer’s (separate) main memory pool.

7.2.3 Improved reliability in the cache layer

As indicated, the Loris physical layer generates and verifies checksums of data and
metadata blocks in order to detect disk corruption. We argue that checksums for data
blocks should be propagated from and to the cache layer [151]. With such a facility
in place, the cache layer can then use the checksums for two reliability purposes:
detecting memory corruption and recovering itself from a crash.

First, the cache layer uses a large amount of system memory for data caching
purposes. Therefore, there is a substantial chance that if a random DRAM bit flip
occurs, it will affect a page in the cache. In order to detect such memory corruption
before it is propagated, we change the cache layer to use the checksums for verifica-
tion of pages right before application read calls. Recovery is often possible as well:
corrupted clean pages can be restored from disk.

Second, crash recovery of the cache layer is difficult because this layer typically
contains a substantial amount of state which cannot be recovered from elsewhere:
delayed page writes, and create and setattr operations. Thus, if the cache pro-
cess crashes, such dirty state must be recovered from the memory of the crashed
instance of the process.

In order to ensure that the dirty state in the cache has not been corrupted as part of
the crash, we change the cache layer to checksum the necessary data structures dur-
ing runtime and verify them upon recovery. The state includes dirty pages; thus, each
page is now checksummed right after being modified instead of when it is flushed
to disk. All dirty state is tracked using a set of self-checksumming data structures,
together called the Dirty State Store (DSS). During normal cache operation, the DSS
forms a fully checksummed tree of all dirty state within the cache’s memory. If the
cache crashes and its recovery procedure detects a checksum mismatch in the DSS
tree, the cache is not recovered, thus minimizing the risk that corrupted data reaches
applications. An update of a page and its DSS checksum is not atomic; thus, this
technique can recover from most but not all fail-stop failures.

For application-transparent crash recovery, the system must also deal with op-
erations that were being processed by the cache at the time of the crash (as per
Sec. 7.2.1). We require that either the naming layer or the low-level IPC system
repeat pending operations after a restart of the cache. Since all Loris operations are
idempotent, their repetition ensures a correct outcome even in the light of earlier
partial processing.

The paper shows that the integration of the two techniques further strengthens
both, and that the combination of hardware-implemented checksumming and simple

7.2. BACKGROUND 123

techniques can keep performance overhead down to around 1 % while providing
reasonable detection and recovery guarantees.

7.2.4 Improved reliability in the naming layer

While the naming layer may be highly complex, at its core it simply translates each
POSIX request from VFS into a number of Loris object operations to the cache layer.
We exploit this fact to implement transparent recovery from naming-layer crashes
[152], by making the layer stateless.

We change the naming layer to group all modifying operations spawned by a
single VFS request into a transaction, which is then sent to the cache layer at the end
of the request. The cache layer is responsible for processing each transaction as an
atomic unit. As a result, the lower layers always contain a consistent state. If the
naming process crashes, it will therefore also reload a consistent state upon recovery.

That leaves any VFS requests that were previously in flight. VFS reissues all
those requests after a naming-layer restart; during runtime, the naming layer uses
the transaction system to write markers to special files in order to determine after a
crash which VFS requests were already processed before.

The cache layer places strict rules on the operations that may be part of a single
transaction. For example, a transaction may contain only one delete operation:
this operation can not be rolled back and must therefore be processed last. The
cache further exploits the high-level nature of these transactions to limit rollback
records to a minimum. In addition, the grouping of operations saves on low-level
IPC; the resulting performance overhead is between −1 and 2 %.

7.2.5 A new approach to virtualization

In our most recent work [154], we present a new virtualization alternative which
combines several good properties of virtual machines and operating system contain-
ers. The boundary between the virtualizing (host) and the virtualized (domain) parts
of the system is placed such that the host can share and globally optimize resources
across domains, while each domain has the freedom to implement a system layer
which exposes any desired abstractions to its applications. As a result, our alter-
native is more lightweight than virtual machines and more flexible than operating
system containers.

A key part of the design is a new form of storage virtualization: the host exposes
an object store to the domains, and the system layer of each domain can use this
object store to construct any file system abstraction as it sees fit for its applications.
The central object store provides each domain with a private namespace of object
identifiers; storage changes from one domain are never visible to another domain.
However, the object store is free to share resources between domains, by mapping
multiple domain-local objects to a single underlying global object using copy-on-
write (CoW) semantics. Furthermore, if the object store implements a page cache,

124 CHAPTER 7. PUTTING THE PIECES TOGETHER

such global objects can be shared not only on disk but also in memory. Since many
domains are expected to use the same files in practice, this results in more efficient
storage and memory usage in the common case.

The structure of Loris makes it a suitable basis to construct such a virtualizing
object store. To this end, the storage stack is split in two (Fig. 7.1c). The cache,
logical, physical, and driver layers become part of the host, together implementing
the centralized object store. The VFS and naming layers become part of the system
layer in the individual domains. Thus, each domain is expected to have its own
instance of the naming layer, and all these naming modules make “host calls” to the
cache layer to perform operations. All the storage stack modules remain separate
processes, and the MINIX 3 microkernel implements domains by virtualizing IPC
between groups of processes. As a result, the cache layer now receives a domain
identifier along with each incoming operation. With this as a given, the cache layer
must implement support for storage virtualization, which is the subject of the next
section.

7.3 vLoris: support for virtualization

In this section, we describe the design and implementation of our new storage virtu-
alization extensions to Loris. We call the result vLoris. We add object virtualization
and copy-on-write support to the cache layer (Sec. 7.3.1). We reuse our previous
work on transactions to support whole-system failure recovery (Sec. 7.3.2). We show
that effective copy-on-write support requires attribute management to be moved into
the cache layer (Sec. 7.3.3). Finally, we add object-level deduplication to the cache
layer (Sec. 7.3.4).

7.3.1 Object virtualization and copy-on-write

We start by modifying the Loris cache layer to support object virtualization and
object-granular copy-on-write. To this end, the cache layer maintains for each do-
main a domain mapping object: a metadata object (Sec. 7.2.1) which stores the map-
ping from the domain’s local object identifiers to global object identifiers. When the
cache gets a call from a naming module, it translates object identifiers in the call
using the mapping for the naming module’s owning domain. Thus, each domain can
access only the objects in its mapping.

In order to support copy-on-write, we change the cache layer to keep a reference
count for all global objects. These reference counts are stored in an additional meta-
data object. We use the domain mapping and reference count metadata objects to
implement well-known copy-on-write semantics for the create and delete opera-
tions.

Whenever a domain modifies an object with a reference count greater than one,
the cache layer makes a copy of the global object. In order to copy objects efficiently,

7.3. VLORIS: SUPPORT FOR VIRTUALIZATION 125

we introduce a new copy operation which is implemented in the logical and physical
layers and used by the cache layer. Currently, the logical layer forwards the call to
the appropriate physical modules, which make a full copy of the underlying object.
A future implementation of this operation could implement copy-on-write support
at a subobject granularity.

7.3.2 Transactions

An important part of virtualization is defining the interface between the host and
the domains. In order to allow vLoris to recover from whole-system failures, its
host/domain interface has to be changed, and thus, we consider this reliability aspect
to be a part of the virtualization changes.

As described in Sec. 7.2.2, in order to establish a recovery point, all the Loris
layers have to flush down their dirty state as part of a stack-wide sync call. This
includes the naming layer. However, the naming layer is part of the domains, and
the domains are untrusted from the point of view of the host system. Thus, they
cannot be relied upon to cooperate in creating recovery points, since upcalls from
the host system into the domains would introduce a dependency on untrusted com-
ponents. Even though a naming module could only create inconsistencies for itself,
such upcalls would at least need a timeout, and it would be very difficult to choose a
reasonable value for this timeout. Avoiding upcalls is thus preferable.

We solve the problem by adopting the naming-layer transaction support de-
scribed in Sec. 7.2.4. As a result, the naming layers need no longer be involved
in establishing a recovery point at all: the transactions ensure that the cache layer
always has a consistent state, and thus, the host system can create a new recovery
point at any time and without the involvement of the domains. As a side benefit, this
merges in most of the support for crash recovery of naming modules.

7.3.3 Attribute localization

In our work on naming-layer transactions, we disabled updating file access times for
performance reasons. For this work, we added support for lazy access time updates
in the naming module implementation. The naming module gathers access time
updates for files, and periodically sends these down to the cache layer. While the
naming layer is thus no longer stateless, deferring such updates does not introduce
consistency violations. At most, a whole-system or process failure will cause some
access time updates to get lost.

However, since each object is stored together with its attributes in the physical
layer, the cache layer must copy any CoW-shared object whenever its attributes are
changed. Access time updates make this design untenable: any read call on a file
now causes sharing to be broken for that file.

This case makes clear that in general, effective storage sharing at object gran-
ularity requires that such sharing apply to the object’s contents only, and not its

126 CHAPTER 7. PUTTING THE PIECES TOGETHER

attributes. Thus, in our stack, we can no longer let the physical layer manage at-
tributes. Instead, we “localize” attributes by storing them in the local mapping en-
tries of the domain mapping objects, along with each global object identifier. The
getattr and setattr operations are thus handled by the cache layer, and setattr
no longer causes objects to be copied. The physical layer no longer stores attributes
in its inodes.

7.3.4 Object-level deduplication

So far, the only way to increase the reference count of an existing object is to load a
mapping for a new domain. Thus, after creation, a domain’s storage resources will
only ever diverge from the shared pool. There are however many scenarios in which
multiple domains end up with the same objects (long) after the domains’ creation,
for example as a result of a software update being installed in several domains.

Thus, storage resources can be saved with object-level deduplication: a facility
that finds and merges global objects with the same content and establishes copy-on-
write mappings to the merged objects. We believe that deduplication at the object
level is an acceptable tradeoff between yield and overhead [102], although as before,
our object store can later be extended to implement subobject deduplication with no
interface changes exposed to domains.

We implement support for such deduplication in the cache layer, since the object
copy-on-write facility is implemented there as well. As we will now show, we use a
weak (non-cryptographic) form of object content hashing to generate deduplication
candidates with good accuracy and little overhead. We perform background content
comparison on the candidate objects to achieve eventually-perfect deduplication.

As described in Sec. 7.2.1, Loris implements parental checksumming of blocks
in the physical layer. We reuse these checksums to generate object hashes: the hash
of an object is the exclusive-OR (XOR) of all its block checksums. The cache layer
maintains an index which maps between global objects and their hashes. This index
is stored in a metadata object, but also kept entirely in memory if possible.

Whenever the cache sends down an operation that changes the hash of an existing
object–that is, a write or a truncate operation–the lower layers reply with a value
representing the XOR of all changes to the object’s block checksums. Since the
physical modules visit all involved block pointers as part of the operation, getting the
old block checksums from there is cheap. The cache XORs the reply value with the
old object hash to obtain the new object hash, and modifies the index accordingly.
While inserting the new hash value into the index, the cache checks whether any
other objects have the same hash value, and if so, it registers the changed object as a
candidate for deduplication.

At convenient times, the cache layer goes through the candidates list and com-
pares each candidate against its potential matches, by doing a full comparison of the
contents of the objects. We implemented a simple approach of reading and compar-
ing potential matches at timed intervals. However, many optimizations are possible

7.4. RVLORIS: INTEGRATION OF RELIABILITY SUPPORT 127

here: comparing candidates before their pages are evicted, comparing block check-
sums before comparing actual contents, testing candidates only during times of low
I/O activity, etcetera.

The cache layer has no reverse mapping from global to domain-local objects.
Therefore, the candidates list contains pairs of domain identifiers and domain-local
object identifiers. Upon actual deduplication, the candidate’s domain mapping is
changed to point to its match. The lack of a reverse mapping also implies that dedu-
plication of objects within a single domain is automatic and cannot be prevented.

7.4 rvLoris: integration of reliability support

In the previous section, we already merged in support for naming-layer transactions.
We now describe the changes necessary to merge our other reliability extensions
with the new virtualization support as well as each other. Our goal is to maintain
the same reliability guarantees as provided by the individual works. Since all the
functionality comes together in the cache layer, all the new changes involve this layer
in particular. We describe the changes that allow lower-layer restarts to work with
virtualization (Sec. 7.4.1), and cache restarts to work with transactions (Sec. 7.4.2),
object virtualization (Sec. 7.4.3), and object deduplication (Sec. 7.4.4). Finally, we
discuss the results (Sec. 7.4.5).

7.4.1 Lower-layer restarts versus virtualization

In order to support lower-layer crash recovery for the logical and physical layers
(Sec. 7.2.2) in the presence of the new virtualization, we have to make two modifi-
cations to the way the cache layer manages its in-memory log.

First, the logging facility was previously a separate submodule within the cache
implementation: it maintained its own data structures and allocated its own memory
to store logged data. This strict separation helped us in gathering research data about
its implementation complexity and memory usage. However, the separate memory
allocation was also a necessity: the only way to clear the log is to create a new
recovery point, and since the cache layer itself could not initiate the creation of such
points due to dirty state in the naming layer, the log was never allowed to run out of
memory.

However, a real-world storage stack does not have infinite memory at its disposal;
more realistically, such a log makes use of the same memory as the main cache [138].
Since the naming-layer transactions now allow the cache layer to create recovery
points at any time (as per Sec. 7.3.2), there is no longer a need to allocate separate
memory. Thus, we change our logging implementation to use the cache’s main
memory pool. This in fact simplifies our logging implementation: by using the main
object and page data structures, the logging submodule no longer needs to manage
duplicate data structures. In the new situation, cached pages that are in use by the

128 CHAPTER 7. PUTTING THE PIECES TOGETHER

log may not be evicted until the next sync, but they may be freely read, modified
(with new incoming write operations), and discarded (with truncate or delete).

Second, the addition of the new copy operation to the lower layers requires that
the cache log include this operation as well. However, the copy operation violates
the two assumptions that we previously relied on to keep the log simple: full inde-
pendence between objects, and the ability to throw out any logged operations that
have become obsolete. After all, the result of the copy depends on the state of the
source object, and thus, a post-crash replay of this operation requires that the source
object be restored in the same state first. The log must take this into account; e.g.,
an object truncate may not discard pages logged for an earlier write if the object
was subject to a copy in the meantime.

The simplest solution is to establish a new on-disk recovery point after every
copy call, thereby clearing the log. However, a system that hosts many domains can
expect frequent copying, making this an expensive solution. Instead, we expand the
cache logging facility with a partial ordering system, using hidden object and page
data structures to log the precopy object state needed for replay. Basic dependency
tracking allows log replay in a correct order: when a copy operation is logged,
new data structures are created for the source object, and the old source object data
structures are hidden and marked as dependency for the new ones.

7.4.2 Cache restarts versus transactions

As we have shown, the transactions system is used for both naming-layer reliabil-
ity (Sec. 7.2.4) and, indirectly, for whole-system failure recovery for virtualization
(Sec. 7.3.2). However, the addition of transaction processing to the cache layer has
implications for the cache layer’s crash recovery.

In our earlier work (Sec. 7.2.3), we required that pending operations be repeated
after a cache-layer restart, and relied on idempotence to correct earlier partial com-
pletion of those operations. This no longer works with transactions. A single trans-
action may spawn multiple modifying operations to the lower layers, each of which
may fail, in which case the entire transaction must be aborted. If some of these oper-
ations are issued successfully and then the cache crashes, and the transaction ends up
being aborted upon repetition, the subsequent rollback will revert to an inconsistent
state.

We solve this issue by adding rollback records for active transactions to the Dirty
State Store (DSS). When the cache processes a transaction, it first creates a rollback
record in a known (per-thread) location, along with a checksum generated of its con-
tents. When the cache completes processing the transaction, it discards the record
using a (checksummed) special value. After a crash in the cache, the cache’s recov-
ery procedure first verifies the checksums of all rollback records in the old memory
image, and proceeds with recovery only if all are valid. It then issues a rollback for
all those records, thus restoring the cache to a consistent state.

7.4. RVLORIS: INTEGRATION OF RELIABILITY SUPPORT 129

7.4.3 Cache restarts versus object virtualization

The cache layer’s object virtualization adds a number of extra, risky steps for opera-
tion processing. Object creation, copying, and deletion actions all require changes to
multiple objects: a domain mapping, the global reference counting metadata object,
and often the global target object itself. With these extra steps, partial completion of
even a single operation is no longer recoverable by repetition, as nonatomic metadata
updates likely result in fatal inconsistency.

In order to ensure that the cache layer can still either recover correctly or detect
internal corruption, we integrate the object virtualization steps into our transaction
system. We split each of the creation, copying, and deletion actions into a prepare
routine and a commit routine. We create a rollback routine for each action, which
restores the old state regardless of any changes made in the meantime. We add new
checks to ensure isolation between transactions, for example with respect to alloca-
tion of global IDs. Also, since it is common that two operations modify the same
object within the same transaction, the prepare phase has to consider any actions
already scheduled within the same transaction.

However, the cache cannot roll back delete operations already sent to lower
layers. Thus, after a crash of the cache, a rollback of a delete action is not always
possible. Therefore, we have to make one exception in the cache’s internal con-
sistency model: a domain-local object ID may temporarily point to a global object
which has a nonzero reference count but does not exist in the lower layers. Since
pending requests must be repeated after a cache restart (Sec. 7.2.3), such inconsis-
tencies are always corrected quickly.

7.4.4 Cache restarts versus object deduplication

The addition of object deduplication to the cache layer requires three more exten-
sions to its crash recovery system.

First, when the deduplication facility finds that two objects are identical, they
are merged. Like the create, copy, and delete actions, such a merge action requires
an atomic set of changes, and thus needs to be wrapped in a (purely cache-local)
transaction. The action includes a delete on one of the two objects, making it
similar to a delete action. However, a cache crash must not introduce a similar
inconsistency for a merge action: the action was not started by a call from the naming
layer, and thus may not be temporary. We therefore opt to let the merge rollback
routine perform a roll-forward on the merge action. Thus, upon crash recovery, the
merge will always be finished, thereby preventing inconsistency.

Second, the cache updates the deduplication index with a new checksum based
on the reply to a write or truncate call down to the lower layers. A crash may
cause that reply to get lost, in which case the deduplication index becomes desyn-
chronized. We solve this by adding an index invalidation bitmap to the DSS. Each
set bit invalidates a chunk of the index; a bit is set while any index entry (i.e., object)

130 CHAPTER 7. PUTTING THE PIECES TOGETHER

in that chunk has a pending downcall. Upon recovery, the cache must reconstruct
all entries in the marked chunks. It does so by explicitly requesting the XOR’ed
checksum from the lower layers for each affected object, using getattr calls.

Third, in order to ensure eventually-perfect deduplication even in the presence
of cache crashes, the duplication candidates list must be preserved across restarts.
Thus, it would have to be tracked by the DSS, which would be simple but costly. We
have not yet added such recovery support.

7.4.5 Discussion

We now turn to the questions posed in the introduction. First of all, we have shown
that it is indeed feasible to construct a storage stack with advanced functionality and
a strong focus on reliability, by combining several partial solutions. Even though the
integration forced us to depart from several simplifying assumptions made in ear-
lier work, the subsequent changes have not compromised any of the original tech-
niques. In addition, this study further strengthens our notion that when considering
the bigger picture, individual building blocks such as checksums, recovery points,
and transactions can be exploited for multiple reliability purposes.

Our resulting stack has several limitations. For example, we currently assume
that software crashes of the individual layers are independent. Therefore, we delib-
erately choose not to protect the logging data structures with the DSS in the cache,
since this would introduce more complexity for the unlikely event of crashes of mul-
tiple layers at once. However, since failures may propagate to other layers, the as-
sumption may not hold in practice. Thus, the stack may benefit from more thorough
checks at the layer boundaries (along the lines of Recon [41]). As another example,
the only software bug protection we provide for the VFS layer is the isolation inher-
ent to virtualization: instead of taking down the entire system, a VFS crash will now
take down only its containing domain. VFS maintains large amounts of application
state, making it an interesting target for future research.

It is clear that our integration adds more complexity, mainly to retain crash recov-
ery support for the cache layer. Thus, alternative approaches should be considered
for that aspect. It would be possible to place the virtualization and deduplication
functionality in a new layer above the cache. However, this would not simplify the
problem: in order to support recovery from a crash, the new layer would have to be
stateless, modifying the transactions it forwards on the fly. That is effectively what
our changes to the cache layer do. Thus, aside from the performance overhead of an
extra layer in the critical path, such a new layer would serve to make our implemen-
tation cleaner, not less complex. Instead, we believe that we could reduce the added
complexity by using generic post-crash rollback functionality, for example based on
work by Vogt et al [156]. In order to keep runtime overhead low, this technique
would require integration with our high-level transaction optimizations; that is part
of future work.

7.5. EVALUATION 131

7.5 Evaluation

In this section, we provide further answers to our questions by evaluating our work.
We first evaluate the performance of vLoris (Sec. 7.5.1). We then continue with
rvLoris, measuring its performance (Sec. 7.5.2) and reliability (Sec. 7.5.3).

7.5.1 vLoris performance

We use storage macrobenchmarks to evaluate the performance impact of our virtu-
alization changes to the storage stack. In all performance experiments, we use an
Intel Core 2 Duo E8600 PC with 4 GB of RAM and a 500 GB 7,200 RPM Western
Digital Caviar Blue SATA test disk, and a version of MINIX 3 that implements our
new virtualization support. The benchmarks are run from a single domain. We con-
figure the Loris naming layer to enable access time updates, limit the Loris cache
layer to 1 GB of memory, and use PhysFS in the Loris physical layer, operating on
the first 32 GB of the disk. The system performs a sync once every five seconds and
whenever 10 % of the page cache has become dirty.

We use the following benchmarks and configurations: an OpenSSH unpack-and-
build test which unpacks, configures, and compiles OpenSSH in a chroot environ-
ment; a source compilation of MINIX 3 in a chroot environment; PostMark, with
800K transactions on 40 K files across 10 directories, using 4 to 28 KB file sizes and
512-byte unbuffered I/O operations; FileBench File Server, single-threaded, run for
30 minutes at once; and, FileBench Web Server, single-threaded, changed to access
files according to a Zipf distribution (α = 0.98), run for 30 minutes as well. Most
of the benchmarks run (almost) entirely in memory, which is the worst case for most
of our changes.

We run the benchmarks on several Loris versions along its transition into vLoris,
in the order as described in Sec. 7.3. With physical-layer checksumming turned
off, we first run the original Loris (Baseline), to which we incrementally add ob-
ject virtualization and copy-on-write support (Virtualization), support for naming-
layer transactions (Transactions), and attribute localization (Attributes). On top
of these changes, we turn on checksumming with Fletcher’s checksum algorithm
(Checksums), and add deduplication support in three steps: the maintenance of the
in-memory deduplication index and the candidates list (Index), comparison of can-
didates (Compare), and actual deduplication (Merge).

We run each combination of benchmark and Loris configuration at least five
times and report the average. The results are shown in Table 7.1. The numbers in
parentheses represent performance relative to the baseline. For the OpenSSH and
MINIX 3 build benchmarks, lower is better. For PostMark and the two FileBench
benchmarks, higher is better.

Since the benchmarks are run from a single domain, the small overhead of object
virtualization and copy-on-write support (Virtualization) is due entirely to record
keeping of the domain mappings and reference counts.

132 CHAPTER 7. PUTTING THE PIECES TOGETHER

B
enchm

ark
B

aseline
V

irtualization
Transactions

A
ttributes

C
hecksum

s
Index

C
om

pare
M

erge
O

penSSH
build

597
(1.00)

600
(1.01)

616
(1.03)

622
(1.04)

617
(1.03)

614
(1.03)

623
(1.04)

629
(1.05)

M
IN

IX
3

build
824

(1.00)
833

(1.01)
842

(1.02)
847

(1.03)
843

(1.02)
842

(1.02)
851

(1.03)
843

(1.02)
PostM

ark
258

(1.00)
255

(0.99)
245

(0.95)
243

(0.94)
243

(0.94)
243

(0.94)
244

(0.95)
183

(0.71)
File

Server
2423

(1.00)
2421

(1.00)
2541

(1.05)
2499

(1.03)
2489

(1.03)
2463

(1.02)
450

(0.19)
324

(0.13)
W

eb
Server

17731
(1.00)

17537
(0.99)

17479
(0.99)

17493
(0.99)

17474
(0.99)

17534
(0.99)

17520
(0.99)

17631
(0.99)

Table
7.1:

M
acrobenchm

ark
perform

ance
ofvLoris.

The
O

penS
S

H
and

M
IN

IX
3

build
results

are
in

seconds
(low

eris
better).

The
PostM

ark
results

are
in

transactions
persecond

(higheris
better).

The
File

S
erverand

W
eb

S
erverresults

are
in

operations
persecond

(higheris
better).

B
enchm

ark
Tw

inFS
C

R
-N

am
ing

C
R

-C
ache

C
R

-L
ow

er
M

D
-C

ache
Index ′

rvL
oris

O
penSSH

build
657

(1.10)
650

(1.09)
657

(1.10)
656

(1.10)
659

(1.10)
656

(1.10)
663

(1.11)
M

IN
IX

3
build

890
(1.08)

887
(1.08)

888
(1.08)

892
(1.08)

913
(1.11)

900
(1.09)

917
(1.11)

PostM
ark

235
(0.91)

235
(0.91)

229
(0.89)

236
(0.92)

230
(0.89)

235
(0.91)

226
(0.88)

File
Server

2332
(0.96)

2335
(0.96)

2299
(0.95)

2322
(0.96)

2299
(0.95)

2295
(0.95)

2269
(0.94)

W
eb

Server
17297

(0.98)
17325

(0.98)
17313

(0.98)
17441

(0.98)
16979

(0.96)
17431

(0.98)
16867

(0.95)

Table
7.2:

M
acrobenchm

ark
perform

ance
ofrvLoris.

7.5. EVALUATION 133

The addition of the transactions support (Transactions) has mixed effects. In par-
ticular, PostMark takes a hit while File Server speeds up. Compared to our earlier
evaluation [152], our new PostMark configuration performs subpage writes, thereby
exposing an implementation-specific overhead of such writes: when wrapped in
transactions, these writes require an extra kernel call. We are working on resolv-
ing this issue.

The File Server speedup is a result of the change in how access times are updated
in the naming layer, which in turn affects object caching behavior in the cache layer.
This result is specific to the combination of File Server’s access patterns and our
cache size, and does not extend to other benchmarks.

The localization of attributes (Attributes) has a small effect on performance. In
the physical layer, the attributes are now stored as data and no longer part of inodes,
which could have a negative effect on locality. However, the cache layer colocates
the attributes with their corresponding domain mapping entries, thus achieving an-
other form of locality.

The Checksums column shows that enabling Fletcher checksumming–as needed
for deduplication–adds practically no overhead, although this can be expected with
benchmark configurations that mainly stress the cache. The Index column shows
that maintaining the index and generating candidates has no further impact on per-
formance, thus confirming that the inline part of our deduplication system has little
overhead.

When comparing candidates against potential matches (Compare), File Server
shows significant overhead. During runtime, PostMark and File Server both gen-
erate new files that have all-zeroes contents. Thus, for both benchmarks, all same-
sized files end up being flagged as candidates for deduplication. For PostMark, the
entire workload fits in the page cache, and thus, the contents comparison operates
on cached pages only. For File Server however, the candidate comparison thrashes
the cache by reading the matches from disk. Sec. 7.3.4 described several possible
improvements.

The last column (Merge) shows that the same two benchmarks suffer even more
from actual deduplication. Merging objects is cheap, but a large number of merged
objects end up being appended to later, forcing the storage stack to copy the under-
lying object again.

In general, it can be expected that making copies of entire objects is expen-
sive. As we mentioned before, vLoris could be extended with subobject (block-
level) copy-on-write and deduplication support. In this work, we have presented the
necessary infrastructure to support object-level virtualization in Loris, and if we dis-
count the deduplication comparison and merging, our changes impose between −2
and 6 % performance overhead for the workloads in our tests.

134 CHAPTER 7. PUTTING THE PIECES TOGETHER

7.5.2 rvLoris performance

For rvLoris, we start with the vLoris Checksums version, but we switch from PhysFS
to TwinFS, with a 16-block twin offset (TwinFS). In terms of reliability, this config-
uration includes support for disk corruption detection and whole-system failure re-
covery. On top of the TwinFS configuration, we measure the individual performance
of the following extensions: crash recovery of the naming layer (CR-Naming), the
cache layer (CR-Cache), and the lower layers (CR-Lower); detection of memory
corruption in the cache layer (MD-Cache); and, again, maintenance of the dedupli-
cation index and candidates list (Index′). Finally, we enable all extensions at once
(rvLoris). The results are shown in Table 7.2, including numbers relative to the
original Baseline from Table 7.1.

When compared to the earlier Checksums results, the TwinFS results show a
1–7 % overhead. While no worse than our original results (Sec. 7.2.2), this is sub-
stantial. Other on-disk consistency formats may be able to reduce the overhead.

Since vLoris already includes transaction support, crash recovery of the naming
layer (CR-Naming) only adds writing markers to avoid repeating requests after re-
covery (Sec. 7.2.4). Since these write operations can always be combined with an
existing transaction, this feature adds very little overhead.

The new cache crash recovery (CR-Cache) initially had high overheads, caused
by extra checksumming: every small change to a metadata object page (e.g., chang-
ing a reference count) requires immediate full-page rechecksumming for the DSS.
We implemented subpage checksum update support for Fletcher, which reduced the
overheads by a large margin. The remaining overhead is still due to the cost of
Fletcher checksumming in software; in our previous experiments (Sec. 7.2.3), we
used checksumming support in hardware.

The cache-layer logging for lower-layer restarts (CR-Lower) has little overhead.
The sync policy which keeps the system responsive by not allowing the cache to
build up too many dirty pages, also prevents that flushed dirty pages kept around for
the log put a strain on the cache.

The memory corruption detection (MD-Cache) overheads are due entirely to
checksumming, like with CR-Cache. Deduplication indexing and candidate gen-
eration (Index′) yields overheads similar to those of the earlier runs (Index).

Given that rvLoris combines all extensions, it is not surprising that it performs
slightly worse than the worst-performing extension. Compared to the TwinFS re-
sults, rvLoris has an overhead of 1–3 %. Thus, even after our integration efforts, the
overheads of the reliability improvements remain low.

Overall, the transition of the original Loris, with no virtualization or reliability
features, into rvLoris, which incorporates virtualization, deduplication indexing, and
resilience against all four reliability threats, adds an overhead in the 6–12 % range.
We believe these numbers are quite reasonable.

7.6. RELATED WORK 135

7.5.3 rvLoris reliability

Finally, we evaluate the reliability of rvLoris. Due to space constraints, we report
on the area affected most by this work: resilience against software bugs. As a side
effect, we test recovery points and thus whole-system failure recovery. Additional
experiments have confirmed that our protection against memory and disk corruption
has not been affected by the new changes. We do not include those results here.

We perform fault injection experiments on each of the four rvLoris layers, while
running either an OpenSSH build or a version of PostMark which verifies all file
data and call results. Using the framework from previous work [152], we inject two
types of faults: fail-stop faults which merely crash the process (1,000 injections per
configuration), and random faults which simulate the effects of common software
bugs (250 injections per configuration). Once per minute, we inject 100 faults at
once. Thus, in total, we inject one million faults.

We measure the number of resulting crashes in the target layer, successful recov-
eries, permanent failures, timeouts, crashes in other layers, and failures propagated
to applications. In theory, the fail-stop faults should always lead to successful recov-
ery, except in the cache layer, which may flag permanent failure due to a checksum
error in the DSS; after all, DSS updates are not atomic (Sec. 7.2.3). The random
faults may however cause silent failures, thereby violating assumptions we made in
all our works; in particular, that corrupted results are never propagated across layers.
Because of the resulting risks, we perform these experiments in a virtual machine.

The results are shown in Table 7.3. For fail-stop fault injection, all injections
in the naming, logical, and physical layers indeed resulted in a crash and then suc-
cessful, application-transparent recovery. As expected, in a small number of cases,
cache-layer recovery failed on a DSS checksum mismatch. In addition, some of the
cache-layer crashes caused a cross-layer memory copy failure, resulting in a crash
of the logical layer due to inadequate error handling. In all other cases (98 %), the
cache layer recovered successfully.

As expected, the random fault injections resulted in more diverse failures, includ-
ing cases where no effects were observed at all. In several cases, the faults caused
operations to start returning errors, thus resulting in propagation of corrupt results
to other layers and often also to the application. Again, such failures are beyond
the scope of our work. In many other cases, the faults caused a request or reply to
be dropped, resulting in no progress (timeout); call timeouts could fix this. In the
majority of cases (86 %) however, our crash recovery techniques caused the random
fault injection to result in application-transparent recovery.

7.6 Related Work

Our previous papers already provide overviews of work related to their respective
topics. Here we discuss work related to combinations of reliability in the storage
stack.

136 CHAPTER 7. PUTTING THE PIECES TOGETHER

L
ayer

B
enchm

ark
Fail-stop

faultinjection
R

andom
faultinjection

I
C

R
P

T
L

A
I

C
R

P
T

L
A

N
am

ing
O

penSSH
1000

1000
1000

0
0

0
0

250
223

216
0

9
1

6
PostM

ark
1000

1000
1000

0
0

0
0

250
228

226
0

22
0

2
C

ache
O

penSSH
1000

1000
989

9
0

2
0

250
222

201
4

28
1

16
PostM

ark
1000

1000
980

13
0

7
0

250
226

214
6

24
0

6
L

ogical
O

penSSH
1000

1000
1000

0
0

0
0

250
212

212
0

38
0

0
PostM

ark
1000

1000
1000

0
0

0
0

250
219

210
0

31
1

8
Physical

O
penSSH

1000
1000

1000
0

0
0

0
250

222
221

0
28

1
0

PostM
ark

1000
1000

1000
0

0
0

0
250

230
228

0
19

0
2

Table
7.3:

Faultinjection
results,show

ing
perlayer,benchm

ark,and
faultinjection

type:
the

num
beroftim

es
faultinjection

w
as

perform
ed

(I),and
the

resulting
num

beroftargetlayercrashes
(C

),successfulrecoveries
(R

),perm
anentfailures

(P
),tim

eouts
(T),other-layercrashes

(L),and
application

failures
(A

).

7.7. CONCLUSION 137

Membrane [138] implements support for checkpointing and logging for Linux
file systems. Membrane can make use of file system support for recovery points,
although this requires small changes to such file systems for fully correct recovery.

EnvyFS [17] uses N-version programming to protect applications from certain
classes of software bugs and disk corruption, by employing multiple different file
systems to perform the same actions. EnvyFS has substantial performance overheads
and complicates system crash recovery.

Z2FS [168] is a variant of ZFS that can switch between checksum types to detect
both memory and disk corruption at low cost, although also with lower detection
guarantees.

Various generic techniques based on in-memory transaction [93] or checkpoints
[156] offer the potential to recover from software bugs across the entire storage stack
at once, with guarantees similar to those we provide for the cache. However, given
that such techniques inherently make rollback copies for every page written to in the
cache, they have exorbitant overheads when applied to the storage stack [93]. As
stated in Sec. 7.4.5, we believe a hybrid approach could help here.

7.7 Conclusion

In this paper, we have attempted to provide a first set of answers to questions re-
garding the integration of several reliability techniques and other functionality in the
storage stack. In the process, we have added support for virtualization to our stack.
The case study has yielded mostly positive answers, as well as new areas warranting
more research.

We believe that several of our findings are applicable beyond this case study.
For example, our storage architecture and reliability improvements could be im-
plemented in a monolithic environment–the latter by building on existing recovery
techniques (e.g., [140]). More generally, any storage stack faces similar reliability
threats, and we expect that our findings regarding the feasibility, advantages, limita-
tions, and complexity of adding comprehensive reliability support largely apply to
other storage stacks as well.

8
Discussion

In this chapter, we address a number of technical points that could not be included
in the original papers, mainly due to space constraints. In Sec. 8.1, we discuss a
number of technical limitations of our storage device failure detection and recovery
as originally covered in Chapter 2. In Sec. 8.2 and Sec. 8.3, we discuss two related
limitations of our whole-system recovery system from Chapter 3: checkpoints and
the freeze window, and the fsync problem, respectively. In Sec. 8.4, we describe
a possible improvement to the process crash recovery system of the cache layer
described in Chapter 4. Finally, we provide some statistics on the implementation
complexity of all our projects in Sec. 8.5.

8.1 On storage device failures

In Chapter 2, for storage device failures, we have focused on effective, low-cost
failure detection. As a result, we have adopted the use of parental checksumming.
We first briefly summarize the reason for the low cost of parental checksumming,
and then elaborate on its effectiveness.

Due to the delayed checksum computation described in Sec. 2.4.1, the parental
checksumming scheme causes very few extra disk writes. Whenever a file is written
to, its file modification and change times are updated as well, thus causing an update
of the attributes in the file’s inode record. As a result, updating checksums in the
same inode record does not infer extra disk writes. Practically speaking, the only
extra write activity of the parental checksumming comes from overwrites in exist-
ing blocks referred to from indirect blocks. The “layout only” results in Sec. 2.6.3
confirm that the practical overhead of writing checksums to disk is negligible.

The parental checksumming approach guarantees detection of disk corruption,
although not necessarily immediately: when a data block is corrupted while being
written to the storage device, the corruption may be detected only when the block is

139

140 CHAPTER 8. DISCUSSION

read back from disk, which is potentially much later in time. It would be possible
to read back each block immediately after writing it, but this would be prohibitively
expensive. However, the parental checksumming scheme does guarantee that the
corruption is detected before the block is ever propagated to higher layers, thus pre-
venting that “fail-partial” disk drive behavior is exposed to the logical layer. In
Chapter 2, we refer to the physical layers’ model of returning either a corruption-
free block or an error in response to a read request as “fail-stop.”

Thus, parental checksumming detects all forms of disk corruption, but with one
notable exception: the case that the storage device is consistently failing silently
to write data to the device at all. In that case, the resulting disk contents are not
corrupt (all checksums match), but stale. This could lead to problems when the
contents of multiple devices are expected to be synchronized. Our original PhysFS
implementation takes a number of steps to counter this problem. When writing the
super and root blocks to the device, our Loris implementation instructs the disk
driver to bypass its write-back cache, but such bypass instructions are not always
honored by the disk drive [119]. In addition, Loris can be configured to perform
a read-back test of these blocks after writing, but it is conceivable that the disk
serves such requests from its write-back cache, without making any changes to the
device. Without involving multiple devices in the solution, this case can never be
fully prevented. With multiple devices, the problem is fully resolved as a side effect
of the checkpoint timestamp scheme introduced in Chapter 3. Therefore, we believe
that the exception does not pose a serious threat in practice.

More generally, failure detection implicitly assumes that the checksums them-
selves are strong enough to detect data modification. There is a small possibility that
an accidental modification still results in a valid checksum. In that case, the use of
a stronger (but typically slower) checksum algorithm would suffice for improving
detection. A modification may also be malicious, in that the storage device driver,
firmware, or hardware is actively rewriting checksums. Such cases fall outside our
assumptions and require a different approach, for example based on cryptographic
hashing or even encryption of storage contents.

For recovery purposes, we rely on the presence of redundancy across multiple
devices. However, many systems can be expected to have only a single storage
device. We have not discussed this case, because it does not allow for recovery in
the case of a whole-device failure. However, it would be possible to improve on the
current situation with respect to partial device failures, for example by introducing
forms of intradevice redundancy [90]. Such a feature could be implemented within
a physical module, without involvement of the rest of the stack. A single-device
system could also invoke a fsck-like checker as soon as a problem is detected. It
could even ignore checksum failures for at least data blocks, if availability is deemed
more important than integrity.

8.2. CHECKPOINTS AND THE FREEZE WINDOW 141

8.2 Checkpoints and the freeze window

Our approach for establishing new checkpoints presented in Chapter 3 has a major
drawback. If the whole system experiences a failure right before the last module in
the physical layer finalizes its (local) on-device checkpoint, then all physical mod-
ules must be able to roll back to the (global) checkpoint that they all have in common.
In this scenario, for all but one of the physical modules, the common checkpoint is
the penultimate on-device checkpoint. As a consequence, a physical module with
an on-device layout that supports no more than two on-device checkpoints, such as
TwinFS, will have to hold off invalidating the penultimate checkpoint until it knows
that all other physical modules have committed the new checkpoint to their respec-
tive devices. Thus, for as long as a new global checkpoint is being established,
TwinFS can effectively make no other changes to the device. This may cause a loss
in performance. This freeze window is as long as the difference between the short-
est and longest time of taking a checkpoint across all the physical modules; to be
precise, the shortest time is determined by the physical modules with support for
no more than two checkpoints. This shortcoming can be alleviated by using only
physical modules that support three or more on-device checkpoints.

In our prototype, the sync operation acts like a barrier, blocking any other oper-
ations across the entire Loris storage stack while it is being processed. While that
puts it behaviorally on par with the MFS file system implementation used as baseline
in Chapter 2, the resulting performance loss may extend well beyond the theoretical
effects of the freeze window, for several reasons. First, our implementation’s sync
operation blocks not only modifying operations, but also read-only operations. Sec-
ond, modifying operations are not propagated to the physical layer until the global
finalization of the checkpoint, while a physical module might already be able to ag-
gregate operations and for example perform necessary metadata read-ahead if it gets
the modifying operations immediately. Third, the implementation needlessly applies
the freeze to physical modules which do support more than two checkpoints on their
respective device.

It would be possible, but not trivial, to remove this limitation from our prototype.
In addition to making the layers’ internal implementation more complex, it would
require a (small) extension to the protocol used between the logical and physical
layers. With the current approach, the global finalization of each checkpoint is im-
plied by the moment that a physical module gets a new operation after replying to
the sync operation. If a physical module could get new operations after the local, but
before the global checkpoint finalization, then the logical-physical protocol would
have to be extended with a notification to indicate global finalization, implying that
the penultimate checkpoint may now be discarded.

Also, we stress that TwinFS has been a proof-of-concept implementation only,
designed primarily for simplicity. We believe that more advanced checkpointing
schemes, for example based on journaling or logging, could not only eliminate the
freeze window, but also offer significantly better performance than TwinFS.

142 CHAPTER 8. DISCUSSION

8.3 The fsync problem

The existence of one particular POSIX system call, fsync [109], poses an additional
problem for the checkpointing solution of Chapter 3–we call this the fsync problem.
The fsync call is supposed to flush all changes involving the open file indicated in
the call. The Loris checkpointing infrastructure makes it difficult to perform fine-
grained flushing, and our Loris prototype therefore translates each fsync call into a
full sync call, flushing all changes of all files instead. With many fsync calls com-
ing from applications, such coarse-granular flushes can become rather expensive.
Therefore, it is worth analyzing exactly why fsync presents a problem for Loris,
and whether there are potential solutions.

The main problem with selective cache flushing in Loris is that the stack is not
designed to retain a level of independence between operations that is sufficient to
prevent inconsistencies. For example, in order to flush the contents of a new file, its
new size has to be flushed as well. This means that upon getting an fsync call, the
target object’s attributes have to be flushed. However, these attributes include both
the file size and the file link count. By design, the meaning of the attributes is known
only in the naming layer, whereas multiple setattr operations on the same object
are aggregated and merged in the cache layer for efficiency reasons. Now, suppose
an application first creates a new hard link for a file (thus increasing its link count),
and then calls fsync on that file. The naming layer would relay the fsync operation
to the cache layer. In the cache layer, flushing just that object’s data and attributes is
clearly not enough: this would flush the new link count, but not the corresponding
entry in the directory, thus introducing inconsistency.

The inconsistency problem could be solved by extending the flush operation to
all objects that were ever part of a transaction that included the target object, but
the transitive set is likely to include most if not all object changes, thus making the
fsync call still as expensive as a full sync call. While this particular problem can
be solved in the cache layer with extra information in the transactions, that would
merely move the problem to the physical layer, which typically aggregates state
for multiple objects together in a single disk block (e.g., a bitmap or inode block),
thus also creating a similar problem. Only full and fine-grained transaction support,
including transaction history information for dependency tracking, extended all the
way into the physical layer, could solve the entire problem. Such a change would
come at great expense, in both performance and complexity.

An alternative and much simpler approach would be for the cache layer to write
its entire operations log, as added for crash recovery in Chapter 3, to the actual
storage devices. This approach would not limit the amount of pending data to be
flushed down, but it may speed up the flushing itself, especially if the target of the
write is a special metadata object that uses a preallocated, contiguous area on the
lower devices. After all, contiguous disk writes are relatively inexpensive. The ap-
proach resembles journaling, and would require only two extensions: 1) the physical
modules have to support the contiguous preallocation, and 2) the cache layer has to

8.4. IMPROVING CACHE-LAYER RECOVERY 143

support serialization and deserialization of its operations log.

8.4 Improving cache-layer recovery

For the purpose of crash recovery, the cache-layer recovery system of Chapter 4
makes a number of assumptions about the misbehavior resulting from software bugs.
In particular, even though the recovery system discards most state changes made
since the start of the ongoing request, it still makes the assumption that during the
processing of that request, no corrupted state has propagated into either the lower
layers or the Dirty State Store (DSS). After all, operations sent down to lower layers
cannot always be undone, and while the DSS checksums protect against unintended
memory overwrites in the DSS memory area, they do not protect against legitimate
but corrupt calls into the DSS part of the cache layer.

The issue could be mitigated by deferring all the calls to lower layers and mod-
ifications to the DSS until the end of each request. This approach maximizes the
chance that in the event of a crash, no propagation has taken place yet, and thus, no
corrupted state could have been propagated either. The approach is very similar to
generation of transactions in the naming layer. However, in the case of the cache
layer, deferring actions may be problematic.

The most problematic case involves writing to cache pages. An update of a dirty
page must be paired with an update of its DSS checksum; after all, if the two do
not match, the cache will not be recovered after a crash. Thus, in order to defer
updating the DSS checksum until the end of a request, the update of the dirty page
must be deferred correspondingly. This means that cache pages can no longer be
updated in-place as part of processing write operations. The cache layer would
need temporary buffers to store updates to pages, and extra memory copy operations
to merge the updates into the actual pages at the end of the requests (or a similar
approach with the same costs). This would negatively affect both performance and
complexity in the cache layer.

However, there are some mitigating factors. First, temporary buffers are needed
only for non-append writes to pages that were already dirty. The idea here is that if
the DSS does not already have a checksum for the (part of the) page being changed,
no mismatch will exist after a crash either. If need be, a checksum entry can be
thrown out of the DSS immediately if it is determined that the new write call will
overwrite the entire previously checksummed area, thus also avoiding the need for
temporary buffers in the case of full-page overwrites of already-dirty pages. The
post-crash repeat of the active write calls will do the rest. Second, it would be
possible to compute new page checksums while copying memory between buffers.

Time constraints have prevented us from experimenting with this alternative ap-
proach.

144 CHAPTER 8. DISCUSSION

8.5 Implementation complexity

Due to space constraints, we have not been able to report statistics about the source
code changes in our original papers. However, we believe that especially for relia-
bility, it is worth elaborating on exactly this aspect, since every source code addition
may itself contain new bugs. In this section, we report on changes in source code,
using source code numbers obtained with the SLOCCount tool [162]. We report
source lines of code (SLOC) counts on a per-module basis; the continuous internal
reorganization of the Loris source code makes it less useful to report finer-grained
statistics. In addition to the modules, we also report statistics for the Loris library,
which is shared between all these modules. The library’s main task is to handle all
aspects of intermodule communication, so that modules can either be placed into
separate processes or (as shown in Chapter 2 only) be merged into a single pro-
cess, without changing the modules themselves. The library also contains a certain
amount of other shared code, such as checksumming algorithms.

For each of the projects in Chapters 3 to 7, we report the SLOC counts of Loris
before and after a particular project, and the delta which is simply the difference
between the two. Changes in the Before numbers across tables are not meaning-
ful. Loris has served as a base for several other projects [7], and many changes
have been merged into the main Loris code at arbitrary times. In other cases, we
have later removed features which became too cumbersome to maintain; an exam-
ple is background flushing in the cache layer. As a result, the baseline Loris code
is minimalistic in many ways, and often much simpler than would be possible for
a production-grade implementation. Also, it should be noted that in several of our
projects, the same module implementation supports all variants of the algorithms
presented in the papers, using systems of #defines. For these reasons, the code size
changes should be considered an upper bound in most cases.

Table 8.1 shows the SLOC counts for the system and process crash recovery
work in Chapter 3. In contrast to the other tables in this section, Table 8.1 contains
an approximation: at the time, the work of Chapter 3 was merged with the main
Loris source code immediately, in small pieces that are intermixed with a large num-
ber of other changes, including support for multithreading, support for versioning
[148], and a redesign of the block device driver interface. Except for the TwinFS

Component Before After Delta
Naming 2,859 2,864 +5
Cache 1,818 2,694 +876
Logical 3,143 3,338 +195
PhysFS 3,071 3,079 +8
TwinFS 0 3,524 +3,524
Library 8,662 8,867 +205

Table 8.1: SLOC counts of the changes made for Chapter 3.

8.5. IMPLEMENTATION COMPLEXITY 145

Component Before After Delta
Naming 3,165 3,211 +46
Cache 2,564 3,284 +720
Logical 6,332 6,339 +7
PhysFS 2,659 2,697 +38
TwinFS 3,438 3,459 +21
Library 8,842 9,195 +353

Table 8.2: SLOC counts of the changes made for Chapter 4.

numbers, the Before numbers are from the Loris source code just before making the
first crash recovery changes, and the After numbers are the sum of deltas for two
branches (hand-created for this purpose) which contain just the changes related to
crash recovery, logging, and resynchronization, added to the Before numbers. We
consider this the most accurate approximation for the SLOC counts before and after
the project of Chapter 3 that we can make. TwinFS was created specifically for this
chapter, and thus, its SLOC count is accurate.

The SLOC increase in the cache layer is due mostly to the cache logging imple-
mentation. The cache logging code is rather simple, but it maintains its own data
structures, needs to support each of the modifying Loris operations, and comes with
support for replay, and thus still ends up representing a substantial increase in overall
code size. The logical layer was extended with support for coordinating checkpoint
loading and data resynchronization, and the Loris library was extended with support
for new operations to support this coordination. TwinFS was designed as a straight-
forward extension of PhysFS, and is therefore able to reuse most of the PhysFS code
with no change. The difference in code size between PhysFS and TwinFS is largely
due to two aspects: 1) support for the resynchronization log, and 2) support for built-
in self-verification of operational correctness, by checking at runtime that no stable
blocks are overwritten. The self-verification requires additional CPU and memory
resources, and was therefore disabled during all our experiments.

Table 8.2 contains a (fully accurate) representation of the changes made for
Chapter 4. The main change to the library is the addition of support for checksum

Component Before After Delta
Naming 3,012 3,561 +549
NamingHD 0 2,468 +2,468
Cache 2,564 2,861 +297
Logical 6,332 6,345 +13
PhysFS 2,658 2,666 +8
TwinFS 3,438 3,446 +8
Library 8,842 9,491 +649

Table 8.3: SLOC counts of the changes made for Chapter 5.

146 CHAPTER 8. DISCUSSION

Component Before After Delta
Naming 3,073 3,130 +57
Cache 2,485 3,316 +831
Logical 6,359 6,396 +37
PhysFS 2,674 2,688 +14
TwinFS 3,553 3,563 +10
Library 8,934 9,038 +104

Table 8.4: SLOC counts of the changes made for Chapter 6.

propagation through the stack. The cache-layer code increase is due to two main
changes: 1) support for checksum generation and verification throughout the code,
and 2) the implementation of the Dirty State Store, including not only management
but also post-crash verification of its checksummed data structures.

The code changes for Chapter 5 are shown in Table 8.3. The primary Loris
namespace module, Naming, has been extended with support for optimistic trans-
action generation and corresponding support for rollback of internally cached data,
as well as support for request recovery records. NamingHD is our HDF5 extension
namespace module. The number reported for this module is the custom written glue
code only. It does not include the HDF5 library itself, of which we used version
1.8.10-patch1; it has a SLOC count of 455,157. The difference in the Loris library
is the result of (de)serialization support for transactions. Similarly, the cache-layer
changes consist of support for atomically processing transactions.

In Chapter 6, we introduced basic object copy-on-write support. This support is
implemented in the cache layer, and Table 8.4 shows a corresponding increase in the
cache-layer code size, mainly to maintain the domain mapping objects and the global
reference count object. A substantial part of the code changes are due to support for
creating and destroying new domain mappings; these changes also affect the naming
layer and Loris library. In contrast, the implementation of the copy operation largely
reused existing code for object versioning, and thus added little code in the physical
layer.

Chapter 7 also added basic object deduplication, and Table 8.5 shows the code
difference of just this aspect. The main change is in the cache, adding support for

Component Before After Delta
Naming 3,793 3,793 +0
Cache 3,759 4,522 +763
Logical 6,364 6,366 +2
PhysFS 2,661 2,751 +90
TwinFS 3,536 3,624 +88
Library 9,963 9,956 -7

Table 8.5: SLOC counts of the deduplication changes made for Chapter 7.

8.5. IMPLEMENTATION COMPLEXITY 147

Component Before After Delta
Naming 3,073 3,793 +720
Cache 2,485 4,382 +1,897
Logical 6,359 6,366 +7
PhysFS 2,674 2,751 +77
TwinFS 3,553 3,624 +71
Library 8,934 9,956 +1,022

Table 8.6: SLOC counts going from Loris to vLoris in Chapter 7.

hashing and indexing, maintaining a candidates list, equivalence testing, and ob-
ject merging. The physical modules were extended with support for returning block
checksum differences resulting from write and truncate operations. We note
that in this case, the Before numbers already include a large number of reliability
changes, on top of which we added the deduplication support (but without its corre-
sponding integration with the reliability changes).

Table 8.6 shows the statistics for the transformation of Loris into vLoris, as de-
scribed in Chapter 7. The Before column shows the SLOC counts for the original
Loris which, as explained, already contains the changes from Chapter 3. The After
column shows the SLOC counts after adding support for object copy-and-write and
deduplication, transactions, lazy access time updates, and attribute localization. For
our own convenience, we already integrated all naming-layer restart support from
Chapter 5 along with the support for transactions into vLoris, even though the sup-
port (in particular, the generation of request recovery records) was disabled during
our vLoris experiments. This, in addition to the lazy access time support, is the rea-
son for the code increase in the naming layer. As expected, the cache-layer SLOC
count increase is close to the sum of the deltas in Tables 8.3, 8.4, and 8.5. The same
holds in part for the Loris library, but we also added support for Slicing-by-8 CRC32
checksumming [1] to the library while constructing vLoris.

Finally, Table 8.7 shows the statistics for the transformation of vLoris into rvLoris.
In this case, the Before column shows the SLOC counts from vLoris (Table 8.6), and
the After column shows the SLOC counts for rvLoris. In terms of source code, the
transformation consists of two parts: 1) the integration of the checksum propagation

Component Before After Delta
Naming 3,793 3,841 +48
Cache 4,382 6,163 +1,781
Logical 6,366 6,368 +2
PhysFS 2,751 2,794 +43
TwinFS 3,624 3,694 +70
Library 9,956 10,401 +445

Table 8.7: SLOC counts going from vLoris to rvLoris in Chapter 7.

148 CHAPTER 8. DISCUSSION

and cache-layer checksumming code from Chapter 4, for which the SLOC counts
are shown in Table 8.2, and 2) all the integration changes as described in Chapter 7.
Most notably, the difference in the deltas shown in Table 8.2 and 8.7 show that the
integration effort required roughly a thousand extra lines of source code in the cache
layer.

9
General Conclusions

In this dissertation, we have investigated the construction of a highly reliable stor-
age stack. We have first presented a rearrangement of the traditional storage stack.
The new arrangement, called Loris, has advantages in the areas of reliability, het-
erogeneity, and flexibility. For reliability in particular, it offers detection of all the
main forms of silent storage device failures. In the lower layers of the Loris stack,
we have developed a solution for whole-system failures and software bugs, both
based on a system for creating and loading checkpoints, with a new on-disk layout
to manage such checkpoints as proof of concept. We have shown how the cache
layer of the Loris stack can both detect memory corruption and recover from the
effects of software bugs with a system that reuses checksums already present in the
storage stack, thereby limiting the overhead of the solution. We have shown how the
naming layer of the Loris stack can offer extended functionality, and presented an
approach that allows both the original naming module and such new extensions to
recover from crashes, using transactions to make these naming modules effectively
stateless at low cost. We have shown how the effects of a crash in the storage stack’s
Virtual File System (VFS) layer, as well as other components in the operating sys-
tem, can be limited through isolated replication, and we have extended this concept
into a new approach to virtualization, with a number of advantages compared to the
established virtualization alternatives. Finally, we have integrated all pieces to form
a reliable, virtualizing version of the Loris storage stack, providing better reliability
against storage device failures, whole-system failures, memory corruption, and soft-
ware bugs, at a cost of performance, resource usage, and complexity that we believe
is within reason for computer systems for which improved reliability is desired.

We have implemented our techniques on the MINIX 3 platform, which we have
shown to be highly suited for our purposes. This choice has allowed us to in-
vestigate the limits of our reliability improvements without being held back by

149

150 CHAPTER 9. GENERAL CONCLUSIONS

implementation-level difficulties. However, we believe that while this particular
platform was the right choice for our work, many aspects of our work are also appli-
cable to other systems. First of all, given the many advantages of the Loris storage
stack arrangement over the traditional storage stack, it is our point of view that ev-
ery operating system with the traditional storage stack could benefit from a similar
rearrangement, even though we realize that this may not be a trivial task in many
cases.

Similarly, most of the reliability improvements could be applied directly in any
implementation of the Loris arrangement. There is one group of exceptions: the
solutions for recovery from process crashes, which rely heavily on the isolation pro-
vided by our base platform. However, other research has shown that relatively low-
cost forms of isolation can be achieved in monolithic systems [138, 140]. Such
isolation is sufficient to allow implementation of our recovery techniques, although
the provided level of isolation is not as strong and therefore not able to provide the
same protection and detection guarantees, for example with respect to execution of
unprivileged instructions, wild writes, and infinite loops. Thus, while all our relia-
bility techniques could in theory be implemented on a monolithic system, we believe
that the microkernel architecture is the right design for the operating system of any
system requiring high reliability or security, and thus worth considering even if it
comes at the expense of degraded performance.

In contrast, our virtualization idea does not lend itself well to being implemented
on the majority of the currently existing operating systems. That is intentional: we
have argued that by letting go of the more traditional system organization, we can
achieve virtualization properties not found in other systems. With that said, Chap-
ter 6 has shown that some virtualization platforms have already taken small steps
in the same direction, by breaking down some of the traditional information bar-
riers between the operating system and the hypervisor–a trend that, we hope, will
continue. Regardless of whether it will come from radical redesign or through incre-
mental steps, we believe that there will be a place for our idea in the future landscape
of virtualization technologies.

In the rest of this chapter, we provide answers to our original research questions
(Sec. 9.1) and discuss possible avenues for future research (Sec. 9.2).

9.1 Answers to research questions

We now return to the research questions posed in the general introduction. Since
these research questions touch upon issues that are highly cross-cutting, they could
not be answered fully in the individual chapters, with one exception: the first ques-
tion, regarding the feasibility and properties of an integrated reliability solution for
the Loris storage stack, has been answered in Chapter 7. In this section, we an-
swer the remaining questions, regarding building blocks for reliability (Sec. 9.1.1),
exploiting high-level knowledge (Sec. 9.1.2), the ideal level of componentization

9.1. ANSWERS TO RESEARCH QUESTIONS 151

(Sec. 9.1.3), and robustness against software bugs (Sec. 9.1.4).

9.1.1 Building blocks for reliability

In this thesis, we have shown that several of the solutions to different reliability
problems end up using the same basic building blocks to achieve their goal. We
reiterate the most important building blocks.

Most importantly, checksums have proven to be a particularly versatile compo-
nent in the storage stack. We have been able to utilize this single building block for
four purposes: detection of corruption on storage devices, detection of in-memory
corruption in the cache layer, internal state verification after a crash of the cache
layer, and candidate generation for object deduplication. While computing check-
sums is not free, one can choose between various checksum algorithms which oc-
cupy different points along the tradeoff spectrum between strength and performance.
In this work we have experimented with Fletcher and CRC32–two algorithms with
different Hamming distance strengths and performance characteristics. In addition,
we have made use of a number of optimizations to limit the overhead of checksum
computation, such as tracking partial checksums to optimize for file appends (Chap-
ter 4) and partial checksum recomputation to optimize for small writes (Chapter 7).
It has been easy to verify implementation correctness by recomputing and comparing
the checksums in various locations throughout the stack.

The system of consistency points (checkpoints) serves an equally important role
for both recovery after whole-system failures and recovery of crashed processes in
the lower layers of the Loris storage stack. As shown in Chapter 3, the design of the
recovery system relies on a small number of simple assumptions and protocol addi-
tions, leaving the implementation of checkpoints to the individual physical modules.
Time constraints prevented us from implementing additional conforming physical
modules besides our TwinFS prototype. While related work has shown that on-
device support for checkpoints is not strictly necessary for recovery from software
failures [138], we have argued in Chapter 3 that such support should be an integral
part of the storage stack design. On-device layout schemes that do not support re-
covery from whole-system failures can safely be categorized as legacy schemes, and
as we stated in the general introduction, we deliberately let go of legacy support as
a goal. The result is a simpler and cleaner integrated checkpointing system.

The transactions system that is implemented in the cache layer and used by the
naming layer, is used for multiple purposes as well. First, as shown in Chapter 5, it
allows the processes in the naming layer to be restarted after a process crash. Second,
as shown in Chapter 7, it allows virtualized domains to recover cleanly from whole-
system failures without being actively involved in establishing checkpoints, thus
leaving the latter entirely to the host system. As a side effect, the transaction system
also guarantees that after a domain failure (e.g., due to a crash of the domain’s VFS
process), the domain is guaranteed to find a consistent storage state upon its restart.
We note that in the context of virtualization, other researchers have independently

152 CHAPTER 9. GENERAL CONCLUSIONS

reached the same conclusion regarding transactions [72], after we published our
idea [149]. We will elaborate on additional functionality suggested in their work in
Section 9.2.2.

We believe that the emergence of these building blocks is an important outcome
of this work, as it shows that when addressing multiple reliability problems at once,
the overall performance loss and complexity incurred by the solutions does not nec-
essarily increase linearly with the number of addressed problems. Therefore, it has
indeed shown to be beneficial to consider multiple reliability threats at once.

9.1.2 Exploiting high-level knowledge

Our work has focused on the storage stack instead of the entire operating system,
because the narrow focus has allowed us to use high-level knowledge about the stor-
age stack to develop solutions with limited overhead. In this section, we summarize
the concrete benefits, as well as the risks, obtained from using high-level, semantic
knowledge about the structure, internal operation, and communication primitives of
the storage stack for the purpose of improving reliability. We consider differences in
terms of strength, performance, resource usage, and complexity, compared to what
can hypothetically be achieved by (ideal) generic solutions.

First of all, and as a general point, we rely on the one-directional structure of
the storage stack. The storage stack can be seen as the channel between applications
and storage devices, and storage devices fundamentally support only idempotent
operations. As a result, we have been able to establish idempotence for operations
within the storage stack as well, which we have exploited for recovery purposes in
Chapters 3 and 4. The linear structure is strengthened by the storage stack’s isolation
from most other subsystems of the operating system. This allows us to disregard the
possibility of side effects which would require special attention during recovery.
In particular, any nonstorage resources used in the storage stack are process-bound,
meaning that upon restarting a crashed process, they will be cleaned up automatically
by the rest of the operating system. As an example, one effect is that our solutions
need not track or limit memory usage for storage stack components. We note that
while future extensions, such as a physical module for cloud storage, may introduce
side effects, the recovery systems will continue to work as long as the idempotence
is maintained in such extensions.

For the lower-layer process recovery system of Chapter 3, the cache process
manages the data pages in its operations log in a copy-on-write fashion, making an
exclusive copy of the page for the log only when the main cache pool is evicting the
page. This was trivial to implement, since we could easily identify the code path
taken when a page is being evicted, and make the appropriate call into the logging
module. In addition, the approach is optimal in terms of performance. In theory,
it would be possible for a generic rollback-based process crash recovery approach
to implement a similar log, using interception of operations sent down to the lower
layers. It would then have to instrument subsequent writes to the pages sent down in

9.1. ANSWERS TO RESEARCH QUESTIONS 153

such operations in order to effectively implement copy-on-write semantics for them
[156]. It is doubtful that such a generic solution could be implemented with the same
minimal overhead as our targeted approach.

Moreover, in Chapter 7, we improve the logging system by making it steal pages
from the main cache instead, thus fundamentally altering the operation of the cache
for recovery purposes–of course, in such a way that under normal circumstances, the
actual performance impact is minimal. In addition, the management of the cache-
layer log uses high-level knowledge to reduce the logging overhead even further.
For example, it merges writes for the same page of the same object, and discards
the log entries of various other operations that have become obsolete by subsequent
operations. These optimizations reduce not only resource usage but also implemen-
tation complexity. A generic recovery system would lack the necessary semantic
knowledge for these changes, and thus, all these improvements can be made with
high-level knowledge only.

However, as shown in Chapter 7, we could not retain the most stripped-down
version of the log, as the introduction of the copy operation brought along the re-
quirement for dependency tracking. Other new operations such as the snapshot
operation introduced in other work on Loris [11] would require the same kind of
dependency tracking. Thus, this is a case where “too much” optimization based on
high-level knowledge may clash with new functionality. Still, the added dependency
tracking retains the low resource usage of the original solution in the common case,
and thus still benefits from using high-level knowledge.

For the cache-layer memory corruption detection and process recovery systems
of Chapter 4, a generic approach would involve separate computation of checksums
for the integrity checks. In contrast, our solution’s reuse of checksums for data on
disk obviates the need to recompute these checksums separately. Our system also
exploits the fact that clean pages can be reread from disk if corrupted, thus reducing
the amount of state for which corruption is fatal to a large extent. Thus, here too, use
of high-level knowledge both improves the strength and reduces the overhead of our
systems.

For the naming-layer process recovery system of Chapter 5, several high-level
optimizations allow the cache layer’s transaction processing overhead to be kept
to a minimum. One important example is that the transaction system allows each
transaction to contain only one operation that cannot be undone (e.g., a delete op-
eration), thus reducing overall complexity throughout the storage stack by obviating
the need to implement a way to undo such an operation (e.g., with a new undelete
operation) in the lower layers. Another example is that the cache layer can avoid
generating rollback information for write operations to data objects (i.e., regular
files), which means that no extra memory copies have to be made for these highly
common operations.

Summarizing, we have relied heavily on high-level knowledge throughout this
work. This knowledge has been essential to some parts of the detection and recovery
systems, and contributed significantly in keeping the overheads of these systems low

154 CHAPTER 9. GENERAL CONCLUSIONS

in other parts. By definition, generic detection and recovery systems cannot use
the same high-level knowledge and thus always be a step behind solutions tailored
specifically to their targets. As we noted in Chapters 4 and 7, we do believe that
extra integration effort between generic and custom systems may be warranted in
certain cases, and we consider this to be an important area of future work.

9.1.3 The ideal level of componentization

For the problem of software bugs, and to a lesser extent that of memory corruption,
the overall system’s modularity and isolation are crucial for the resulting solutions.
In contrast to the traditional file system and software RAID layers, the heart of Loris
consists of no fewer than four layers. This finer-grained modularity has allowed us
to turn the software RAID functionality into an object-based equivalent. We have
enumerated the advantages of this change in Chapter 2. Furthermore, the chosen
split-up of the layers has resulted in each layer performing a single and clearly de-
fined task. Further splitting up any of the layers would be problematic as multiple
layers would end up managing the same data structures, with as result that the simple
cross-layer object interface would no longer suffice. Thus, the split-up of the layers
has been pushed to the point that further division would yield no advantages. In this
section, we look at two subsequent aspects: first, the order of the layers, and second,
the relation between layers and processes.

Given the argumentation in Chapter 2, the only aspect of the order of layers that
is up for discussion at all, is the position of the cache layer. Even though Chapter 2
states that the Loris cache layer is optional on systems with a unified page cache,
such a page cache still needs to be assigned a logical place in the storage stack
architecture, even if it is integrated with the VM subsystem. In the Loris stack orga-
nization, the overall system benefits from having the page cache below the naming
layer, because the natural result is that the page cache also caches directory data.
Moreover, our virtualization approach relies on that order as well. On the other side,
the page cache befits from being positioned above the logical layer, not only to avoid
separately caching redundant copies of data (e.g., for mirrored files), but also to be
able to provide unified support for memory-mapped files (which requires logical file
information). The main downside of this order is that the physical layer cannot use
the page cache for its metadata, but our experiments have shown that this problem is
solved adequately with the physical modules each employing their own small meta-
data cache. In theory, the page cache could be made accessible to the physical layer
as well, but this would not change the cache layer’s logical position in the stack.

Thus, for our reliability work, we have no reason not to take the original Loris
stack architecture and its established modularity as a given. Since the crash recovery
systems rely on isolation of processes for the delineation of failure domains, we
now turn to the isolation aspect: for reliability purposes, what is the most beneficial
split-up of the Loris stack into separate processes? We start with the cache layer.

We have shown throughout this dissertation that the cache layer serves as what

9.1. ANSWERS TO RESEARCH QUESTIONS 155

can be called a “stable point” for process crash recovery of the other layers, due to
three characteristics. First, in its final form, the cache layer implements transaction
support and the operations log which are needed for recovery of the naming layer
and the lower layers, respectively. Second, the cache layer is fundamentally the least
complicated layer in the stack. Since it provides caching functionality only, its out-
put operations (sent to lower layers) are very similar to its input operations (received
from upper layers), and its core data structures and algorithms are simple. Third, its
process crash recovery guarantees are the weakest of the four aforementioned layers,
due to the fact that it typically contains a large amount of state of which there is no
other copy in the stack.

Any functionality that is colocated in the cache layer will inherit this layer’s
relatively weak process crash recovery guarantees. Any extra functionality will also
introduce more code that could have software bugs, thus making the cache process
more likely to fail–possibly in an unrecoverable way. These are strong arguments
in favor of keeping the other layers outside of the cache-layer process, which would
imply at least one process above and one process below the cache layer. We believe
that Chapters 2 and 5 make sufficiently clear that both these sides (the naming layer
side, and the logical/physical layer side) are indeed sufficiently complex and thus
prone to failures to warrant being split off into separate processes. As shown in
Chapter 6, the hard split between the naming and cache layers is even fundamental
to our virtualization ideas.

Thus, we can justify at least three separate processes for the four layers: a naming
process, a cache process, and a logical-physical process. However, every separate
process introduces context switching and communication overhead. The overhead is
especially high for layers above the cache layer, which will trigger this overhead for
every object operation, including the operations that can be served by the page cache.
This then raises the next question: can we justify going beyond three processes?

As we demonstrated in Chapter 3, from a process crash recovery point of view,
there is no compelling reason to split up the logical and physical layers into sepa-
rate processes, or the physical modules from each other. After all, if any of these
processes crash, the recovery procedure simply restarts all of them. While it is the-
oretically possible to recover one of the processes without restarting all others, such
an approach would always introduce more complexity–if nothing else, because it
would deviate from the normal storage stack startup procedure, thus requiring more
code that is used exclusively for recovery purposes. The finer-grained split does help
in limiting the damage that any single module can do as a result of software bugs. For
example, one physical module cannot overwrite the contents of a device managed
by another physical module, and an attempt to do so may be used as indication that
the process is misbehaving. There are also smaller general benefits, such as more
of the address space being unmapped in each individual process, with the result that
faulty, random address accesses are more likely to trigger an exception rather than
go undetected. These are however not direct benefits for the recovery system.

Additionally, we argued in Chapter 7 that splitting off the object virtualization

156 CHAPTER 9. GENERAL CONCLUSIONS

support from the cache layer into its own process would not make process crash
recovery less complex. It would help in protecting the cache layer from the virtual-
ization code, but at the cost of performance loss due to the presence of another layer
in the path of operations between applications and the page cache. Therefore, this
case presents a clear tradeoff between reliability and performance. In Chapter 7, we
chose to retain performance.

These cases can be extrapolated to more general principles. Although it is pos-
sible that simper solutions apply to specific cases, any (stateful) layer between the
cache layer and the device driver layer can always be made part of the infrastructure
for checkpoint recovery and cache-log replay presented in Chapter 3, and thus be
restarted along with all the other processes in these layers if any of the processes
crashes. Thus, for process crash recovery purposes, introducing more processes in
the lower layers is not directly beneficial, even if it may be beneficial indirectly for
the reasons mentioned above. Adding processes in this part of the stack may have
a negative performance impact, but the effects will be limited by the fact that they
would be positioned below the cache. In contrast, any stateful layer between the
VFS layer and the cache layer could use the transaction support from Chapter 5 to
allow for process crash recovery, allowing its process to be restarted individually
after a crash. Thus, between the VFS and cache layers, a more fine-grained split-up
of the layers may be beneficial, but may come at a steep performance cost due to
being positioned in between the application and the page cache. The actual impact
depends heavily on the cost of context switching, and thus, different decisions may
be appropriate on different platforms.

Besides the four core Loris layers, there are additional possibilities to optimize
for performance. For example, in a virtualized environment, the VFS and naming
layers can be merged into a single process, as hinted at in Chapter 6. In the re-
sulting situation, the naming layer can no longer be recovered individually, but a
naming-layer failure would still result in the shutdown of only the containing virtual
environment. On the other side of the stack, each physical module could be merged
with the driver for its underlying device. This merge would come at no direct loss
of reliability guarantees, as long as no driver is shared between multiple physical
modules.

9.1.4 Robustness against software bugs

In Chapters 3, 4, and 5, we have presented three different process crash recovery
solutions. These solutions are not equally robust, in that they make different as-
sumptions and offer different guarantees. We can now zoom out and look at the
bigger picture, which allows us to compare the robustness of the solutions using a
loose formalization of the concepts shared between all the layers’ crash recovery
solutions.

First of all, we assume the presence of a monitoring system, whose purpose is to
detect process crashes. As we have noted in various places, we use the term “crash”

9.1. ANSWERS TO RESEARCH QUESTIONS 157

as an umbrella term for all detected failures. On MINIX 3, this may be a CPU-
generated exception, for example due to execution of a privileged CPU instruction
or an illegal memory access; the process itself raising a failure, for example with
panic, abort, exit, or a failing assert; misbehavior as flagged by the kernel
or another process, as a result of IPC interaction; or, the process not responding to
heartbeat messages, typically due to being stuck in an endless loop. In all cases, the
system process is terminated, and the recovery system kicks in.

When a software bug triggers, the corresponding process may not always crash
immediately. This leads to the notion of a detection interval: the interval of program
execution between the point that a software bug causes program execution to start
deviating from the program’s intended behavior, and the point that this misbehavior
is detected as a crash by the monitoring system. The interval could be measured
in transitions (i.e., executed program instructions) or execution time; the choice is
not relevant for the discussion. In any case, a detection interval of zero means that
a software bug causes immediate failure, which is what we have referred to as a
“fail-stop” process crash throughout this work. If no failure is ever observed by
the monitoring system, the detection interval is not defined and may be considered
infinite. Shortening the detection interval has not been the primary focus of our
work; more about this in Sec. 9.2.1.

Once a process has crashed, the corresponding recovery system is responsible
for restarting it in an application-transparent manner. As described in Chapter 7, the
general approach of our recovery systems is to first roll back to a previous process
state, and then roll forward to the expected current process state by replaying pre-
vious and/or ongoing requests. This leads to the notion of a recovery window: the
window of program execution which the recovery system is designed to roll back,
thereby returning to a program state equal to, or at least semantically equivalent to,
the program’s state at the start of the window.

However, even though the recovery window boundaries are conceptually prede-
fined in our work, successful rollback may not always be possible in every window:
a software bug may cause misbehavior which either goes beyond the scope of the
recovery system (e.g., due to propagation of corrupted results to other components),
or which destroys state necessary for successful rollback (e.g., the Dirty State Store
in the cache layer). In these cases, we say that the recovery window becomes in-
valid. Unfortunately, there are always forms of misbehavior which are impossible to
detect–we have referred to them as semantic failures. Thus, the recovery system is
not always able to determine whether the recovery window is valid or not, and may
therefore have to assume that the window is valid, thus risking recovery to an invalid
state.

With these defined terms, we can now state the main characteristic of our re-
covery systems: successful recovery is guaranteed only if detection interval of a
triggered software bug is contained entirely in a recovery window, and if this recov-
ery window is valid. Only in that case can the recovery system roll back execution
to a point before the software bug triggered, thus discarding any state that may have

158 CHAPTER 9. GENERAL CONCLUSIONS

been corrupted by the effects of the software bug. At that point, a clean retry of
execution can be attempted.

Based on this statement, we can make some qualitative assessments. From the
perspective of the recovery system, every triggering software bug has its own asso-
ciated detection interval, and thus, the detection intervals are a product of circum-
stances beyond the control of the recovery system. Moreover, we do not know the
real-life distribution of detection intervals, although both research by others (e.g.,
[51]) and our own experience suggest that detection intervals can vary wildly. How-
ever, a relatively larger recovery window covers a relatively larger part of this un-
known distribution of detection intervals. In other words: without knowing the dis-
tribution of bugs’ detection intervals, a relatively larger recovery window increases
the probability that the recovery system can recover from more bugs. In the worst
case, a larger recovery window simply has no benefits, but the real-world “Stack
overrun” and “Heap corruption“ example bugs from Chapter 3 already show that
there is a real difference here: without a recovery window that spans multiple re-
quests (as opposed to the single-request recovery windows found in the other layers;
more about this below), the recovery system from Chapter 3 would not have been
able to recover from these bugs. Thus, the size of the recovery window has an effect
on the robustness of a single process’s recovery system: a relatively larger recovery
window is certainly not worse, and probabilistically better.

In order to compare robustness of recovery systems between the processes of
our storage stack, we need to make the additional assumption that the distribution
of bug detection intervals is roughly the same across the processes in the storage
stack. We have no data to support (or disprove) this; we are not aware of literature
that definitively addresses this point, and a proper investigation into it would be far
from trivial. However, we believe the assumption is reasonable, based on the fact
that the layers’ processes are rather similar: all of the layers have similar request-
oriented implementations, with a fair amount of use and manipulation of local data
structures, nonpreemptive multithreading, calls into lower layers, and a fair amount
of shared library code. Thus, one can expect that the bugs in such behaviorally
similar code are also behaviorally similar. With this additional assumption, we can
extend the comparison of recovery window sizes to span multiple processes, and
state that across the Loris layers, a recovery system with a larger recovery window
size can be said to offer stronger guarantees for recovery, and thus reasonably be
deemed more robust, at least in theory. This is our first point of comparison.

In addition, for successful recovery from a triggered software bug, the recovery
window must be valid. Again, the validity of the recovery window itself is beyond
the control of the recovery system. In fact, it is impossible to rule out the possibility
of semantic failures, and thus, there will always be cases where the recovery system
wrongly concludes that recovery is possible. However, similarly to the argument
above, if there are fewer ways in which the recovery window can be invalidated, then
any occurring bug is probabilistically less likely to invalidate the recovery window.
Thus, for a single process’s recovery system, and with all other things being equal,

9.1. ANSWERS TO RESEARCH QUESTIONS 159

having to make fewer assumptions about the validity of the recovery window is
certainly not worse, and probabilistically better. Comparing assumptions between
processes would be impossible however, were it not for the fact that between our
Loris recovery systems, the sets of assumptions are strict subsets or supersets of
one another. In addition to the previous assumptions, this fact allows us to state
that a recovery system with fewer assumptions about the validity of its recovery
windows offers stronger guarantees for recovery, and thus reasonably be deemed
(again, theoretically) more robust. This is our second point of comparison. We note
that while there is a possible conflict between the two points of comparison, it will
become apparent that this is not an issue when comparing our recovery systems.

Finally, one redeeming factor for a recovery system is whether it can detect cer-
tain invalidations of its recovery windows. If, after crash, the recovery system can
determine that the recovery window is invalid, it can avoid rolling back and attempt-
ing recovery anyway, instead informing the system administrator that an irrecover-
able failure has occurred and leaving any further recovery attempts to other actors.
Again, given the existence of semantic failures, the recovery system can possibly
perform such detection only for a certain subset of recovery window invalidations.

Summarizing, we can compare recovery systems using two main characteristics:

• The size of the recovery window (the larger, the better);

• The assumptions made about the validity of the recovery window (the fewer,
the better).

In addition, as a secondary point of interest, the following is also worth consid-
ering:

• Which recovery window invalidations can be detected (the more, the better).

Based on these definitions and the previously stated assumptions, we can con-
clude that the lower-layer process recovery system from Chapter 3 offers by far the
strongest guarantees. Its recovery windows are delineated by sync calls, which each
establish a new consistency point and clear the cache-layer roll-forward log. As a
result, the recovery window typically spans several seconds. In addition, there is
a minimal set of assumptions regarding the validity of the recovery window. Not
only may any misbehavior occur within the affected process itself, but due to the
“blunt” recovery approach of restarting of all lower-layer processes after a crash,
propagation of failures between these two layers will not jeopardize recovery either.
A physical layer may even write to disk blocks which are not part of the consistency
point to which the system will roll back during recovery.

In contrast, the cache-layer process recovery system from Chapter 4 offers the
weakest guarantees. Its recovery window is delineated by the request processing
cycle, and thus, internal propagation of corrupted state across requests may prevent
successful recovery. Moreover, there are many more assumptions about the validity

160 CHAPTER 9. GENERAL CONCLUSIONS

of the recovery window: not only may corrupted state not be propagated across
process boundaries in either direction (to either upper or lower layers), it may also
not propagate into any parts of the Dirty State Store (DSS). The DSS checksums
do detect recovery window invalidations resulting from wild writes that affect DSS
memory, but do not protect against corrupted calls into the DSS. Neither (modifying)
object operations sent down to the lower layers, nor updates to the DSS are deferred
until the end of each request, and therefore, there are various scenarios where the
recovery window may become invalid. We have discussed a possible improvement
at this point in Chapter 8.

Finally, the naming-layer process recovery system from Chapter 5 has the same
delineation of the recovery window as for the cache layer, namely requests. How-
ever, compared to the cache-layer recovery system, the naming-layer recovery sys-
tem has fewer cases where the recovery window is invalidated, for two reasons.
First, no state needs to be recovered from the crashed process’s image, and thus, no
form of internal state corruption can cause recovery to fail. Second, each request’s
modifying object operations are bundled in a single transaction which is sent down
to the cache layer only at the very end of processing the request. Thus, the naming
layer cannot perform actions in the middle of processing a request that the recov-
ery system cannot undo. Thus, even though the naming-layer recovery system has
a smaller recovery window than the lower-layer recovery system and a superset of
its assumptions, it does have a subset of the assumptions made by the cache-layer
recovery system.

Summarizing, the lower-layer process recovery system is by far the most robust,
followed by the naming-layer system, with the cache-layer system being the least
robust. We believe that these levels of robustness correspond well to the expected
distribution of software bugs across the respective layers. Combined, the logical and
physical layers form by far the most complex part of the stack, and many future ex-
tensions that further increase complexity can be expected in these layers. Especially
extensions that involve background activity (e.g., a log-structured layout in the phys-
ical layer [112], or background object migration in the logical layer) clearly benefit
from recovery windows that extend beyond a single request. As we argued in Chap-
ter 5, the risk of the naming layer lies more in issues that come up while processing
a single request, such as complex parsing of file formats. Finally, the cache layer is
conceptually the simplest layer and thus theoretically the least likely to be affected
by software bugs at all. Therefore, it is arguably the layer where investing more
resources into providing stronger recovery guarantees is least warranted. However,
there is no denying that the virtualization support added in Chapter 7 has made the
cache layer more complex. The same chapter has suggested two possible approaches
to mitigate this new problem.

We fully acknowledge that our robustness model is based on theory rather than
practice. Given that the random fault injection experiments in Chapter 7 do not take
into account the assumptions made by the respective recovery systems, one could
expect that the layers with the smaller subsets of assumptions would see relatively

9.2. FUTURE WORK 161

more successful recoveries. However, the results of the experiments do not show a
significant difference in this respect. One possible explanation is the fact that we had
to inject many random faults at once in order to trigger a reasonable number of fail-
ures within the available experimentation time, which could have led to insufficient
testing of the recovery window boundaries. More realistic fault injection methods
are still subject of ongoing research (e.g., [147]).

9.2 Future work

In addition to the technical limitations we mentioned in Chapter 8, we believe that
our work leaves several avenues for subsequent work. In this section, we describe
four main areas of future work: software bugs (Sec. 9.2.1), virtualization (Sec. 9.2.2),
performance (Sec. 9.2.3), and emerging technologies (Sec. 9.2.4).

9.2.1 Software bugs

As mentioned in Sec. 9.1.4, our solutions for recovery from process crashes depend
on the detection that a fault has occurred at all. Thus, the overall resilience to soft-
ware bugs improves with the ability to detect failures, and detect them as quickly as
possible. One way to do that, as we have suggested in Chapter 4, is to perform more
assert-type checks at run time in order to detect any unexpected behavior as early
as possible.

A particularly interesting place for more consistency checks is the boundary be-
tween the layers. Each module could perform checks on the incoming requests and
replies from other modules. If the checks do not match the receiver’s expectations,
it could flag the sender as having crashed. We have experimented with this concept
on MINIX 3 at the driver level before [65], and others have done research on more
high-level boundary checks underneath file systems [41]. We believe that similar
checks in the Loris storage stack could greatly benefit the overall effectiveness of
our software bug solutions. It would be worthwhile to investigate which forms of
misbehavior can be detected at each of the layers, especially considering that this
form of detection is always active and thus must have low overhead, even aside
from the ever-present risk that the extra checks introduce new bugs themselves. We
consider this one of the primary areas of future work.

However, there are always classes of software bugs which result in failures that
can practically not be tested. This applies in particular to semantic failures, which
result in seemingly correct but unintended behavior. We contend that in the space of
low-cost solutions that we have been exploring in this work, there is no reasonable
solution for this problem. One possible approach is N-version programming [13],
but when applied in the storage stack, this approach comes at a high cost and with
severe limitations [17].

Aside from improving detection, it is worth considering whether and how recov-
ery can be improved. Such improvements would involve any of the points affecting

162 CHAPTER 9. GENERAL CONCLUSIONS

the recovery window as discussed in Sec. 9.1.4. Extending the size of the recovery
window (the first point) is easy in the lower layers, as it merely requires a different
configuration, with a less frequent checkpointing interval and consequently more
memory spent on the roll-forward log. For the naming and cache layers however,
extending the recovery window beyond single requests would not only require a
similar roll-forward log in the layer above the affected layer–thus spending extra
memory which, unlike within the cache layer, cannot be reused for other purposes–
but also impose more determinism in these two layers, since pre-crash results have
already been returned to applications and thus may not change during replay.

With respect to the validity of the recovery window (the second point), the cache
layer makes the most assumptions and may thus benefit the most from improvements
at this point. However, the current situation could be improved substantially only by
providing better isolation for the Dirty State Store, for example by moving it into a
separate process, which would be prohibitively expensive in terms of extra context
switching and memory copying overhead. In general, we find that there are few
cases where invalidation of the recovery window can be determined after the fact
(the third point), without also possibly serving as a consistency check for immediate
detection. In that sense, the Dirty State Store appears to be somewhat of an atypical
case.

Given that process crash recovery has been a major focus of this thesis, we be-
lieve that within the scope of our principles and goals as stated in the general in-
troduction, there are few substantial improvements to be made in this area when
continuing the path we have taken. Instead, as we have mentioned, we believe that a
fruitful direction of future work is the combination of specific and generic recovery
techniques, thereby combining the advantages of high-level knowledge specific to
the storage stack with the simplicity of automated generation of most of the infras-
tructure needed for verification and recovery.

9.2.2 Virtualization

It is clear that Chapters 6 and 7 have not provided an exhaustive exploration of our
virtualization concept. In fact, some of the assertions in Chapter 6 have not yet been
tested in an implementation. This has been mainly a result of time constraints, al-
though many of the virtualization aspects fall well outside the scope of reliability in
general and this thesis in particular. So far, our implementation has been successful
for the reliability aspects of our virtualization work: even though the results were
not sufficiently interesting to report in the earlier chapters, the handling of crashes in
the virtual domains (e.g. of the VFS process) has shown to work exactly as intended.
In addition, our implementation is a successful, if basic, proof of concept for the vir-
tualization aspects related to the storage stack. However, we do believe that several
additional aspects of our new virtualization approach are worth exploring further,
and we consider this to be one of the main areas of future work.

Most notably, we have not performed a direct performance comparison with

9.2. FUTURE WORK 163

other virtualization approaches such as Xen [19]. Since MINIX 3 is not optimized
for low-level performance, we believe that such a comparison would not have helped
in exploring the potential of the concept. It would likely have shown that MINIX 3
itself has a large relative performance overhead, instead of providing any insight
into the performance of the virtualization aspects themselves. Optimizing MINIX 3
to be performance-competitive with Xen would not be a trivial task. Thus, a proper
performance evaluation may require a different base platform, such as L4 [96] for a
microkernel implementation, and perhaps even a commodity operating system such
as Linux for a monolithic implementation. Needless to say, reimplementing our
ideas, and in particular our storage stack, on top of these platforms would not be
trivial either.

Even though the storage side of the virtualization prototype has received most
of our attention, there are still important missing features there as well. One major
example is subobject copy-on-write and deduplication. Sharing of storage for parts
of objects between domains would be highly beneficial for files that are large and
have only part of their contents modified in-place by the individual domains. One
typical example of such files is a virtual hard disk image [102], but there are other
examples of files which are perhaps more likely to be used in our virtualized environ-
ments, such as package management database files. In our storage stack, subobject
copy-on-write support could be implemented entirely in separate physical modules,
by implementing different behavior for the copy operation. However, this would not
allow individual pages to be shared in memory, as that would require involvement of
the cache layer. Subobject deduplication would similarly benefit from involving the
cache layer, and an optimal subobject sharing implementation may in fact require
involvement of several layers.

Another example is full sharing, rather than copy-on-write sharing, of part of
the file system hierarchy between virtual domains. Full sharing of a subset of files
would allow applications in separate domains to cooperate more closely, without the
need for a local networked file system. This concept was proposed for a storage
virtualization approach similar to ours [72]. While we believe that full sharing is
not needed in the majority of use cases for our virtualization approach, it would
be interesting to see if and how full sharing could be made to work in our storage
stack. Our support for transactions is already one step in the right direction, but
while our naming layer is stateless in terms of cached modifications, it is not free of
cached read-only state. The main remaining challenge is synchronizing cached state
between domains while avoiding a corresponding performance hit.

In addition, we have not experimented with a number of largely orthogonal fea-
tures that are expected to be offered by any contemporary virtualization solution,
including resource isolation, checkpointing, and migration. We believe that design-
ing a complete virtualization solution that incorporates all these features while also
retaining high performance would be a considerable research challenge.

164 CHAPTER 9. GENERAL CONCLUSIONS

9.2.3 Performance

In the general introduction of this dissertation, we have stated that we consider fine-
grained modularity and isolation to be one of the pillars on which we base our
research. This choice has allowed us to provide stronger reliability guarantees in
Chapters 3, 4, and 5 than in similar contemporary work, and has shown to be a pre-
condition for our virtualization approach in Chapter 6. However, as shown in the
experiments of Chapter 2, the process separation itself does come at a considerable
cost. Thus, our work would directly benefit from further research into performance
optimizations for the storage stack, as long as these optimizations retain the isolation
guarantees on which we have relied for our solutions.

One possible improvement would be the use of shared memory between the com-
ponents. Right now, only a minimal amount of information is contained in the mes-
sages that are passed using interprocess communication (IPC), since in the MINIX 3
version on which we based our work, these messages are only 36 bytes in size.
Any additional data must be transferred using capability-like memory grants [62].
In order to maintain isolation between processes, copying data from or to a mem-
ory grant must be done by the kernel, and thus, each interprocess copy requires an
additional kernel call. These kernel calls could be eliminated by preestablishing
shared-memory regions between pairs of processes, mapped in read-write by the
sender, and read-only by the receiver of data. Moreover, memory for data could
be shared between more than two processes, thereby eliminating the need for extra
copies altogether in some cases. These concepts have been tried successfully on the
MINIX 3 network stack [67].

Even without such modifications, the Loris prototype already avoids many un-
necessary memory copies. For example, the naming and logical layers do not copy
in data unless they have to, instead letting the cache and physical layers copy directly
from and to applications and each other, using forwarded (indirect) memory grants.
However, as it is, data blocks are copied from and to the physical layer, so that this
layer can generate and verify checksums for these data blocks. In theory, it would be
possible to eliminate the extra copies by letting the device read and write from and
to cache pages directly. In that case, checksum generation for data pages (for write
operations) could be left entirely to the cache layer, using the checksum propagation
introduced in Chapter 5. Checksum verification of data pages (for read operations)
still must be done by the physical modules, since the logical layer must be informed
about verification failures immediately; the physical modules could be given read-
only shared memory access to the appropriate cache pages for this purpose.

While use of shared memory would mainly serve to improve the performance
of the baseline in our work, several aspects of our subsequent reliability work ben-
efit from such changes in similar ways. For example, shared memory would allow
for further overhead reduction for propagation of checksums through the stack (see
Chapter 4), and eliminate the overhead for the problematic case of subpage writes in
transactions (see Chapter 7).

9.2. FUTURE WORK 165

The remaining question is whether the use of shared memory would create com-
plications for our reliability improvements. Even though read-only mappings pre-
vent a receiver from modifying the state of the sender, the sender could modify the
shared content while the receiver is accessing it, possibly leading to new, subtle time
of check to time of use issues. More research and experiments are necessary to mea-
sure not only the performance improvement, but also the overall impact on reliability
of a fullblown shared-memory solution.

The work on the MINIX 3 network stack also experimented with dedicating pro-
cessor cores to system processes, in order to reduce context switching overhead [67].
Once communication based on shared memory is in place, the same could be tried
on our storage stack. We expect that in order to get the maximum yield out of these
changes, the operation of the Loris prototype would have to be made more asyn-
chronous (e.g., with proper background flushing in the cache layer), so as to prevent
that processes (and thus cores) spend most of their time waiting for each other. Com-
pared to the network stack, the storage stack poses new challenges for asynchrony.
For example, there is a fundamental difference between read and write operations in
the storage stack. Reads must be served immediately, whereas processing of writes
may be deferred. Increased asynchrony may also have a further, currently unknown
impact on reliability: even though we believe our reliability solutions would con-
tinue to work, the asynchrony may have a negative impact on their effectiveness, for
example by further shortening or invalidating recovery windows. All of these areas
require further research.

9.2.4 Emerging technologies

Our work has focused on improving reliability for currently available technologies,
thus allowing our solutions to be used on systems that exist today. As new technolo-
gies emerge and are adopted for use in new systems, our reliability solutions may
have to be reevaluated accordingly.

For new storage technologies in particular, the design of Loris allows the de-
tails of a storage device to be hidden entirely in its corresponding physical module.
Storage devices that provide an interface compatible with the interface used for hard
disks, as is the case for Solid State Drives (SSDs), could use our generic physical
modules. However, specific optimizations for such new devices may warrant the
use of different layouts and thus the implementation of separate physical modules.
Similarly, it should be entirely possible to add support for devices with different in-
terfaces, such as “raw” flash memory (without a translation layer) and even object
storage devices [6], in the physical layer alone.

The use of new devices for a purpose other than generic storage of objects pre-
sents a slightly bigger challenge. For example, one might want to dedicate an entire
SSD to storing the deduplication index [100]. In that case, involvement of the logi-
cal layer would be unnecessary and require specific exceptions, in particular because
the dedicated SSD should not contain a copy of other stack metadata. It might help

166 CHAPTER 9. GENERAL CONCLUSIONS

to maintain the SSD contents through a custom physical module, used by the cache
layer directly. Such a change would then also require a new look at the problems
of storage device failures, whole-system failures, and software bugs, although we
expect that many of our solutions can be adapted to this new situation quite easily.

When it comes to emerging technologies that affect the storage stack, the biggest
potential game changer is Non-Volatile Memory (NVM), for example Phase Change
Memory (PCM) [120] and Spin-Transfer Torque RAM (STT-RAM) [78]. NVM is
byte accessible, random access, nonvolatile, and only slightly slower than DRAM
[92]. As a result, NVM can be used as both working memory and permanent storage
at the same time. The (future) availability of NVM, either instead of DRAM or in
addition to it, poses a major challenge in system design. Various ideas have been
proposed for integration of such memory into file system design [30], the operating
system interface [157], and whole-system design [105].

Even if we were to limit the use of NVM to just Loris, there are several ways
to make use of such memory. The least disruptive approach would be to manage
the system’s NVM in a separate physical module, or to use NVM to help manage
consistency points within an existing physical module, although it then becomes un-
clear whether a page cache is still necessary. More invasive changes would likely
allow for more optimal use of the memory, in particular with respect to dealing with
whole-system failures–for example, the NVM could be used for the page cache, or
at least the cache log from Chapter 3. We believe that once there is more clarity re-
garding the exact hardware properties and prices of NVM, many interesting avenues
of research into storage stack reliability will open up.

References

[1] Slicing-by-8. http://slicing-by-8.sourceforge.net/.

[2] FUSE: Filesystem in userspace. http://fuse.sourceforge.net/.

[3] Filesystems in userspace: puffs, refuse, FUSE, and more. http://www.
netbsd.org/docs/puffs/.

[4] GNU Hurd – subhurds. http://www.gnu.org/software/hurd/hurd/
subhurd.html.

[5] System Application Program Interface (API) [C Language]: IEEE Std
1003.1-1990 (Revision of IEEE Std 1003.1-1988). Information Technology
- Portable Operating System Interface. IEEE, 1990. ISBN 978-1559370615.

[6] Object-based storage device commands, ANSI standard INCITS 400-2004,
2004.

[7] Raja Appuswamy. Building a File-Based Storage Stack: Modularity and
Flexibility in Loris. PhD thesis, 2014.

[8] Raja Appuswamy, David C. van Moolenbroek, and Andrew S. Tanenbaum.
Block-level RAID is dead. In Proceedings of the 2nd USENIX Conference on
Hot Topics in Storage and File Systems, HotStorage 2010. USENIX Associa-
tion, 2010.

[9] Raja Appuswamy, David C. van Moolenbroek, and Andrew S. Tanenbaum.
Loris - a dependable, modular file-based storage stack. In Dependable Com-
puting, 2010 IEEE 16th Pacific Rim International Symposium on, PRDC
2010, pages 165–174. IEEE Computer Society, 2010.

[10] Raja Appuswamy, David C. van Moolenbroek, and Andrew S. Tanenbaum.

167

http://slicing-by-8.sourceforge.net/
http://fuse.sourceforge.net/
http://www.netbsd.org/docs/puffs/
http://www.netbsd.org/docs/puffs/
http://www.gnu.org/software/hurd/hurd/subhurd.html
http://www.gnu.org/software/hurd/hurd/subhurd.html

168 REFERENCES

Loris - a dependable, modular file-based storage stack. Technical Report
IR-CS-61, Department of Computer Science, Vrije Universiteit, Amsterdam,
2010.

[11] Raja Appuswamy, David C. van Moolenbroek, and Andrew S. Tanenbaum.
Flexible, modular file volume virtualization in Loris. In Mass Storage Systems
and Technologies, 2011 IEEE 27th Symposium on, MSST 2011, pages 1–14.
IEEE Computer Society, 2011.

[12] Ken Arnold and James Gosling. The Java Language Specification. Addison-
Wesley Professional, 2000. ISBN 978-0201634556.

[13] Algirdas Avizienis and Liming Chen. On the implementation of N-version
programming for software fault tolerance during execution. In Proceedings
the First IEEE-CS International Computer Software and Applications Con-
ference, COMPSAC 1977, pages 149–155. IEEE Computer Society, 1977.

[14] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
Basic concepts and taxonomy of dependable and secure computing. IEEE
Transactions on Dependable and Secure Computing, 1(1):11–33, 2004.

[15] Alain Azagury, Vladimir Dreizin, Michael Factor, Ealan Henis, Dalit
Naor, Noam Rinetzky, Ohad Rodeh, Julian Satran, Ami Tavory, and Lena
Yerushalmi. Towards an object store. In Mass Storage Systems and Tech-
nologies, 2003. Proceedings. 20th IEEE/11th NASA Goddard Conference on,
MSST 2003, pages 165–176. IEEE Computer Society, 2003.

[16] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. An analysis of data
corruption in the storage stack. In Proceedings of the Sixth USENIX Confer-
ence on File and Storage Technologies, FAST 2008. USENIX Association,
2008.

[17] Lakshmi N. Bairavasundaram, Swaminathan Sundararaman, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Tolerating file-system mis-
takes with EnvyFS. In Proceedings of the 2009 USENIX Annual Technical
Conference, USENIX ATC 2009. USENIX Association, 2009.

[18] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and
John K. Ousterhout. Measurements of a distributed file system. In Pro-
ceedings of the Thirteenth ACM Symposium on Operating Systems Principles,
SOSP 1991, pages 198–212. ACM, 1991.

[19] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of vir-
tualization. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, SOSP 2003, pages 164–177. ACM, 2003.

REFERENCES 169

[20] Aaron Brown and David A. Patterson. Towards availability benchmarks: A
case study of software RAID systems. In Proceedings of the 2000 USENIX
Annual Technical Conference, USENIX ATC 2000, pages 263–276. USENIX
Association, 2000.

[21] Olaf Buddenhagen. Advanced lightweight virtualization. http://tri-
ceps.blogspot.com/2007/10/advanced-lightweight-virtualization.html, 2007.

[22] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum.
Disco: Running commodity operating systems on scalable multiprocessors.
ACM Transactions on Computer Systems, 15(4):412–447, 1997.

[23] Thomas Bushnell. Towards a new strategy of OS design. GNU’s Bulletin, 1
(16), 1994.

[24] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Ar-
mando Fox. Microreboot – a technique for cheap recovery. In Proceedings
of the 6th Conference on Symposium on Operating Systems Design & Imple-
mentation - Volume 6, OSDI 2004. USENIX Association, 2004.

[25] Chao-Rui Chang, Jan-Jan Wu, and Pangfeng Liu. An empirical study on
memory sharing of virtual machines for server consolidation. In Parallel and
Distributed Processing with Applications, 2011 IEEE 9th International Sym-
posium on, ISPA 2011, pages 244–249. IEEE Computer Society, 2011.

[26] Peter M. Chen and Brian D. Noble. When virtual is better than real. In
Proceedings of the Eighth Workshop on Hot Topics in Operating Systems,
HotOS 2001, pages 133–138. USENIX Association, 2001.

[27] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher Aycock,
Gurushankar Rajamani, and David Lowell. The Rio file cache: Surviving
operating system crashes. In Proceedings of the Seventh International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS VII, pages 74–83. ACM, 1996.

[28] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual
machines. In Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2, NSDI 2005, pages 273–286.
USENIX Association, 2005.

[29] Cluster File Systems, Inc. Lustre: A scalable, high performance file system.
2002.

[30] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Ben-
jamin Lee, Doug Burger, and Derrick Coetzee. Better I/O through byte-
addressable, persistent memory. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP 2009, pages 133–146.

170 REFERENCES

ACM, 2009.

[31] Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy H. Campbell.
CuriOS: Improving reliability through operating system structure. In Pro-
ceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation, OSDI 2008, pages 59–72. USENIX Association, 2008.

[32] Timothy J. Dell. A white paper on the benefits of chipkill-correct ECC for PC
server main memory. 1997.

[33] Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Bridging the information gap in storage protocol stacks. In Pro-
ceedings of the 2002 USENIX Annual Technical Conference, USENIX ATC
2002, pages 177–190. USENIX Association, 2002.

[34] Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Journal-guided resynchronization for software RAID. In Proceed-
ings of the Fourth USENIX Conference on File and Storage Technologies,
FAST 2005. USENIX Association, 2005.

[35] Dave Dopson. SoftECC: A system for software memory integrity checking.
Master’s thesis, Massachusetts Institute of Technology, 2005.

[36] Hideki Eiraku, Yasushi Shinjo, Calton Pu, Younggyun Koh, and Kazuhiko
Kato. Fast networking with socket-outsourcing in hosted virtual machine en-
vironments. In Proceedings of the 2009 ACM Symposium on Applied Com-
puting, pages 310–317. ACM, 2009.

[37] Akira Eto, Mitsumori Hidaka, Yutaka Okuyama, Katsutaka Kimura, and
Masayuki Hosono. Impact of neutron flux on soft errors in MOS memories.
In Electron Devices Meeting, 1998. Technical Digest., International, IEDM
1998, pages 367–370. IEEE, 1998.

[38] Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh, and Julian Satran.
Object storage: The future building block for storage systems. In Proceedings
of the 2005 IEEE International Symposium on Mass Storage Systems and
Technology, LGDI 2005, pages 119–123. IEEE Computer Society, 2005.

[39] David Fiala, Kurt B. Ferreira, Frank Mueller, and Christian Engelmann. A
tunable, software-based DRAM error detection and correction library for
HPC. In Proceedings of the 2011 International Conference on Parallel Pro-
cessing - Volume 2, EuroPar 2011, pages 251–261. Springer-Verlag, 2011.

[40] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann, Godmar Back, and
Stephen Clawson. Microkernels meet recursive virtual machines. In Pro-
ceedings of the Second USENIX Symposium on Operating Systems Design
and Implementation, OSDI 1996, pages 137–151. ACM, 1996.

REFERENCES 171

[41] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun Benjamin,
Ashvin Goel, and Angela Demke Brown. Recon: Verifying file system con-
sistency at runtime. In Proceedings of the Tenth USENIX Conference on File
and Storage Technologies, FAST 2012. USENIX Association, 2012.

[42] Eran Gal and Sivan Toledo. Algorithms and data structures for flash memo-
ries. ACM Computing Surveys, 37(2):138–163, 2005.

[43] Gregory R. Ganger and Yale N. Patt. Metadata update performance in file sys-
tems. In Proceedings of the First USENIX Conference on Operating Systems
Design and Implementation, OSDI 1994. USENIX Association, 1994.

[44] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based
architecture for intrusion detection. In Proceedings of the 10th Annual Net-
work and Distributed Systems Security Symposium, NDSS 2003, pages 191–
206. USENIX Association, 2003.

[45] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J. Elphin-
stone, Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and Lars Reuther.
The SawMill multiserver approach. In Proceedings of the 9th Workshop on
ACM SIGOPS European Workshop, EW 9, pages 109–114. ACM, 2000.

[46] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler, Fay W. Chang,
Howard Gobioff, Charles Hardin, Erik Riedel, David Rochberg, and Jim Ze-
lenka. A cost-effective, high-bandwidth storage architecture. In Proceedings
of the Eighth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS VIII, pages 92–103. ACM,
1998.

[47] Cristiano Giuffrida and Andrew S. Tanenbaum. Cooperative update: A new
model for dependable live update. In Proceedings of the Second International
Workshop on Hot Topics in Software Upgrades, HotSWUp 2009, pages 1–6.
ACM, 2009.

[48] Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum. We
crashed, now what? In Proceedings of the Sixth International Conference
on Hot Topics in System Dependability, HotDep 2010, pages 1–8. USENIX
Association, 2010.

[49] Robert P. Goldberg. Survey of virtual machine research. IEEE Computer, 7
(6):34–45, 1974.

[50] Robert P. Goldberg and Robert Hassinger. The double paging anomaly. In
Proceedings of the May 6-10, 1974, national computer conference and expo-
sition, pages 195–199. ACM, 1974.

[51] Weining Gu, Zbigniew Kalbarczyk, Ravishankar K. Iyer, and Zhenyu Yang.
Characterization of Linux kernel behavior under errors. In Dependable Sys-

172 REFERENCES

tems and Networks, 2003. Proceedings. 2003 International Conference on,
DSN 2003, pages 459–468. IEEE Computer Society, 2003.

[52] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat. En-
forcing performance isolation across virtual machines in Xen. In Proceed-
ings of the ACM/IFIP/USENIX 2006 International Conference on Middle-
ware, Middleware 2006, pages 342–362. Springer-Verlag, 2006.

[53] Robert Hagmann. Reimplementing the Cedar file system using logging and
group commit. In Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles, SOSP 1987, pages 155–162. ACM, 1987.

[54] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. A file is not a file: Understanding the I/O behavior
of Apple desktop applications. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles, SOSP 2011, pages 71–83. ACM,
2011.

[55] Hermann Härtig. Security architectures revisited. In Proceedings of the 10th
Workshop on ACM SIGOPS European Workshop, EW 10, pages 16–23. ACM,
2002.

[56] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Jean Wolter, and Sebas-
tian Schönberg. The performance of µ-kernel-based systems. In Proceedings
of the Sixteenth ACM Symposium on Operating Systems Principles, SOSP
1997, pages 66–77. ACM, 1997.

[57] Les Hatton. Reexamining the fault density-component size connection. IEEE
Software, 14(2):89–97, 1997.

[58] HDF Group, The. Hierarchical data format version 5, 2000–2010. http:
//www.hdfgroup.org/HDF5.

[59] John S. Heidemann and Gerald J. Popek. File-system development with stack-
able layers. ACM Transactions on Computer Systems, 12(1):58–89, 1994.

[60] Gernot Heiser and Ben Leslie. The OKL4 microvisor: Convergence point of
microkernels and hypervisors. In Proceedings of the First ACM Asia-Pacific
Workshop on Systems, APSYS 2010, pages 19–24. ACM, 2010.

[61] Val Henson and Theodore Ts’o. Double the metadata, double the fun: A cow-
like approach to file system consistency. http://valerieaurora.org/
review/doublefs.pdf.

[62] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.
Tanenbaum. Construction of a highly dependable operating system. In Pro-
ceedings of the Sixth European Dependable Computing Conference, EDCC
2006, pages 3–12. IEEE Computer Society, 2006.

http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://valerieaurora.org/review/doublefs.pdf
http://valerieaurora.org/review/doublefs.pdf

REFERENCES 173

[63] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.
Tanenbaum. Failure resilience for device drivers. In Dependable Systems and
Networks, 2007. 37th Annual IEEE/IFIP International Conference on, DSN
2007, pages 41–50. IEEE Computer Society, 2007.

[64] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.
Tanenbaum. Fault isolation for device drivers. In Dependable Systems Net-
works, 2009. IEEE/IFIP International Conference on, DSN 2009, pages 33–
42. IEEE Computer Society, 2009.

[65] Jorrit N. Herder, David C. van Moolenbroek, Raja Appuswamy, Bingzheng
Wu, Ben Gras, and Andrew S. Tanenbaum. Dealing with driver failures in the
storage stack. In Proceedings of the 2009 Fourth Latin-American Symposium
on Dependable Computing, LADC 2009, pages 119–126. IEEE Computer
Society, 2009.

[66] Dave Hitz, James Lau, and Michael Malcolm. File system design for an NFS
file server appliance. In Proceedings of the USENIX Winter 1994 Technical
Conference, WTEC 1994. USENIX Association, 1994.

[67] Tomas Hruby, Dirk Vogt, Herbert Bos, and Andrew S Tanenbaum. Keep net
working - on a dependable and fast networking stack. In Dependable Systems
and Networks, 2012 42nd Annual IEEE/IFIP International Conference on,
DSN 2012, pages 1–12. IEEE Computer Society, 2012.

[68] Thomas Huckle. Collection of software bugs. http://www5.in.tum.de/
~huckle/bugse.html, 2015.

[69] Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. Cosmic rays
don’t strike twice: Understanding the nature of DRAM errors and the impli-
cations for system design. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS XVII, pages 111–122. ACM, 2012.

[70] Intel Corporation. Intel SSE4 programming reference. 2007.

[71] Intel Corporation. Fast CRC computation for iSCSI polynomial using CRC32
instruction. 2011.

[72] William Jannen, Chia-Che Tsai, and Donald E. Porter. Virtualize storage,
not disks. In Proceedings of the 14th USENIX Conference on Hot Topics in
Operating Systems, HotOS 2013. USENIX Association, 2013.

[73] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Geiger: Monitoring the buffer cache in a virtual machine environment. In
Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XII, pages
14–24, 2006.

http://www5.in.tum.de/~huckle/bugse.html
http://www5.in.tum.de/~huckle/bugse.html

174 REFERENCES

[74] William K. Josephson, Lars A. Bongo, David Flynn, and Kai Li. DFS: A file
system for virtualized flash storage. In Proceedings of the Eighth USENIX
Conference on File and Storage Technologies, FAST 2010. USENIX Associ-
ation, 2010.

[75] Nikolai Joukov, Arun M. Krishnakumar, Chaitanya Patti, Abhishek Rai, Sunil
Satnur, Avishay Traeger, and Erez Zadok. RAIF: Redundant array of inde-
pendent filesystems. In Proceedings of Twenty-Fourth IEEE Conference on
Mass Storage Systems and Technologies, MSST 2007, pages 199–212. IEEE
Computer Society, 2007.

[76] Poul-Henning Kamp and Robert N. M. Watson. Jails: Confining the om-
nipotent root. In Proceedings of the 2nd International SANE Conference,
volume 43, 2000.

[77] Wei-Lun Kao, Ravishankar K. Iyer, and Dong Tang. FINE: A fault injec-
tion and monitoring environment for tracing the UNIX system behavior un-
der faults. IEEE Transactions on Software Engineering, 19(11):1105–1118,
1993.

[78] Takayuki Kawahara. Scalable spin-transfer torque RAM technology for
normally-off computing. Design Test of Computers, IEEE, 28(1):52–63,
2011.

[79] Kimberley Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and John
Wilkes. Designing for disasters. In Proceedings of the 3rd USENIX Confer-
ence on File and Storage Technologies, FAST 2004, pages 59–62. USENIX
Association, 2004.

[80] Peter Kelemen. Silent corruptions. In 8th Annual Workshop on Linux Clusters
for Super Computing, 2007.

[81] Cheryl Kemp. Data loss causes companies to hemorrhage $1.7 trillion per
year: Report. http://www.thewhir.com/web-hosting-news/data-
loss-causes-companies-hemorrhage-1-7-trillion-per-year-
report, 2014.

[82] Dongsung Kim, Hwanju Kim, Myeongjae Jeon, Euiseong Seo, and Joonwon
Lee. Guest-aware priority-based virtual machine scheduling for highly con-
solidated server. In Proceedings of the 14th International Euro-Par Confer-
ence on Parallel Processing, EuroPar 2008, pages 285–294. Springer-Verlag,
2008.

[83] Hwanju Kim, Heeseung Jo, and Joonwon Lee. XHive: Efficient cooperative
caching for virtual machines. IEEE Transactions on Computers, 60(1):106–
119, 2011.

[84] Steven R Kleiman. Vnodes: An architecture for multiple file system types

http://www.thewhir.com/web-hosting-news/data-loss-causes-companies-hemorrhage-1-7-trillion-per-year-report
http://www.thewhir.com/web-hosting-news/data-loss-causes-companies-hemorrhage-1-7-trillion-per-year-report
http://www.thewhir.com/web-hosting-news/data-loss-causes-companies-hemorrhage-1-7-trillion-per-year-report

REFERENCES 175

in Sun UNIX. In Proceedings of the USENIX Summer 1986 Conference,
volume 86, pages 238–247. USENIX Association, 1986.

[85] Jacob Faber Kloster, Jesper Kristensen, and Arne Mejlholm. Determining
the use of interdomain shareable pages using kernel introspection. Technical
report, Aalborg University, 2007.

[86] Kevin Klues, Barret Rhoden, David Zhu, Andrew Waterman, and Eric
Brewer. Processes and resource management in a scalable many-core OS.
In Proceedings of the 2nd USENIX Workshop on Hot Topics in Parallelism,
HotPar 2010. USENIX Association, 2010.

[87] Philip Koopman. 32-bit cyclic redundancy codes for internet applications.
In Proceedings of the 2002 International Conference on Dependable Systems
and Networks, DSN 2002, pages 459–472. IEEE Computer Society, 2002.

[88] Andrew Krioukov, Lakshmi N. Bairavasundaram, Garth R. Goodson, Ki-
ran Srinivasan, Randy Thelen, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dussea. Parity lost and parity regained. In Proceedings of the Sixth
USENIX Conference on File and Storage Technologies, FAST 2008, pages
1–15. USENIX Association, 2008.

[89] Adam Lackorzyński, Alexander Warg, Marcus Völp, and Hermann Härtig.
Flattening hierarchical scheduling. In Proceedings of the Tenth ACM Inter-
national Conference on Embedded Software, EMSOFT 2012, pages 93–102.
ACM, 2012.

[90] Butler W. Lampson. Atomic transactions. In Distributed Systems - Architec-
ture and Implementation, An Advanced Course, volume 105 of Lecture Notes
in Computer Science, pages 246–265. Springer, 1980.

[91] John R. Lange and Peter Dinda. SymCall: Symbiotic virtualization through
VMM-to-guest upcalls. In Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE 2011,
pages 193–204. ACM, 2011.

[92] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting
phase change memory as a scalable DRAM alternative. In Proceedings of
the 36th Annual International Symposium on Computer Architecture, ISCA
2009, pages 2–13. ACM, 2009.

[93] Andrew Lenharth, Vikram S. Adve, and Samuel T. King. Recovery domains:
An organizing principle for recoverable operating systems. In Proceedings of
the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XIV, pages 49–60. ACM, 2009.

[94] Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. The design and

176 REFERENCES

implementation of an operating system to support distributed multimedia ap-
plications. Selected Areas in Communications, IEEE Journal on, 14(7):1280–
1297, 1996.

[95] Xin Li, Kai Shen, Michael C. Huang, and Lingkun Chu. A memory soft error
measurement on production systems. In Proceedings of the 2007 USENIX
Annual Technical Conference, USENIX ATC 2007, pages 1–6. USENIX As-
sociation, 2007.

[96] Jochen Liedtke. On µ-kernel construction. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, SOSP 1995, pages 237–
250. ACM, 1995.

[97] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan
Lu. A study of Linux file system evolution. In Proceedings of the 11th
USENIX Conference on File and Storage Technologies, FAST 2013, pages
31–44. USENIX Association, 2013.

[98] Pin Lu and Kai Shen. Virtual machine memory access tracing with hypervi-
sor exclusive cache. In Proceedings of the 2007 USENIX Annual Technical
Conference, USENIX ATC 2007, pages 29–43. USENIX Association, 2007.

[99] Dan Magenheimer, Chris Mason, Dave McCracken, and Kurt Hackel. Par-
avirtualized paging. In Proceedings of the First Conference on I/O Virtualiza-
tion, WIOV 2008. USENIX Association, 2008.

[100] Dirk Meister and André Brinkmann. dedupv1: Improving deduplication
throughput using solid state drives (SSD). In Mass Storage Systems and Tech-
nologies, 2010 IEEE 26th Symposium on, MSST 2010. IEEE Computer Soci-
ety, 2010.

[101] Alan Messer, Philippe Bernadat, Guangrui Fu, Deqing Chen, Zoran Dimitrije-
vic, David Lie, Durga Devi Mannaru, Alma Riska, and Dejan Milojicic. Sus-
ceptibility of commodity systems and software to memory soft errors. IEEE
Transactions on Computers, 53(12):1557–1568, 2004.

[102] Dutch T. Meyer and William J. Bolosky. A study of practical deduplication. In
Proceedings of the 9th USENIX Conference on File and Storage Technologies,
FAST 2011. USENIX Association, 2011.

[103] Konrad Miller, Fabian Franz, Marc Rittinghaus, Marius Hillenbrand, and
Frank Bellosa. XLH: More effective memory deduplication scanners through
cross-layer hints. In Proceedings of the 2013 USENIX Annual Technical Con-
ference, USENIX ATC 2013, pages 279–290. USENIX Association, 2013.

[104] Grzegorz Miłós, Derek G. Murray, Steven Hand, and Michael A. Fetterman.
Satori: Enlightened page sharing. In Proceedings of the 2009 USENIX Annual
Technical Conference, USENIX ATC 2009. USENIX Association, 2009.

REFERENCES 177

[105] Dushyanth Narayanan and Orion Hodson. Whole-system persistence. In Pro-
ceedings of the Seventeenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS XVII.
ACM, 2012.

[106] Ruslan Nikolaev and Godmar Back. VirtuOS: An operating system with ker-
nel virtualization. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP 2013, pages 116–132. ACM, 2013.

[107] E. Normand. Single event upset at ground level. IEEE Transactions on Nu-
clear Science, 43(6):2742–2750, 1996.

[108] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P. Muhlfeld, C. J.
Montrose, H. W. Curtis, and J. L. Walsh. Field testing for cosmic ray soft er-
rors in semiconductor memories. IBM Journal of Research and Development,
40(1):41–50, 1996.

[109] Open Group, The. fsync – the open group base specifications
issue 7. http://pubs.opengroup.org/onlinepubs/9699919799/
functions/fsync.html, 2013.

[110] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The design and
implementation of Zap: A system for migrating computing environments.
In Proceedings of the Fifth Symposium on Operating Systems Design and
Implementation, OSDI 2002, pages 361–376. USENIX Association, 2002.

[111] Thomas J. Ostrand and Elaine J. Weyuker. The distribution of faults in a large
industrial software system. In Proceedings of the 2002 ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, ISSTA 2002, pages
55–64. ACM, 2002.

[112] John Ousterhout and Fred Douglis. Beating the I/O bottleneck: A case for
log-structured file systems. ACM SIGOPS Operating Systems Review, 23:
11–28, 1989.

[113] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redun-
dant arrays of inexpensive disks (RAID). In Proceedings of the 1988 ACM
SIGMOD International Conference on Management of Data, SIGMOD 1988,
pages 109–116. ACM, 1988.

[114] Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Virtualization aware file
systems: Getting beyond the limitations of virtual disks. In Proceedings of
the 3rd Conference on Networked Systems Design & Implementation - Volume
3, NSDI 2006. USENIX Association, 2006.

[115] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexander
Benn, and Emmett Witchel. Operating system transactions. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP

http://pubs.opengroup.org/onlinepubs/9699919799/functions/fsync.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fsync.html

178 REFERENCES

2009, pages 161–176. ACM, 2009.

[116] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal,
Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. IRON file systems. In Proceedings of the Twentieth ACM Sym-
posium on Operating Systems Principles, SOSP 2005, pages 206–220. ACM,
2005.

[117] Daniel Price and Andrew Tucker. Solaris Zones: Operating system support
for consolidating commercial workloads. In Proceedings of the 18th Large
Installation System Administration Conference, LISA 2004, pages 241–254.
USENIX Association, 2004.

[118] Himanshu Raj and Karsten Schwan. O2S2: Enhanced object-based virtual-
ized storage. ACM SIGOPS Operating Systems Review, 42(6):24–29, 2008.

[119] Abhishek Rajimwale, Vijay Chidambaram, Deepak Ramamurthi, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Coerced cache eviction and
discreet mode journaling: Dealing with misbehaving disks. In Dependable
Systems & Networks, 2011 IEEE/IFIP 41st International Conference on, DSN
2011, pages 518–529. IEEE Computer Society, 2011.

[120] S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.C. Chen, R.M. Shelby,
M. Salinga, D. Krebs, S.-H. Chen, H.L. Lung, and C.H. Lam. Phase-change
random access memory: A scalable technology. IBM Journal of Research and
Development, 52(4.5):465–479, 2008.

[121] Timothy Roscoe, Kevin Elphinstone, and Gernot Heiser. Hype and virtue.
In Proceedings of the 11th USENIX Workshop on Hot Topics in Operating
Systems, HotOS 2007. USENIX Association, 2007.

[122] Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[123] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in
high-performance computing systems. In Dependable Systems and Networks,
2006. International Conference on, DSN 2006, pages 249–258. IEEE Com-
puter Society, 2006.

[124] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM er-
rors in the wild: A large-scale field study. In Proceedings of the Eleventh
International Joint Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS 2009, pages 193–204. ACM, 2009.

[125] Margo Seltzer and Nicholas Murphy. Hierarchical file systems are dead. In
Proceedings of the 12th Conference on Hot Topics in Operating Systems, Ho-
tOS 2009. USENIX Association, 2009.

REFERENCES 179

[126] Jonathan S. Shapiro and Jonathan Adams. Design evolution of the EROS
single-level store. In Proceedings of the 2002 USENIX Annual Technical
Conference, USENIX ATC 2002, pages 59–72. USENIX Association, 2002.

[127] Philip P. Shirvani, Nirmal R. Saxena, and Edward J. McCluskey. Software-
implemented EDAC protection against SEUs. IEEE Transactions on Relia-
bility, 49(3):273–284, 2000.

[128] Gopalan Sivathanu, Charles P. Wright, and Erez Zadok. Ensuring data in-
tegrity in storage: Techniques and applications. In Proceedings of the 2005
ACM Workshop on Storage Security and Survivability, StorageSS 2005, pages
26–36. ACM, 2005.

[129] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Improving storage system availability with D-
GRAID. ACM Transactions on Storage, 1(2):133–170, 2005.

[130] Livio Soares and Michael Stumm. FlexSC: Flexible system call scheduling
with exception-less system calls. In Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI 2010, pages
1–8. USENIX Association, 2010.

[131] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and
Larry Peterson. Container-based operating system virtualization: A scalable,
high-performance alternative to hypervisors. In Proceedings of the Second
ACM SIGOPS/EuroSys European Conference on Computer Systems, EuroSys
2007, pages 275–287. ACM, 2007.

[132] Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni, Erez Zadok, and
Charles P. Wright. Enabling transactional file access via lightweight kernel
extensions. In Proceedings of the 7th USENIX Conference on File and Storage
Technologies, FAST 2009, pages 29–42. USENIX Association, 2009.

[133] Christopher A. Stein, John H. Howard, and Margo I. Seltzer. Unifying file
system protection. In Proceedings of the 2002 USENIX Annual Technical
Conference, pages 79–90. USENIX Association, 2001.

[134] Lex Stein. Stupid file systems are better. In Proceedings of the Tenth Confer-
ence on Hot Topics in Operating Systems, HotOS 2005. USENIX Association,
2005.

[135] STMicroelectronics. STM32 reference manual. 2011.

[136] Sun Microsystems. Solaris ZFS file storage solution. Solaris 10 data sheets.
2004.

[137] Sun Microsystems. Lustre: End to end data integrity design. 2009.

[138] Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale,

180 REFERENCES

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Michael M.
Swift. Membrane: Operating system support for restartable file systems. In
Proceedings of the Eighth USENIX Conference on File and Storage Technolo-
gies, FAST 2010. USENIX Association, 2010.

[139] Swaminathan Sundararaman, Laxman Visampalli, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Refuse to crash with Re-FUSE.
In Proceedings of the Sixth European Conference on Computer Systems, Eu-
roSys 2011. ACM, 2011.

[140] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the
reliability of commodity operating systems. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP 2003, pages 207–
222. ACM, 2003.

[141] Hidekazu Tadokoro, Kenichi Kourai, and Shigeru Chiba. A secure system-
wide process scheduler across virtual machines. In Dependable Computing,
2010 IEEE 16th Pacific Rim International Symposium on, PRDC 2010, pages
27–36. IEEE Computer Society, 2010.

[142] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems De-
sign and Implementation (Third Edition). Prentice Hall, 2006. ISBN 978-
0131429383.

[143] Vasily Tarasov, Deepak Jain, Dean Hildebrand, Renu Tewari, Geoff Kuen-
ning, and Erez Zadok. Improving I/O performance using virtual disk intro-
spection. In Proceedings of the 5th USENIX Workshop on Hot Topics in Stor-
age and File Systems, HotStorage 2013. USENIX Association, 2013.

[144] David Teigland and Heinz Mauelshagen. Volume managers in Linux. In
USENIX Annual Technical Conference, FREENIX Track, pages 185–197.
USENIX Association, 2001.

[145] Tezzaron Semiconductor. Soft errors in electronic memory – a white paper,
2004.

[146] Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P. Wright. A nine
year study of file system and storage benchmarking. ACM Transactions on
Storage, 4(2):5:1–5:56, 2008.

[147] Erik van der Kouwe, Cristiano Giuffrida, and Andrew S. Tanenbaum. Evaluat-
ing distortion in fault injection experiments. In Proceedings of the 15th IEEE
International Symposium on High-Assurance Systems Engineering, HASE
2014. IEEE Computer Society, 2014.

[148] Richard van Heuven van Staereling, Raja Appuswamy, David C. van Moolen-
broek, and Andrew S. Tanenbaum. Efficient, modular metadata management
with Loris. In Proceedings of the 6th IEEE International Conference on Net-

REFERENCES 181

working, Architecture and Storage, NAS 2011, pages 278–287. IEEE Com-
puter Society, 2011.

[149] David C. van Moolenbroek, Raja Appuswamy, and Andrew S. Tanenbaum.
Integrated end-to-end dependability in the Loris storage stack. In Proceed-
ings of the Seventh Workshop on Hot Topics in System Dependability, HotDep
2011. IEEE Computer Society, 2011.

[150] David C. van Moolenbroek, Raja Appuswamy, and Andrew S. Tanenbaum.
Integrated system and process crash recovery in the Loris storage stack. In
Networking, Architecture and Storage, 2012 IEEE 7th International Confer-
ence on, NAS 2012, pages 1–10. IEEE Computer Society, 2012.

[151] David C. van Moolenbroek, Raja Appuswamy, and Andrew S. Tanenbaum.
Battling bad bits with checksums in the Loris page cache. In Dependable
Computing, 2013 Sixth Latin-American Symposium on, LADC 2013, pages
68–77. IEEE Computer Society, 2013.

[152] David C. van Moolenbroek, Raja Appuswamy, and Andrew S. Tanenbaum.
Transaction-based process crash recovery of file system namespace modules.
In Proceedings of the 19th IEEE Pacific Rim International Symposium on De-
pendable Computing, PRDC 2013, pages 338–347. IEEE Computer Society,
2013.

[153] David C. van Moolenbroek, Raja Appuswamy, and Andrew S. Tanenbaum.
Putting the pieces together: The construction of a reliable virtualizing object-
based storage stack. In Proceedings of the Second International Symposium
on Computing and Networking Across Practical Development and Theoreti-
cal Research, CANDAR 2014. IEEE Computer Society, 2014.

[154] David C. van Moolenbroek, Raja Appuswamy, and Andrew S. Tanenbaum.
Towards a flexible, lightweight virtualization alternative. In Proceedings of
International Conference on Systems and Storage, SYSTOR 2014, pages 1–7.
ACM, 2014.

[155] Tom Van Vleck. Unix and Multics. http://www.multicians.org/unix.
html, 1993.

[156] Dirk Vogt, Cristiano Giuffrida, Herbert Bos, and Andrew S. Tanenbaum.
Techniques for efficient in-memory checkpointing. In Proceedings of the 9th
Workshop on Hot Topics in Dependable Systems, HotDep 2013, pages 1–5.
ACM, 2013.

[157] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS XVI, pages 91–104. ACM, 2011.

http://www.multicians.org/unix.html
http://www.multicians.org/unix.html

182 REFERENCES

[158] Carl A. Waldspurger. Memory resource management in VMware ESX server.
ACM SIGOPS Operating Systems Review, 36(SI):181–194, 2002.

[159] Carsten Weinhold and Hermann Härtig. VPFS: Building a virtual private file
system with a small trusted computing base. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008, EuroSys
2008, pages 81–93. ACM, 2008.

[160] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson, Brian Mueller,
Jason Small, Jim Zelenka, and Bin Zhou. Scalable performance of the Panasas
parallel file system. In Proceedings of the Sixth USENIX Conference on File
and Storage Technologies, FAST 2008, pages 1–17. USENIX Association,
2008.

[161] David Wentzlaff and Anant Agarwal. Factored operating systems (fos): The
case for a scalable operating system for multicores. ACM SIGOPS Operating
Systems Review, 43(2):76–85, 2009.

[162] David A. Wheeler. SLOCCount. http://www.dwheeler.com/
sloccount/, 2009.

[163] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and per-
formance in the Denali isolation kernel. ACM SIGOPS Operating Systems
Review, 36(SI):195–209, 2002.

[164] Mark Williamson. XenFS, 2009.

[165] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Na-
tive Client: A sandbox for portable, untrusted x86 native code. In Security
and Privacy, 2009 30th IEEE Symposium on, pages 79–93. IEEE Computer
Society, 2009.

[166] Yang Yu, Fanglu Guo, Susanta Nanda, Lap-chung Lam, and Tzi-cker Chiueh.
A feather-weight virtual machine for Windows applications. In Proceedings
of the 2nd International Conference on Virtual Execution Environments, VEE
2006, pages 24–34. ACM, 2006.

[167] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. End-to-end data integrity for file systems: A ZFS case study.
In Proceedings of the Eighth USENIX Conference on File and Storage Tech-
nologies, FAST 2010. USENIX Association, 2010.

[168] Yupu Zhang, Daniel S. Myers, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Zettabyte reliability with flexible end-to-end data integrity.
In Mass Storage Systems and Technologies, 2013 IEEE 29th Symposium on,
MSST 2013, pages 1–14. IEEE Computer Society, 2013.

http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

REFERENCES 183

[169] J. F. Ziegler and W. A. Lanford. The effect of cosmic rays on computer mem-
ories. Science, 206(4420):776–788, 1979.

Summary

A computer system may experience various problems in its components, both in
hardware and in software. These problems generally do not occur frequently, but if
they are not properly handled, they may cause the entire computer system to mal-
function. Such a malfunction may not only interrupt the system’s regular operation,
but also cause data loss, and ultimately even result in financial loss to the owner
of the computer system. In order to avoid larger malfunctions, one can improve
the computer system’s ability to deal with the problems in individual components,
thereby making the system more reliable.

The context of our work is research on improving computer systems reliability
through modifications in software. Our general working area is the operating sys-
tem, typically the lowest layer in the software stack. One of the operating system’s
most important tasks is to handle hardware interaction on behalf of the applications
running on top of the operating system. This makes the operating system partic-
ularly important for reliability: not only is the operating system the first software
layer to be exposed to problems in hardware components, but it may also contain
faults itself. In both cases, if the operating system does not adequately deal with
these issues, they can affect all running applications as well.

Within the operating system, we focus on the software components that are re-
sponsible for everything related to storage, from files to storage media. These com-
ponents are collectively called the storage stack. Especially in the storage stack,
any problems can easily lead to both application failures and data loss. However, the
traditional storage stack found in most operating systems today does not deal well
with many problems. This is in part due to the fact that reliability improvements al-
ways come with additional overhead, for example in terms of performance loss and
higher resource usage. Given the low probability with which these problems occur,
it is often hard to justify such overhead.

185

186 SUMMARY

In this dissertation, we explore ways to improve the overall reliability of the
storage stack, while keeping the overhead of these improvements acceptably low. We
consider four reliability threats: storage device failures, where a storage device may
not only stop working altogether but also behave in various erroneous ways; whole-
system failures, where the entire computer system shuts down unexpectedly; memory
corruption, where contents of volatile memory are changed as a result of cosmic
radiation; and software bugs, where part of the storage stack itself misbehaves due
to a programming error.

As the basis of our reliability improvements, we subject the storage stack to a
fundamental rearrangement. The heart of the traditional storage stack consists of a
file system layer and a software-implemented RAID (Redundant Array of Inexpen-
sive Disks) layer. We first split up the traditional file system into three layers. We
then move the traditional software-RAID layer between two of those layers, thereby
altering the abstraction level on which it operates. The result is a new storage stack
arrangement, which we call Loris. By design, the Loris stack copes better with
storage device failures than the traditional arrangement. Loris also has a number of
advantages in other areas.

The Loris stack thus consists of four layers. At the bottom, directly above the
operating system’s storage hardware driver, is the physical layer, which is responsi-
ble for the on-device storage layout. On top of it is the logical layer, which provides
RAID-like redundancy. Next is the cache layer, which takes care of caching file
data. The topmost Loris layer is the naming layer, which manages the file hierarchy.
The naming layer runs below the standard Virtual File System (VFS) layer, which
provides the operating system’s interface for file-related requests from applications.

In subsequent projects, we further strengthen the Loris stack against the reliabil-
ity threats. We start from a prototype implementation of the Loris storage stack in the
MINIX3 microkernel operating system, where the four Loris layers–just like the stor-
age hardware driver, the VFS layer, and all applications–run as separate userspace
processes. The MINIX3 environment already provides part of the solution for deal-
ing with software bugs. Software bugs typically result in a crash of the process in
which they manifest themselves. MINIX3 offers a basic facility to restart operating
system processes after a crash, after which it only takes a recovery procedure to re-
cover the process to its pre-crash state. The design of the actual recovery procedures
for the Loris processes is part of our research.

We develop a number of individual reliability improvements. We use a layer-
oriented approach, looking at one or more threats per layer at once. For the physical
and logical layers, we show how a system of recovery points can form the basis
for recovery from both whole-system failures and crashes in these two layers. In the
cache layer, we show how checksums can both aid in detection of memory corruption
and self-recovery of the cache layer after a crash. For the naming layer, we design a
system of transactions to allow easy recovery from crashes in this layer. In all cases,
whenever possible, we ensure that the running applications are not exposed to the
problems that occur.

SUMMARY 187

In addition, we consider software bugs in the VFS layer. It would be difficult to
implement low-overhead recovery support for this layer, and thus, we opt for another
approach. We rework the operating system such that each application gets its own
private copy of the VFS layer as well as the Loris naming layer. Then, whenever
either of these two layers fails irrecoverably, only one application is affected. We
demonstrate that further extending this idea yields a new form of computer system
virtualization. This new virtualization approach, where a virtualizing version of
Loris plays a key role, is a middle-ground alternative to the currently dominant two
types of virtualization, providing advantages beyond just reliability.

Finally, we combine all our individual solutions into a reliable, virtualizing op-
erating system storage stack. We evaluate the resulting reliability and performance,
and conclude that our work indeed adds significant reliability with acceptably low
overhead, thus proving the feasibility of our ideas. We reach a number of additional
research conclusions. We find that it is useful to consider more than one reliability
threat at once, as the same building blocks can then be reused to address multi-
ple threats. We also find that by focusing only on the storage stack, we are able
to leverage semantic knowledge about the storage stack in several beneficial ways.
Specifically for the problem of software bugs, we determine the ideal level of de-
composition of the storage stack into layers and we draw a substantiated comparison
between our individual recovery systems.

Samenvatting

Titel: Constructie van een betrouwbaar opslagsysteem

Een computersysteem kan met diverse problemen in zijn onderdelen te maken krij-
gen, zowel in hardware als in software. In het algemeen treden zulke problemen
niet vaak op, maar als ze niet correct worden aangepakt, kunnen ze leiden tot het
falen van het hele computersysteem. Zo’n grotere storing kan niet alleen een onder-
breking in de normale werking van het systeem veroorzaken, maar ook leiden tot
gegevensverlies, en uiteindelijk zelfs tot financiële schade voor de eigenaar van het
computersysteem. Zulke allesomvattende storingen zijn te voorkomen door ervoor
te zorgen dat het computersysteem beter kan omgaan met de problemen in de af-
zonderlijke componenten, waarmee de betrouwbaarheid van het computersysteem
wordt vergroot.

Het kader van dit onderzoek is het verbeteren van de betrouwbaarheid van com-
putersystemen door middel van aanpassingen in de software. Ons algemene werk-
gebied is het besturingssysteem, doorgaans de onderste laag van software. Eén van
de belangrijkste taken van het besturingssysteem is het verzorgen van de interactie
met de hardware, ten behoeve van de applicaties die bovenop het besturingssysteem
draaien. Als zodanig is het besturingssysteem van bijzonder belang voor betrouw-
baarheid. Niet alleen wordt het besturingssysteem als eerste blootgesteld aan pro-
blemen in de hardwarecomponenten, maar kan het zelf ook fouten bevatten. In beide
gevallen kan inadequate foutafhandeling in het besturingssysteem tevens negatieve
gevolgen hebben voor alle draaiende applicaties.

Binnen het besturingssysteem concentreren we ons op de softwarecomponenten
die verantwoordelijk zijn voor alles wat gerelateerd is aan gegevensopslag, van be-
standen tot opslagmedia. Deze componenten worden samen het opslagsysteem ge-
noemd. Met name in het opslagsysteem kunnen problemen en vergissingen al snel

189

190 SAMENVATTING

leiden tot het falen van applicaties en tot gegevensverlies. Het gebruikelijke opslag-
systeem dat aanwezig is in de meeste besturingssystemen kan echter veel problemen
niet goed aan. Dit valt mede te verklaren doordat verbeteringen in betrouwbaarheid
altijd overhead met zich meebrengen, bijvoorbeeld in de vorm van verlies aan snel-
heid en hoger gebruik van hardwarebronnen. De lage kans dat dergelijke problemen
ook echt optreden maakt het lastig om deze overhead te rechtvaardigen.

In deze dissertatie doen we onderzoek naar manieren om de algemene betrouw-
baarheid van het opslagsysteem te verbeteren, zonder dat de extra overhead daarvoor
te hoog wordt. We bekijken vier bedreigingen voor de betrouwbaarheid van het op-
slagsysteem: het falen van opslagapparaten, waarbij een opslagmedium niet alleen
geheel kan uitvallen maar ook op diverse manieren ongewenst verdrag kan verto-
nen; systeemuitval, waarbij het gehele computersysteem onverwachts wordt uitge-
schakeld; geheugencorruptie, waarbij kosmische straling zorgt voor veranderingen
in het werkgeheugen; en software-bugs, waarbij een gedeelte van het opslagsysteem
zelf door een programmeerfout onbedoeld gedrag vertoont.

Als basis van onze betrouwbaarheidsverbeteringen onderwerpen we het opslag-
systeem aan een fundamentele herstructurering. De kern van het gebruikelijke op-
slagsysteem bestaat uit een bestandssysteem-laag en een software-gebaseerde RAID-
laag (Redundant Array of Inexpensive Disks). We splitsen eerst het gebruikelijke
bestandssysteem op in drie nieuwe lagen. Vervolgens schuiven we de gebruikelijke
software-RAID laag tussen twee van deze lagen, waarmee we het abstractieniveau
veranderen waarop deze laag opereert. Het resultaat is een nieuwe rangschikking van
het opslagsysteem, die we Loris noemen. Het ontwerp van Loris zorgt ervoor dat
het beter omgaat met het falen van opslagapparaten dan de gebruikelijke schikking.
Loris biedt tevens een aantal voordelen op andere vlakken.

Het Loris-systeem bestaat aldus uit vier lagen. De onderste laag, direct boven het
opslagmedia-sturingsprogramma van het besturingssysteem, is de fysieke laag, die
verantwoordelijk is voor de indeling van gegevens in de opslagmedia. Daarbovenop
bevindt zich de logische laag, die RAID-achtige redundantie biedt. De volgende
laag is de cache-laag, die het cachen van bestandsgegevens verzorgt. De bovenste
laag van Loris is de naamgevingslaag, die de bestandshiërarchie beheert. De naam-
gevingslaag draait onder de standaard Virtual File System (VFS) laag. De VFS-laag
fungeert als het doorgeefluik van het besturingssysteem voor bestandsgerelateerde
verzoeken die afkomstig zijn van applicaties.

In het vervolg van het onderzoek versterken we het Loris systeem verder tegen
de genoemde betrouwbaarheidsbedreigingen. We doen dit op basis van een proto-
type van het Loris-opslagsysteem dat we implementeren in het MINIX3 microkernel-
besturingssysteem. Op dit besturingssysteem draaien de vier lagen van Loris – even-
als het opslagmedia-sturingsprogramma, de VFS-laag en alle applicaties – als aparte
user-space processen. De MINIX3-omgeving biedt meteen al een deel van de op-
lossing voor het omgaan met software-bugs. In het algemeen leiden software-bugs
namelijk tot een crash van het proces waarin ze optreden. MINIX3 biedt de basisfaci-
liteit om gecrashte besturingssysteem-processen te herstarten, waarna er slechts een

SAMENVATTING 191

herstelprocedure nodig is om het proces terug te brengen in de toestand van voor de
crash. Het ontwerp van de herstelprocedures voor de Loris-processen is onderdeel
van ons onderzoek.

We ontwikkelen een aantal individuele betrouwbaarheidsverbeteringen. Hier-
bij kijken we laag voor laag naar één bedreiging of verschillende tegelijk. Voor de
fysieke en logische laag tonen we aan hoe een systeem van herstelpunten de ba-
sis kan vormen voor herstel na systeemuitval of crashes in deze twee lagen. In de
cache-laag laten we zien hoe controlegetallen kunnen helpen zowel bij het opsporen
van geheugencorruptie als met zelf-herstel van de cache-laag na een crash. Voor de
naamgevingslaag ontwerpen we een systeem van transacties om eenvoudig herstel
na crashes in deze laag mogelijk te maken. In alle gevallen zorgen we dat, waar mo-
gelijk, de draaiende applicaties niet blootgesteld worden aan opgetreden problemen.

Verder bekijken we software-bugs in de VFS-laag. Het is moeilijk om voor deze
laag met geringe extra overhead herstelondersteuning aan te brengen, en daarom
kiezen we hier voor een andere aanpak. We passen het besturingssysteem zo aan
dat elke applicatie zijn eigen privékopie krijgt van zowel de VFS-laag als de naam-
gevingslaag. Als één van deze twee lagen dan onherstelbaar crasht, wordt hierdoor
slechts een enkele applicatie getroffen. We tonen aan dat als we dit basisidee verder
uitbreiden, dit ons een nieuwe vorm van computersysteem-virtualisatie oplevert.
Deze nieuwe virtualisatie-aanpak, waarin een virtualiserende versie van Loris een
hoofdrol speelt, is een middenweg-alternatief voor de momenteel dominante twee
vormen van virtualisatie, met meer voordelen dan alleen voor de betrouwbaarheid.

Tenslotte combineren we al onze afzonderlijke oplossingen tot een betrouwbaar,
virtualiserend opslagsysteem voor besturingssystemen. We evalueren de resulte-
rende betrouwbaarheid en prestaties, en concluderen dat ons systeem inderdaad met
acceptabel lage overhead een aanzienlijke hoeveelheid betrouwbaarheid toevoegt.
Daarmee bewijzen we de haalbaarheid van onze ideeën. We komen tot een aantal
aanvullende onderzoeksconclusies. We concluderen dat het nuttig is om meer dan
één betrouwbaarheidsbedreiging tegelijk in ogenschouw te nemen, omdat dezelfde
bouwstenen dan hergebruikt kunnen worden om meerdere bedreigingen aan te pak-
ken. We concluderen ook dat door onze focus uitsluitend te richten op het opslag-
systeem, we tevens in staat zijn om semantische kennis over het opslagsysteem op
meerdere manieren nuttig te gebruiken. Specifiek voor het probleem van software-
bugs bepalen we het ideale niveau van opsplitsing van het opslagsysteem in lagen, en
maken we een onderbouwde vergelijking tussen onze afzonderlijke herstelsystemen.

	Acknowledgments
	Contents
	1 General Introduction
	1.1 Problems
	1.2 Research approach and questions
	1.3 Research overview
	1.3.1 Loris: a new storage stack arrangement
	1.3.2 The platform
	1.3.3 Improving the reliability of Loris

	1.4 Contributions and thesis outline

	2 Loris - A Dependable, Modular, File-Based Storage Stack
	2.1 Introduction
	2.2 Problems with the Traditional Storage Stack
	2.2.1 Reliability
	2.2.2 Flexibility
	2.2.3 Heterogeneity Issues

	2.3 Solutions Proposed in the Literature
	2.4 The Design of Loris
	2.4.1 The Physical Layer
	2.4.2 The Logical Layer
	2.4.3 The Cache Layer
	2.4.4 The Naming Layer

	2.5 The Advantages of Loris
	2.5.1 Reliability
	2.5.2 Flexibility
	2.5.3 Heterogeneity

	2.6 Evaluation
	2.6.1 Test Setup
	2.6.2 Evaluating Reliability and Availability
	2.6.3 Performance Evaluation

	2.7 Conclusion

	3 Integrated System and Process Crash Recovery in the Loris Storage Stack
	3.1 Introduction
	3.2 Background: the Loris storage stack
	3.2.1 Layers of the stack

	3.3 The case for integrated recovery
	3.3.1 Recovering from system crashes
	3.3.2 Recovering from process crashes
	3.3.3 Integrated recovery

	3.4 Checkpointing
	3.4.1 The TwinFS file store
	3.4.2 General consistency scheme requirements
	3.4.3 Taking and reloading checkpoints

	3.5 Data resynchronization
	3.5.1 Limiting the areas to scan
	3.5.2 Verifying data
	3.5.3 The TwinFS resynchronization log
	3.5.4 Resynchronization procedure

	3.6 In-memory roll-forward logging
	3.6.1 Interaction with checkpointing
	3.6.2 Logging and replay
	3.6.3 Assumptions and guarantees

	3.7 Evaluation
	3.7.1 Performance evaluation
	3.7.2 Reliability evaluation

	3.8 Related work
	3.8.1 System crash recovery
	3.8.2 Process crash recovery

	3.9 Conclusion and future work

	4 Battling Bad Bits with Checksums in the Loris Page Cache
	4.1 Introduction
	4.2 Background: the Loris stack
	4.3 The case for checksumming in the cache
	4.3.1 Memory errors
	4.3.2 Software bugs

	4.4 Dealing with memory errors
	4.4.1 Suitability of on-disk checksums
	4.4.2 Propagation of checksums
	4.4.3 Verification strategies
	4.4.4 Other memory

	4.5 Dealing with software bugs
	4.5.1 Assumptions
	4.5.2 The Dirty State Store
	4.5.3 Checksumming dirty pages
	4.5.4 Recovery procedure
	4.5.5 Consequences for memory errors

	4.6 Implementation
	4.7 Evaluation
	4.7.1 Microbenchmarks
	4.7.2 Macrobenchmarks
	4.7.3 Fault injection

	4.8 Related work
	4.8.1 Memory errors
	4.8.2 Software bugs

	4.9 Conclusion

	5 Transaction-based Process Crash Recovery of File System Namespace Modules
	5.1 Introduction
	5.2 Motivation
	5.2.1 Namespace modules as an emerging concept
	5.2.2 The reliability problem

	5.3 Design
	5.3.1 Assumptions
	5.3.2 Transactions and recovery
	5.3.3 Support in the object storage layer
	5.3.4 Support in the VFS layer
	5.3.5 Requirements for namespace modules

	5.4 Implementation
	5.4.1 Background: the Loris storage stack
	5.4.2 Infrastructure changes
	5.4.3 Case study: the POSIX namespace module
	5.4.4 Case study: the HDF5 namespace module

	5.5 Evaluation
	5.5.1 Performance
	5.5.2 Reliability

	5.6 Related work
	5.7 Conclusion and future work

	6 Towards a Flexible, Lightweight Virtualization Alternative
	6.1 Introduction
	6.2 Virtualization as a continuum
	6.2.1 Hardware-level virtualization
	6.2.2 Operating system-level virtualization
	6.2.3 The case for new alternatives

	6.3 A new virtualization design
	6.3.1 Design goals
	6.3.2 Abstractions
	6.3.3 Properties

	6.4 Our prototype
	6.5 Evaluation
	6.6 Related Work
	6.7 Conclusion

	7 Putting the Pieces Together: The Construction of a Reliable Virtualizing Object-Based Storage Stack
	7.1 Introduction
	7.2 Background
	7.2.1 The Loris storage stack
	7.2.2 Improved reliability in the physical and logical layers
	7.2.3 Improved reliability in the cache layer
	7.2.4 Improved reliability in the naming layer
	7.2.5 A new approach to virtualization

	7.3 vLoris: support for virtualization
	7.3.1 Object virtualization and copy-on-write
	7.3.2 Transactions
	7.3.3 Attribute localization
	7.3.4 Object-level deduplication

	7.4 rvLoris: integration of reliability support
	7.4.1 Lower-layer restarts versus virtualization
	7.4.2 Cache restarts versus transactions
	7.4.3 Cache restarts versus object virtualization
	7.4.4 Cache restarts versus object deduplication
	7.4.5 Discussion

	7.5 Evaluation
	7.5.1 vLoris performance
	7.5.2 rvLoris performance
	7.5.3 rvLoris reliability

	7.6 Related Work
	7.7 Conclusion

	8 Discussion
	8.1 On storage device failures
	8.2 Checkpoints and the freeze window
	8.3 The fsync problem
	8.4 Improving cache-layer recovery
	8.5 Implementation complexity

	9 General Conclusions
	9.1 Answers to research questions
	9.1.1 Building blocks for reliability
	9.1.2 Exploiting high-level knowledge
	9.1.3 The ideal level of componentization
	9.1.4 Robustness against software bugs

	9.2 Future work
	9.2.1 Software bugs
	9.2.2 Virtualization
	9.2.3 Performance
	9.2.4 Emerging technologies

	References
	Summary
	Samenvatting

